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Epileptic Seizure Detection and Prediction
in EEGs Using Power Spectra

Density Parameterization
Shan Liu , Jiang Wang , Member, IEEE, Shanshan Li , and Lihui Cai

Abstract— Power spectrum analysis is one of the
effective tools for classifying epileptic signals based on
electroencephalography (EEG) recordings. However, the
conflation of periodic and aperiodic components within
the EEG may presents an obstacle to epilepsy detection
or prediction. In this paper, we explored the significance
of the periodic and aperiodic components of the EEG
power spectrum for the detection and prediction of epilepsy
respectively. We use a power spectrum density parame-
terization method to separate the periodic and aperiodic
components of the signals, and validate their roles in
epilepsy detection and prediction on two public datasets.
The average classification accuracy of the periodic and
aperiodic components for 10 clinical tasks on the Bonn
EEG database were 73.9% and 96.68%, respectively, and
increases to 98.88% when combined. For 22 patients on
the CHB-MIT Long-term EEG database, the combined fea-
tures achieve an average detection accuracy of 99.95% and
successfully predict all seizures with low false prediction
rates. We conclude that both the periodic and aperiodic
components of the EEG power spectrum contributed to
discriminating different stages of epilepsy, but the aperi-
odic neural activity played a decisive role in classification.
This discovery has significant implications for diagnosing
epileptic seizures and providing personalized brain activ-
ity information to improve the accuracy and efficiency of
epilepsy detection.

Index Terms— Electroencephalography (EEG), power
spectral density (PSD), parameterization, epileptic detec-
tion, epileptic prediction.

I. INTRODUCTION

EPILEPSY is a neurological disorder that affects more
than 50 million people worldwide [1]. It is character-

ized by recurrent seizures caused by abnormal brain activity,
which can daily functioning and quality of life [2]. Since
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impair antiepileptic drugs have limitations and surgery is not
always available, accurate diagnosis and prediction of epileptic
seizures are essential for improving the quality of life of
epilepsy patients. Electroencephalogram (EEG) is considered
one of the effective tools in diagnosing epilepsy because the
electrical activity of the brain changes significantly during
and near a seizure onset [3]. However, the current practice
of manually reviewing and analyzing EEG signals by neurol-
ogists is inefficient, subjective, and prone to errors. Therefore,
there is a great need for developing automated techniques
to identify seizures from EEG signals. However, this task
is challenging due to the complex nature of EEG signals,
such as low signal-to-noise ratio, high dimensionality, non-
stationarity, non-linearity, variability, and artifacts [4], [5].
Therefore, various non-stationary signal analysis techniques
have been proposed and applied in epilepsy detection meth-
ods, such as short-time Fourier transform (STFT), wavelet
transform (WT), Wigner-Ville distribution (WVD), and the
Welch’s method. These techniques provide different ways to
represent and extract information from EEG signals in the
time-frequency domain. For instance, STFT has been used to
generate EEG spectrograms and employ a multi-view deep
learning model for seizure detection [6]. WT has been used
to extract effective features such as relative energy, relative
amplitude, coefficient of variation, and fluctuation index for
seizure detection [7]. WVD has been used to propose a brain
rhythm sequencing technique for seizure detection [8]. Welch’s
method, which is the one use in this paper, has also been used
to calculate the power spectral density of EEG signals for
detecting epileptic seizures [9], [10].

In addition, researchers have developed many other detec-
tion methods to accurately diagnose epilepsy. For example,
the intrinsic mode function (IMF) based phase space repre-
sentation method, which uses empirical mode decomposition
(EMD) to decompose brain electrical signals into multiple
IMFs, and then reconstructs the phase space of each IMF as a
feature for classifying epileptic signals [11], [12], [13], as well
as extracting features of brain electrical signals by calculating
the second-order difference of IMF [14]. Furthermore, the
Fourier-Bessel series expansion based empirical wavelet trans-
form method [15] and the fractional linear prediction(FLP)
based method [16] are also used for epilepsy detection.
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Recently, an epilepsy detection method based on convolutional
long-short-term memory neural networks has been shown
to outperform existing state-of-the-art methods in detecting
seizures and is suitable for use as an automated system for
diagnosing epilepsy [17]. Moreover, a new framework for
the automated detection of neonatal seizures based on the
Morse Wavelet approach coupled with a local binary pattern
algorithm and a graph-based community detection algorithm
was proposed for the detection of neonatal seizures. The results
show that this method is more accurate in detecting epileptic
seizures compared to traditional methods [18]. However, these
methods also have their limitations, such as such as high
computational costs or the need for large amounts of training
data to achieve high accuracy.

Power spectral density (PSD) analysis is one of the most
important and simplest methods in the processing of EEG
signals in frequency domain, and it is widely used for epilepsy
signal classification [19], [20], [21], [22]. However, traditional
PSD methods often ignore or confound the aperiodic compo-
nent of the neural power spectra, treating them as noise or as
nuisance variables that need to be corrected, and fail to capture
the true oscillations of brain activity. The conflation of periodic
and aperiodic components within the EEG may presents an
obstacle to epilepsy detection or prediction. Numerous studies
have shown that aperiodic components in epilepsy signals
have physiological correlates [23], [24], [25], [26], [27], [28],
[29], [30]. This component can be described by a 1

/
f χ

function, where the χ parameter, also known as the aperiodic
exponent, reflects the distribution of aperiodic power across
frequencies and is comparable to the negative slope of the
power spectrum when measured in log-log space [31]. It has
been demonstrated that trait-like variances in aperiodic activity
may serve as biological indicators for aging [32], development
[27], and diseases like attention deficit hyperactivity disorder
(ADHD) [28] or schizophrenia [29]. Mila et al. have also
found that the aperiodic component in the PSD parameter-
ization algorithm varies with cortical depth [30], which is
considered a potential psychopathology biomarker in pediatric
focal epilepsy [33]. At the microscopic scale, aperiodic activity
has been found to be correlated with neuronal population
spiking and integration of underlying synaptic currents that
fluctuate in the initiation, propagation, and termination of
epileptiform activity. Therefore, we hypothesize that both
periodic and aperiodic components of the neural power spectra
can provide unique information for epilepsy detection and
prediction. In this paper, we try to explore the significance
of the periodic and aperiodic components of the EEG power
spectrum for the detection and prediction of epilepsy.

To test our hypothesis, we improve on the traditional PSD
method by employing the Fitting Oscillations and One-Over F
(FOOOF) parametric method to extract the periodic and aperi-
odic components of PSD. We provided a detailed explanation
of our proposed new method and validated our hypothesis by
comparing our method with traditional PSD methods using
two authoritative epilepsy datasets: the Bonn dataset and the
CHB-MIT long-term EEG database. We explored the roles
that periodic and aperiodic activity play in the detection
or prediction of seizures, presented the effectiveness of our

method in detection and prediction, as well as compared the
performance of different classifiers.

In this paper, we make the following contributions: First,
we reveal the significance of the periodic and aperiodic com-
ponents of the EEG power spectrum for epilepsy detection and
prediction. Second, we propose a novel method for epilepsy
detection and prediction by fusing the periodic and aperiodic
components of EEG power spectrum.

The rest of this study is organized as follows. Section II
describes the two EEG datasets used to evaluate the proposed
method, introduces the proposed method for detecting and
predicting epileptic seizures, describes the classification task,
reports the classifier we used, and the evaluation metrics used
to evaluate the proposed method. Section III presents the
evaluation results, including the impact of different features
and different classifiers on epilepsy detection and prediction
results, and the numerical results of predicting real data from
the “CHB-MIT Scalp EEG Database”. Section IV provides
comparisons with other existing methods and discusses our
entire work. Section V summarizes the conclusions.

II. MATERIALS AND METHODS

A. Datasets
Two authoritative and public epilepsy EEG datasets are used

for the training evaluation of our approach, including the Bonn
University dataset [34] and the Children’s Hospital Boston-
Massachusetts Institute of Technology (CHB-MIT) scalp EEG
database. The brief descriptions of the datasets are given in the
following subsections.

1) Bonn University Dataset: This dataset is available from
the Department of Epileptology at the University of Bonn and
is widely used in epileptic detection and research. The entire
dataset includes five subsets (denoted A-E) each containing
100 single-channel EEG segments of 23.6 s duration. All EEG
signals were recorded with the same 128-channel amplifier
system using an averaged reference electrode and sampled at
173.61 Hz. Sets A and B have been acquired from surface
EEG recordings of five healthy volunteers with the state
of eyes open and closed, respectively. Sets C, D, and E
are both collected from five patients. Specifically, signals in
subsets C and D have been measured in the seizure-free
stage from the epileptogenic zone (D) and the hippocampal
formation of the opposite hemisphere of the brain (C). Subset
E contains seizure activity from all recording sites exhibiting
ictal activity. For more detailed information about the data
collection process, please see [34].

2) CHB-MIT Scalp EEG Database: This database consists
of bipolar scalp EEG recordings from 23 pediatric subjects
(18 females and 5 males) with intractable seizures from the
Children’s Hospital Boston [35]. The age of the patients ranges
from 1.5 to 22 years. All signals are sampled at 256 Hz using
the International 10–20 system of EEG electrode positions.
The database consists of 916 hours of continuous scalp EEG
and contains 157 seizure events. Additionally, the EEG record
failed to read patient 13, which was discarded in this work.
More information about the CHB-MIT dataset is available at:
(https: //physionet.org/content/chbmit/1.0.0/).
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Fig. 1. Block diagram of the proposed algorithm.

B. Parametric Power Spectral Density Method
In this work, we used a PSD parameterization algorithm

for epilepsy detection and prediction. The block diagram of
the proposed methodology can be seen in Fig. 1. We first
filtered the raw EEG signals with a 0-40 Hz bandpass FIR
filter and divided them into 10-second segments with 90%
overlap between adjacent segments. Next, we computed the
power spectral density of each segment using FFT based
on Welch’s method and used the Fitting Oscillations and
One-Over F (FOOOF) parametric method [36] to extract the
periodic and aperiodic components of the PSD. We used the
three parameters of center frequency, power, and bandwidth
of the highest peak in the periodic component, as well as
the parameters of offset and exp in the aperiodic component,
as the feature vector for each segment. Finally, we classified
the feature vectors of each segment using a classifier to obtain
the classification results.

1) Parametric Power Spectral Density: The algorithm we
used in this work to separate the PSD into periodic and aperi-
odic components was first introduced by Donoghue et al. [36].
The algorithm characterizes the putative periodic oscillation
parameters by the center frequency, power, and bandwidth of
the PSD peak, while the aperiodic component is described
by an offset parameter and an exponential parameter, which
can be interpreted as the intercept and slope of the periodic
component in log power spectrum coordinates. This method
assumes that the PSD can be reconstructed by the sum
of multiple Gaussian functions (periodic components) and a
Lorentzian function (aperiodic component):

P SD = L +

N∑
n=0

Gn (1)

TABLE I
TEN DIFFERENT CLASSIFICATION TASKS OF THE BONN DATASET

First, it flattens the power spectrum by subtracting an
initial estimate of the aperiodic component. Then, it iteratively
identifies peaks in the flattened spectrum by fitting Gaussian
functions with predefined bandwidth limits. These Gaussians
are subtracted from the original spectrum to refine the estimate
of the aperiodic component. Finally, it computes the goodness
of fit by comparing the sum of the fitted components with the
raw spectrum. The Gaussian function is defined by

Gn = a · exp

(
− ( f − µ)2

2σ 2

)
(2)

where a is the power of the peak (decibels), µ is the center fre-
quency (Hz), σ is the standard deviation of the Gaussian (Hz),
and f is the vector of input frequencies (Hz).

The Lorentzian function is defined as

L = b − log
(
k + f χ

)
(3)

where b is the broadband offset, χ is the exponent, and k is the
parameter that controls the bend of the aperiodic component.

2) Feature Selection: The algorithm calculates three param-
eters for each periodic component based on the Gaussian fit:
(1) Center frequency (CF): the mean value of the Gaussian.
(2) Power (PW): the distance between the Gaussian peak and
aperiodic fit. (3) Bandwidth (BW): 2 times the standard devia-
tion of the fitted Gaussian. We selected these three parameters
for the highest peak as our periodic features, because they
reflect the location, amplitude, and width of each oscillation.
We also selected offset and exponent as our aperiodic features,
because they reflect the baseline power level and rate of power
decrease across frequencies. Therefore, we used a total of five
features for each segment. We used default parameter settings
for all power spectrum parameterization processes. For more
details about this algorithm, please see [36].

C. Epilepsy Detection Task
We divide the detection task into two parts. In the first part,

we use ten common classification problems from the Bonn
dataset to test our algorithm as shown in Table I.

In the second part of our detection task, we classify the pre-
ictal and ictal stages of the CHB-MIT dataset. This dataset
consists of long-term EEG recordings from 23 patients with
epilepsy. To ensure consistency across different cases, we only
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use the channels that were available throughout each recording
session. Moreover, we address the issue of data imbalance
between seizure and non-seizure classes by selecting pre-ictal
data with equal length as ictal data before each seizure onset.
This way, we can train and test our algorithm using cross-
validation on balanced data sets.

1) Classifiers for Detection Classification Tasks: In detection
experiments, we choose 4 classification methods: support vec-
tor machines (SVM), k-nearest neighbors (KNN), decision tree
(DT), and Linear discriminant analysis (LDA). Each classifier
is briefly described below.

SVM has been confirmed as a high-performance classifier
in many previous studies [37], which is a supervised learning
model in machine learning, usually used for pattern recogni-
tion, classification, and regression analysis. Since a non-linear
SVM is expected to have a higher computational cost and
be slower to compute, we used a linear SVM instead of a
non-linear SVM. The KNN algorithm is a simple, easy-to-
implement supervised machine learning algorithm that can
be used to solve both classification and regression problems.
It finds the nearest neighbors for each data according to the
Euclidean distance, then selects the K-nearest neighbors, spec-
ifying the data labels based on the labels of the majority [38].
In this article, K is considered to be three. Decision tree
(DT) learning is a method of approximating discrete-valued
functions by recursively dividing the instance space to predict
the correct class [39]. It is among the most popular inductive
inference algorithms and has been successfully applied to
a broad range of tasks from learning to diagnose medical
cases to learning to assess the credit risk of loan applicants.
Linear discriminant analysis (LDA) is a supervised method
for introducing class information based on mean vectors and
covariance matrices of feature vectors for individual classes.
This classifier draws a hyperplane to separate the features
belonging to two different classes.

2) Evaluation Metrics for Detection: We evaluated the per-
formance of our proposed epilepsy detection scheme using
four indicators: sensitivity (SEN), specificity (SPE), accuracy
(ACC), and Matthews correlation coefficient (MCC) [40].
These indicators are calculated as follows:

SPE =
TN

TN + FP
× 100%

SEN =
TP

TP + F N
× 100%

ACC =
TP + TN

TP + TN + FP + F N
× 100%

MCC =
TP × TN−F N×FP

√
(TP+F N )×(TP+FP)×(TN+F N )×(TN+FP)

(4)

where true positive (TP) and true negative (TN) separately
represent the number of sections marked as positive and
negative accurately. False positive (FP) is the number of
positive records that are wrongly classified as negative. False
negative (F N ) is exactly contrary to that, which denotes
the number of segments labeled as negative but are positive
indeed. In the epilepsy detection part, the EEG signals of ictal
and inter-ictal are defined as positive (P) and negative (N ),

respectively. SEN measures how well the scheme can detect
positive (ictal) EEG signals, while SPE measures how well the
scheme can exclude negative (inter-ictal) EEG signals. ACC
measures the overall correctness of the scheme, that is, the
proportion of EEG signals that are correctly classified as pos-
itive or negative. MCC measures the correlation and balance
between the detection results and the actual conditions, and it
ranges from −1 to 1, where 1 indicates a perfect prediction,
0 indicates a random prediction, and −1 indicates an inverse
prediction. MCC is considered a robust and informative metric
for binary classification evaluation.

D. Epilepsy Prediction Task
We use CHB-MIT data to evaluate the performance of

parametric methods on the prediction classification task. The
classification task is to distinguish between interictal and pre-
ictal brain states using the parametric approach. In the epilepsy
prediction experiment, to use all available EEG data for a more
complete evaluation, we used oversampling. The interictal
EEG signals are divided into smaller groups that matched
the duration of the pre-ictal class, and the mean value of
the classification results is used in the estimation of the total
seizure prediction performance. The classifier uses the SVM
and KNN described earlier.

1) Evaluation Metrics for Prediction: In the epilepsy predic-
tion section, we calculated the specificity in Equation 4, where
positive (P) and negative (N ) were changed to pre-ictal and
interictal. The prediction rate (Pred) is a measure of the
algorithm’s ability to correctly predict seizures and is defined
as the proportion of seizures that are correctly predicted out
of the total number of seizures. The false prediction rate
(F P R) declares the false alarm generation rate as the number
of FPs per hour of EEG recordings. A positive value of
prediction time TP as the difference between the onset of
the seizure marked in the database and the time of the first
record inside the correspondent prediction interval classified
as true indicates how early a seizure is predicted. At the
same time, we also calculated the positive predictive value(
P PV = TP

/
(TP + FP)

)
to evaluate the performance of the

method. Furthermore, the classification results are evaluated
using the 10-fold cross-validation technique to verify the
robustness of our proposed method. The advantage of K-fold
cross-validation is that all the observations in the database are
eventually used for both training and testing.

III. RESULTS

A. Classification Performance on Detection Tasks
1) Epileptic Detection of the Bonn Database: In this section,

the multi-classification task of the Bonn EEG dataset is first
used to verify the effectiveness of the proposed method.
First, the power spectrum is parameterized to obtain effective
features for epilepsy classification. Use the default parameters
to gain the feature vector composed of five features: CF, PW,
BW, exp, and offset. The box-and-whisker plots of features
between different categories are shown in Fig. 2, which shows
good discrimination in terms of the median, quartile, upper
quartile, and interquartile range of the features. To be more
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Fig. 2. Boxplots of periodic and aperiodic features of the five datasets.
Three periodic features (CF: center frequency, PW: peak power,
BW: peak bandwidth) and two aperiodic features (offset and exponent)
are plotted for different datasets, respectively.

TABLE II
COMPARISON OF EVALUATION INDICATORS OBTAINED BY TRADITIONAL

METHODS AND PARAMETRIC METHODS ON THE BONN DATABASE

rigorous, the Wilcoxon rank sum test is performed to assess
the group (normal, interictal or seizure) differences of features
with a significance level of 0.05. It is clear that the CF
features derived from the normal state A and B datasets are
higher compared to the other datasets (p = 0.017), whereas
no significant differences between interictal and ictal states
are observed. Additionally, the PW features obtained in the
interictal state datasets C and D are lower than the other
datasets (p < 0.0001), while the exp features are higher
than the other datasets (p < 0.0001). Further, the BW and
PW features are higher for set B as compared to set A
(p < 0.0001), even though both the EEG signals reflect normal
condition with differing in eye open and close respectively.
Besides, box plot results show that the offset features are
well differentiated between the different states, which rise in
order from normal to interictal to ictal (p < 0.0001). As a
consequence, these features have a strong ability to distinguish
between different states.

Then, we compare the performance of parametric and tradi-
tional power spectrum methods on the Bonn data classification
task. For the traditional method, we chose the dominant fre-
quency of the power spectral density calculated by the Welch’s
method and its power as features. Periodic and aperiodic
components are chosen as features for the parametric method.
The results in Table II show that the parametric method obtains

TABLE III
SEIZURE DETECTION PERFORMANCE USING PERIODIC COMPONENTS,

APERIODIC COMPONENTS, AND THE COMBINATION OF

PERIODIC AND APERIODIC COMPONENTS

improved sensitivity, specificity and accuracy over traditional
methods for any task. The results in Table II show that
the parametric method outperforms the traditional method in
sensitivity, specificity and accuracy for all tasks. For instance,
in the interictal vs ictal task (Case 4), the parametric method
attains 98.5% accuracy, while the traditional method lags
behind with 89.5%. This implies that the parametric method
can better recognize interictal and ictal EEG signals, which are
both seizure states but have distinct patterns. In the normal
vs interictal vs ictal task (Case 10), the parametric method
reaches 97.2% accuracy, while the traditional method falls
short with 86.2%. This indicates that the parametric method
can handle more challenging classification tasks with multiple
classes and still maintain a high performance. In the normal vs
ictal tasks (Cases 1, 2 and 5), the parametric method achieves
perfect scores of 100% in all three indicators, meaning that it
can flawlessly separate normal and seizure EEG signals, which
are vital for epilepsy diagnosis and treatment. The average
values of SEN, SPE and ACC for all tasks increase by 10.5%,
7.88% and 8.25% respectively when using the parametric
method instead of the traditional method. This demonstrates
that using the parameterized power spectrum as a feature
is more discriminative and can enhance the classification
accuracy.

Finally, classification experiments on 10 clinical tasks of
the Bonn EEG dataset are implemented using three features of
periodic, aperiodic, and periodic plus aperiodic, respectively.
We choose the support vector machine as the classifier here
and employ Sensitivity, Specificity, and Accuracy to quantify
our experimental results, as shown in Table III. It can be
seen that using only the periodic component as a feature,
the obtained values of the three classification indicators are
significantly lower than those of the other two types of
features, and the accuracy of cases 4 and 9 is even lower
than 65%. If aperiodic components are used as features,
there is a significant improvement in classification perfor-
mance compared to periodic components. In particular, Task 9
showed the largest improvement, with its accuracy increasing
from 66.23%, 77.52%, and 57.70% to 98.97%, 98.03%, and
96% for Sensitivity, Specificity, and Accuracy, respectively.
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TABLE IV
SEIZURE DETECTION PERFORMANCE ACHIEVED BY THE PROPOSED

METHOD ON THE CHB-MIT DATASET USING SVM CLASSIFIER

This finding provides evidence that aperiodic components
contain more useful classification information compared to
periodic components. When we combined the two components
as features, most of the classification results improved even
further. For cases 1, 2, and 5, the three indicators reached
100%, and the accuracy of the other 7 cases also improved to
more than 97%. The obtained results suggest that combining
the two features can improve classification performance.

2) Epileptic Detection of the CHB-MIT Database: In this
section, we further verify the performance of our proposed
algorithm for power spectral density parameterization and
seizure detection on the CHB-MIT database. The CHB-MIT
database consists of scalp EEG data that have been anno-
tated by clinical experts as epileptic or non-epileptic seizures.
We segment the EEG signal into 10-second windows, and each
segment forms a sample with 23 channels. The feature vector
of each sample has 115 features (23∗5). We then feed the fea-
ture vector of each segment into an SVM classifier to perform
seizure identification. Table IV shows the experimental results.

As can be seen from Table IV, our algorithm achieves a
specificity (SPE) of 100% for all patients, and a high sensi-
tivity (SEN), accuracy (ACC), and MCC with mean values of
99.9%, 99.9%, and 0.99 respectively. The lowest MCC value
among all subjects is still 0.98. These results demonstrate
that the extracted features have a remarkable seizure detection
ability. Moreover, such consistent performance across all cases
also proves that our algorithm has good generalization and sta-
bility. Next, we compare our algorithm with different features
and different classification methods on the CHB-MIT dataset.
We use four popular classification methods: SVM, KNN, DT,
and LDA, as shown in Fig. 3. Among the four classification
methods, using only the periodic component as a feature
leads to the worst performance. The DT classifier has the
lowest SEN, SPE, ACC, and MCC values of 89.44%, 89.73%,
89.58%, and 0.79 respectively. When we use the aperiodic

Fig. 3. Comparison of seizure detection results with different features
and classifiers in CHB-MIT data. Different color histograms repre-
sent the average results related to different features. Bars: standard
deviations.

component as a feature, the performance of all four classifiers
improves significantly, and the KNN classifier achieves the
best results with SEN, SPE, ACC values of 99.8% and an
MCC value of 0.997. When we combine both periodic and
aperiodic components as features, the SVM classifier outper-
forms other classifiers with SEN, SPE, ACC values of 99.90%,
100%, 99.95% and an MCC value of 0.999 respectively. Both
SVM and KNN classifiers show remarkable performance when
using aperiodic components or a combination of periodic and
aperiodic components as features. The LDA classifier also
attains over 99% for all evaluation metrics when using a
combination of periodic and aperiodic components as features.
These results indicate that our algorithm can maintain good
stability with various classification methods and that adding
aperiodic component features can enhance the classification
performance.

Finally, we compared the performance of different classifi-
cation methods to identify the optimal classifier for epilepsy
detection on the CHB-MIT dataset. Our results showed that
SVM has the highest performance on all evaluation metrics,
followed by KNN and LDA. On the other hand, although DT
had the worst performance, it still averaged over 98.5% for all
evaluation metrics. This suggests that the SVM classifier may
be a better choice for predicting epilepsy using our proposed
algorithm on the CHB-MIT dataset.

B. Classification Performance on Prediction Tasks
In this section, we evaluate the performance of our proposed

algorithm for epilepsy prediction using CHB-MIT data. Our
goal is to predict seizures within 10 minutes or 30 minutes
before their onset. We choose KNN and SVM because they
perform better than other methods in our previous epilepsy
detection part. To improve our seizure prediction performance,
we perform post-processing on our predictions. Since isolated
false positives during inter-ictal periods are common, we use
a voting scheme to filter out spurious predictions. Specifically,
for 10 consecutive predictions, we raise an alarm only if there
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TABLE V
SEIZURE PREDICTION RESULTS FOR THE CHB-MIT EEG DATABASE. PREICTAL WINDOW DURATION: 10 MIN AND 30MIN. PRED = CORRECTLY

PREDICTED SEIZURES, SPE = SPECIFICITY, TP = PREDICTION TIME, PPV = POSITIVE PREDICTIVE VALUE,
BPPV = BALANCED POSITIVE PREDICTIVE VALUE, FPR = FALSE PREDICTION RATE

are at least 8 positive predictions. This reduces the number
of false alarms and increases the reliability of our algorithm.
Table V presents the seizure prediction results obtained for
each patient in the CHB-MIT database, as well as the overall
average result across all patients.

All seizures are successfully predicted with a prediction rate
of 100% with different classifiers or preictal windows. KNN
attains the best SPE and PPV of two different preictal windows
on average, all reaching 100%. And hence getting the best
false alarm rate (0.01 times per hour), which is an important
indicator for evaluating predictions. Considering that zero rates
of false predictions are achieved for up to 18 of the 19 cases
used in the evaluation, there is a strong indication that the
seizure prediction is very accurate with few false alarms. The
SVM classifier also has high SPE and PPV values (>99.8%),
but its FPR is much higher than that of KNN (0.42/h and
1.24/h for 10min and 30min preictal windows, respectively).
Both classification methods achieve rapid seizure prediction,
but KNN has a shorter time-to-prediction (Tp) than SVM in
the 30min preictal window. Tp measures the interval between
the first alarm and the seizure onset. In our results, KNN’s
average Tp was 1788.11s, while SVM’s average Tp was
1778.11s. These results suggest that the algorithm combined
with KNN can effectively distinguish between interictal and
preictal stages, with better performance than the combination
with SVM.

IV. DISCUSSION

In the present study, we proposed a novel seizure detec-
tion and prediction strategy that combines putative periodic

oscillatory and aperiodic components in the neural power
density of EEG signals. Moreover, we performed the clas-
sification tasks with periodic and aperiodic parameters and a
combination of both, respectively, and compared the results
of the parametric algorithm with those of traditional methods.
We find that the aperiodic component improves the classifica-
tion performance, making it better than the traditional method.
Finally, the performance of the four classifiers for the new
strategy was quantified, and epilepsy detection and prediction
were performed.

In the detection task, for the Bonn dataset, the algorithm
proposed in this study not only efficiently processed 10 dif-
ferent cases but also achieved 100% recognition rates for
SEN, SPE and ACC in all three classification tasks (A-E,
B-E, AB-E) for both normal and epileptic states, demonstrat-
ing that distinguishing between normal and epileptic states
is an advantage of this algorithm. Table VI compares the
method proposed in this paper with some of the state-of-
the-art epilepsy detection methods using the Bonn database.
It can be seen that [41] also selected PSD as a feature,
but our work achieved better results. Moreover, this work
obtains higher classification accuracy for all classification
tasks than those shown in [42], [43], and [44]. The feature
selection algorithm is used in [45] and [46], which increases
calculation time and the risk of overfitting. By comparison, our
method only uses five features and does not screen features
for different cases. In addition, [47], [48], [49], [50] only
verified the effectiveness of the method in Bonn data, and did
not explore the performance of the proposed method in other
long-term data sets. Our method has been verified to perform
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TABLE VI
COMPARED WITH OTHER RELATED WORK IN THE DETECTION

EXPERIMENT (BONN DATASETS)

well in Bonn and CHB-MIT datasets, which proves that our
method has better adaptability. Although the A-E and B-E
classification tasks in the Bonn dataset in [51] have reached
100%, which is the same as our results, their performance on
the CHB-MIT dataset is only 97.1-97.77-97.18, not as good

TABLE VII
COMPARED WITH OTHER RELATED WORK IN THE DETECTION

EXPERIMENT (CHB-MIT DATASETS)

as the 99.9-100-99.9 obtained by our method. Moreover, they
used more than 50 features in this work, and a large number
of features seriously increased the computational complexity
and time cost of the detection algorithm. In Table VII, it is
evident that the proposed method outperformed the recently
developed works by a good margin for all experimental cases
of the CHB-MIT database. Additionally, all 23 cases from the
CHB-MIT database were utilized for a complete evaluation in
our work, while [52], [53], [54] only selected a few patients
for their analysis.

For the prediction part, we used the records of 19 patients
in the CHB-MIT database for evaluation, which are more than
[60], [61], [62], as shown in Table VIII. While the choice of
prediction time domain, [63] is significantly shorter, putting
pressure on successful intervention in epilepsy. Although [61],
[63], [64] also achieved 100% prediction rates for epilepsy, the
specificity and false alarm rates were lower than our results.
[60], [62] failed to predict all epilepsy, but our algorithm
successfully predicted all epilepsy. As a result, our algorithm
performs stably and well in epilepsy detection and prediction
tasks on different datasets.
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TABLE VIII
COMPARED WITH OTHER RELATED WORK IN THE PREDICTION

EXPERIMENT. (CHB-MIT DATASETS)

Our experiments demonstrate that separating the putative
aperiodic component from the neural power spectral density
and using it as a feature can improve the classification accuracy
by 7.5%, which seems to imply that the aperiodic compo-
nent contains a large amount of classification information.
The study by Bateman and Seyal [65] showed that 33% of
seizures had oxygen levels below 90%, 10% had seizures
below 80%, and4% had seizures below 70%.The study by
Jonathan et al. confirmed that functional MRI blood oxygen
level-dependent signal correlates with aperiodic component
offset [26]. Other studies [23], [25] have also demonstrated
that the neuronal population spiking is also closely related
to the aperiodic component offset, and the so-called spike
discharge phenomenon on the EEG during epileptic seizures
is caused by synchronized bursts from a sufficient number
of neurons. In addition, some studies [24] have found that
the aperiodic exponent is related to the integration of the
underlying synaptic currents. Sayin et al. found that the initial
seizure sharply increases excitatory synaptic transmission,
thereby enhancing NMDA receptor-dependent synaptic inward
currents, enhancing excitability and increasing intracellular
calcium concentrations [66]. The above studies can demon-
strate that trait-like differences in aperiodic activity are shown
to be potential biomarkers of epilepsy disorders.

Compared to earlier methods that utilized computationally
costly classifiers, our algorithm presents a more time-efficient
and economical solution for EEG analysis. The computational
time of our proposed framework consists of three parts: pre-
processing data in Matlab, fitting FOOOF models in Python,
and analyzing FOOOF results in Matlab. Table IX shows the
average computational time for each part of our framework
for each epoch (10s) of the CHB-MIT dataset. The total
computational time of our framework is the sum of the three
parts and the classification time. Since the classification time
varies depending on the classifier used, the third part shows
the classification time of four different classifiers after feature
extraction. Our framework was developed and tested on a

TABLE IX
COMPUTATIONAL TIME OF EACH PART OF OUR FRAMEWORK

FOR THE CHB-MIT DATASET PER EPOCH

Windows 10 machine with an Intel® Xeon® CPU E3-1505M
v5 @ 2.80GHz and 16 GB of RAM. We used Matlab R2022a
for data preprocessing and analysis, and Python 3.8.8 for
fitting FOOOF models.

The average computational time of our framework for
each epoch was 0.0111 seconds. The most computationally
expensive part of the proposed algorithm is the computation of
FOOOF models. In comparison, Mansouri et al. implemented
their proposed online EEG seizure detection algorithm on
the same dataset using MATLAB R2017b with Intel Core
i7-6700 CPU @ 4.00 GHz with 32 GB RAM. They used
the same epoch length of 10 seconds as we did, and the
computation time for each epoch was 12.9ms, which is 1.8ms
slower than our method [67]. Supratak et al. implemented their
algorithm in MATLAB on a machine with 16.0 GB RAM
and a clock speed of 3.4 GHz. The training time for different
patients varied from 2 to 5 hours, and the computation time
for detecting seizures in each 1-second EEG segment was
approximately 10 milliseconds [68]. Our proposed framework
required less training time while achieving similar or better
performance with significantly lower computational require-
ments. This makes it well-suited for developing real-time
epilepsy detection and prediction devices, which could be
a valuable tool for patients with epilepsy. This makes it
well-suited for developing real-time epilepsy detection and
prediction devices, which could be a valuable tool for patients
with epilepsy.

Our proposed algorithm has several advantages. It does
not require predefining specific frequency bands of inter-
est and can provide additional personalized brain activity
information. This provides richer classification information
for epilepsy EEG signals, improving classification accuracy.
Additionally, the algorithm is simple, with few features and
high classification efficiency. However, our method also has
some limitations. The FOOOF algorithm requires fine-tuning
of its settings to achieve optimal results. For example, the
number of peaks to fit affects computation time and clas-
sification accuracy. Fitting more peaks reduces fitting errors
but increases computation time, potentially impacting real-
time detection and prediction of epilepsy. On the other hand,
reducing the number of peaks to fit can save computation time
but may introduce errors that affect classification accuracy.
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Therefore, extensive experimentation is required to achieve a
balance between classification time and accuracy.

V. CONCLUSION

In this study, we proposed a novel algorithm for EEG-
based epilepsy detection and prediction, which extracts both
periodic and aperiodic components of the power spectral
density as features and uses machine learning classifiers to
classify interictal, preictal, and ictal periods. The algorithm
was evaluated on two authoritative epilepsy datasets, the Bonn
dataset and the CHB-MIT dataset, and achieved high accuracy,
sensitivity, specificity, and Matthews correlation coefficient in
all classification tasks.

Importantly, our findings suggest that aperiodic neural
activity carries more classification information than neural
oscillations, enabling better classification of different epilepsy
states. The addition of aperiodic component features implies
physiological significance and improves the classification
accuracy. Our proposed method performed extremely well
in the ictal/non-ictal discrimination task, with all seizures
successfully predicted under two different preictal windows of
10 min and 30 min, and the false alarm rate was only 0.01/h.

These results indicate that the proposed algorithm can effec-
tively perform multi-classification of EEG signals of epileptic
seizures, with low computational complexity and high dis-
crimination accuracy. Compared with existing methods, the
proposed algorithm has better adaptability to different EEG
data, and can obtain better performance on both short-term and
long-term EEG data. The proposed strategy may be valuable
in assisting physicians to make accurate and rapid diagnoses
for epilepsy patients.

Future research directions may include investigating ways to
optimize the parameter settings for different PSD calculation
methods to improve classification performance in EEG signal
analysis, as well as verifying the proposed method on other
EEG databases, including the real clinical dataset and the
authoritative public EEG dataset, and exploring its applications
for diagnosing other diseases.
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