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Upper-Limb Swing Improves Lower-Limb
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Abstract— Brain-computer interface (BCI) systems
based on spontaneous electroencephalography (EEG)
hold the promise to implement human voluntary control of
lower-extremity powered exoskeletons. However, current
EEG-BCI paradigms do not consider the cooperation
of upper and lower limbs during walking, which is
inconsistent with natural human stepping patterns. To deal
with this problem, this study proposed a stepping-matched
human EEG-BCI paradigm that involved actions of both
unilateral lower and contralateral upper limbs (also
referred to as compound-limbs movement). Experiments
were conducted in motor execution (ME) and motor
imagery (MI) conditions to validate the feasibility. Common
spatial pattern (CSP) proposed subject-specific CSP
(SSCSP), and filter-bank CSP (FBCSP) methods were
applied for feature extraction, respectively. The best
average classification results based on SSCSP indicated
that the accuracies of compound-limbs paradigms in ME
and MI conditions achieved 89.02% ± 12.84% and 73.70% ±

12.47%, respectively. Although they were 2.03% and 5.68%
lower than those of the single-upper-limb mode that does
not match human stepping patterns, they were 24.30% and
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11.02% higher than those of the single-lower-limb mode.
These findings indicated that the proposed compound-
limbs EEG-BCI paradigm is feasible for decoding human
stepping intention and thus provides a potential way for
natural human control of walking assistance devices.

Index Terms— Compound limbs, EEG, human stepping
intention, motor imagery, motor execution.

I. INTRODUCTION

BRAIN-COMPUTER interface (BCI) system detects,
analyzes, and converts brain signals to commands for

controlling external devices [1]. Different techniques have
been used to measure brain signals for BCIs. Electroen-
cephalography (EEG) is one of such methods and has been
widely applied because of its non-invasiveness, portability,
and high temporal resolution [2]. In general, there are four
basic rhythms in EEG, mainly including delta (0-4 Hz),
theta (4-7 Hz), alpha (8-13 Hz), and beta (13-30 Hz)
rhythms [3]. Specially, brain waves over the motor cortex
in the band of (8-12 Hz) are also referred to as the mu
rhythm [3]. As spatiotemporal amplitudes of mu and beta
rhythms are modulated differently by moving different body
parts, thus movement of specific limbs can normally be
classified by analyzing the EEG rhythms [4]. Then the output
of classification is converted into commands for an external
device.

Motor imagery (MI) is one of the most investigated
BCI paradigms. In this paradigm, participants perform
imagery of moving different body parts (e.g. left hand,
right hand, tongue, and foot) without actually moving or
muscle contraction [5]. Compared to motor execution (ME)
which involves actual movement, MI also can induce similar
EEG rhythms [6]. Currently, one of the most important
BCI applications is leveraging MI information to control
walking-assisted exoskeletons that enable paralyzed patients
to perform walking training with their proactive intentions [7],
[8]. However, it should be noted that most BCI-MI paradigms
lack the naturality to meet people’s daily interaction habits,
which might reduce comfort and effectiveness in practical
applications. An intuitive and natural MI process, i.e.,
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matching the way how human limbs naturally move [9],
might be beneficial for promoting practical applications of BCI
systems [10], [11].

Previous studies involving human walking MI-BCI can be
generally divided into three types. The first type is imagining
the start or stop of walking to activate or halt lower-limb
rehabilitation exoskeletons [12]. While the start and stop of
human walking have been recognized with acceptable average
accuracy, i.e., 78.96% in [12], 81.81% in [13], and 83.5%
in [14], this paradigm did not take the unilateral discrimination
of the legs into account. As for the second type, most
studies have applied MI of the left hand, the right hand, and
both feet to achieve multi-command decoding. For example,
Lee et al. [15] instructed human subjects to imagine moving
both hands, the left hand and right hand, mapping intentions of
walking forward, turning left, and turning right, respectively,
in which the overall accuracy was 91%. Gao et al. [16]
applied MI of the left hand, the right hand, and both feet
to reflect intentions of ascending stairs, descending stairs,
and walking, respectively. Wang et al. [17] utilized the same
imagined actions as in [15] to represent intentions of sitting
down, standing up, and walking, respectively. Their best
classification accuracy was 85.33%. However, walking is a
movement that related to lower limbs. This type of paradigm
is not a direct and natural way to reflect the human walking
process.

The third type is imagining the specific action process of
lower limbs, which is closer to walking movement. The state-
of-the-art literature about this type can be further generalized
into two major categories: 1) imagine the dorsiflexion or/and
plantarflexion of feet; 2) imagine the extension or/and flexion
of thighs and calves. In the first category, Hashimoto and
Ushiba [18] analyzed the MI features of left- and right-foot
dorsiflexion. Their results suggested that there was potential
to differentiate the left and right foot MI via the beta rebound,
with an average accuracy of 69.3%. Tariq et al. [19] suggested
that the best average accuracy was observed for beta ERS,
given as 74.9%. Gu et al. [20] used a similar MI paradigm
of feet and graph theory features were exerted to find out the
difference in cortical signal characteristics. Their classification
accuracy averaged 67.13%. For the second category (left-
and right-leg MI), Hsu et al. [21] implemented a lower-limb
MI paradigm in which human participants lifted their left
or right legs on a step tool. Their results indicated that
the mu rhythm contributed more to the higher classification
accuracy (71.25%). Similar research was conducted by
Liu et al. [22], but it was found that there exhibited no distinct
event-related desynchronization/synchronization (ERD/ERS)
difference between the MI of the left and right leg. The
classification results were not provided. Kline et al. [23]
developed an fMRI-informed EEG approach to enable an
accurate mapping of spatial brain activity corresponding to
the EEG electrodes, thereby improving the accuracy of lower-
limb MI-BCI. Their average classification accuracy achieved
66.5%. A recent study guided participants to lie down on
a specially-designed device [24], where they imagined leg
flexion and extension processes of their legs. The average
accuracy of this paradigm was 59.75%.

Compared with upper-limb paradigms, the classification
accuracies of lower-limb MI paradigms were lower. There
are two possible reasons: 1) the positions of the motor
cortex controlling the movement of lower limbs are deeper
and smaller (medial surface of the motor strip in the
interhemispheric fissure) than those of upper limbs, which
results in a minor spatial distance between the cortex areas
corresponding to the left and right lower limb movements;
2) EEG does not have enough spatial resolution to probe
the brain activity about 5cm perpendicular to the human
scalp [25]. Therefore, it could be hypothesized that a paradigm
that integrates actions of both upper and lower limbs might
benefit to improve the classification accuracy. Because this
paradigm could leverage the significant unilateral activation
characteristics of upper limbs. Besides, since natural human
walking is a coordinated movement involving both upper and
lower limbs, the participation of upper limbs should not be
ignored while designing the natural human walking MI-BCI.

Several recent studies have considered investigating the
brain response to multi-limbs tasks. Yi et al. implemented a
series of studies [26], [27], [28] to explore characteristics of
hand-foot combination tasks. These tasks were the imitation
of playing drums by single-hand or compound actions of
the unilateral hand and the contralateral foot. Their findings
indicated the imagination of one hand and one foot contributed
to the simultaneous activation of contralateral and mid-central
brain areas. Besides, Weersink et al. [29], [30] suggested that
there was stronger ERD when humans walked accompanied
by natural arm swing than that of without-arm swing in the
supplementary motor area (SMA). These findings provide a
feasibility foundation for investigating the compound-limbs
paradigm.

In our preliminary study [31], we designed an arm-leg
combination ME paradigm to investigate the characteristics of
compound-limbs tasks on five subjects. In this work, we (1)
extended the participants of the ME experiment and provided
a more thorough feature and classification analysis, and (2)
expanded the EEG-based compound-limbs paradigm to the
MI condition. This compound-limbs paradigm involved the
execution/imagination of stepping forward the unilateral lower
limb alternatively and swinging forward the contralateral upper
limb simultaneously. The main contributions of this study are
as follows: 1) a new EEG-BCI paradigm of compound-limbs
tasks integrating upper-limb swing and lower-limb stepping
has been proposed; 2) the effect of compound-limbs tasks on
the cerebral cortex is illustrated in terms of the time-frequency
analysis of EEG; 3) extensive experiments were conducted on
two representative EEG-based BCI conditions, namely motor
execution and motor imagery, to verify the feasibility of the
proposed paradigm. It is hoped that this work will promote
the practical application of natural human stepping MI-BCI in
the field of lower-extremity exoskeletons.

II. METHODS

This section includes five parts. Parts A and B involve
the introduction of the experiment protocol, data collection,
and processing. The methods of feature extraction and
classifiers were depicted in part C. The analytical methods
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Fig. 1. Experiment protocol. (a): The design of single-limb and compound-limbs tasks.; (b): The action process shown in the video, tasking the
LLRA task as example; (c) (d): The paradigm timeline of motor execution and motor imagery respectively. Abbreviation notes: LA: left arm; RA: right
arm; LL: right leg; RL: right leg; LLRA: left leg with right arm; RLLA: right leg with left arm.

of time-frequency characteristics and distinguishability of
channels are explained in parts D and E.

A. Participants and Experiment Protocol
Sixteen healthy and BCI-naïve human subjects (seven

males, nine females; mean ± SD aged: 23.8 ± 1.9 years)
were recruited in ME (seven subjects) and MI (nine subjects)
experiments, respectively. They all had a normal or corrected-
normal vision. Prior to the experiment, each of them
gave their written informed consent and was confirmed to
be right-handed according to the Edinburgh Handedness
Inventory. The experiment protocol was carried out in
accordance with the Declaration of Helsinki. The Human
Participant Ethics Committee of the Southern University of
Science and Technology approved this study (No. 20210024).

To make comparisons, four single-limb tasks and two
compound-limbs tasks were designed in Fig. 1(a). Subjects
were expected to execute or imagine the following actions:
1) the single upper limb swings forward and back (LA/RA);
2) the single leg kicks forward with the foot dorsiflexion and
back to the original point (LL/RL); 3) the unilateral lower
limb and the contralateral upper limb move simultaneously as
described in single-limb action (LLRA/RLLA). The specific
action process of one task was shown in Fig. 1 (b), taking the
LLRA task as an example.

The processes of ME and MI experiments designed in this
research were shown in Fig. 1 (c) and Fig. 1 (d). The whole
ME and MI experiments were divided into eight and six
sessions, respectively, and each section consisted of 36 trials.
During each session, six tasks were randomly displayed.
Between the two sessions, there would be an intermediate
two-minute rest. Each trial included three stages: baseline,

TABLE I
THE EXPERIMENTAL PROTOCOL PARAMETERS IN ME AND MI

ME or MI, and rest. The total duration of each experiment
was about 120 minutes, which included the device setting and
instruction time for subjects. In each experiment, there was
a video shown on the screen. In ME, subjects were required
to perform actions shown in the video synchronously. In MI,
subjects were instructed to familiarize themselves with the
corresponding actual movements of imagery tasks for about
15 min. Then, at the formal MI experiment, the participants
watched the video at first; after 2 s of baseline time, there
would be a static picture of the task and then subjects started
to imagine the specific action for about 4 s. In both ME and MI
tasks, participants executed or imagined movement only once
in a single trial. Table I summarized the important protocol
parameters in ME and MI.

B. Data Acquisition and Preprocessing
The experiment was conducted in an electromagnetic-

shielded environment, as shown in Fig. 2(a). Subjects sat on a
chair located approximately 1.5m away from a 43-inch display
monitor. They needed to lean against the chair with their backs
straight, keeping their arms naturally vertical at two sides and
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Fig. 2. The actual experimental environment (a), electrodes setup
of EEG (b), EOG (c) and sEMG (d). Given the information of motor
planning and control, electrodes in the red rectangle area were used
for decoding.

their legs relaxed. This sitting state could avoid significant
artifacts caused by limb movement in ME and the fatigue
that might be caused by the long-time standing posture in
both ME and MI. A 56-electrode EEG head cap shown in
Fig. 2(b) was used and the locations of electrodes were set
according to the 10-20 international placement system [32].
The referenced electrodes were placed on the earlobes, and
the grounding electrode was placed on the forehead. EEG
data were recorded by the 256-channel g.HIAMP biosignal
amplifier (g.tec medical engineering GmbH, Austria) in a
frequency range from 0.1Hz to 100Hz with a 1200Hz sampling
frequency. Electrode impedances were kept to less than 30K�.

Besides, four electrooculography (EOG) electrodes were
used in both ME and MI experiments. Two of them were
placed above and below the left eye, and the other two
were put on the outer canthus of eyes, which was shown in
Fig. 2(c). The left EOG channel was referenced with the right
EOG channel to represent the horizontal EOG component.
Similarly, the upper one was referenced with the lower
channels to capture the vertical EOG component. In addition,
there were four surface-electromyography (sEMG) channels
set at trapezius near the neck in pairs respectively (Fig. 2(d))
in ME experiments. The sEMG channels were referenced
with their same-side channels, capturing the muscle electrical
activities.

All data preprocessing was conducted via the EEGLAB
toolbox [33] in MATLAB 2020a (The MathWorks, Natick
MA). The EOG and EMG signals were filtered from 0.1Hz
to 20Hz and 5Hz to 120Hz, respectively. The abnormal EEG
channels were detected visually and interpolated. Then, the
EEG signals were band-pass filtered from 1Hz to 30Hz.

Next, we used the ASR function for correcting signals with
artifacts. Subsequently, the EEG signals were re-referenced
by the common average reference method [34]. Then, the
independent component analysis (ICA) was applied and the
artifactual component was deleted by making a comparison
with the processed EOG and sEMG signals. After that, we also
used the ICALABEL function [35] to remove the other
residual artifacts. Finally, the EEG data were down-sampled
to 512Hz.

C. Time-Frequency Analysis
Event-related spectral perturbation (ERSP) presents mean

spectral power variations during the execution time compared
with baseline time (pre-task). It described the even-related
(de)synchronization (ERD/ERS) features of brain signals in
time-frequency domain. To calculate the ERSP, the power
spectrum is computed over a sliding window and then averaged
across all trials, which can be defined as follows [36]:

E RS P(k, f, t) =
(Fk ( f,t))2

−B(k, f )√
1
T

∑
t ((Fk (k, f,t))2−B(k, f ))2

(1)

where Fk(k, f, t) is the spectral estimation of the channel k at
frequency f f and time t, T denotes the number of discrete time
points and t denotes the time point index. The B(k, f)B(k, f )

is the mean values of baseline interval, defined as follows:

B(k, f ) =
1
T

∑
t
(Fk(k, f, t))2 (2)

In this research, the ERSP values were calculated from the
0.5 s before cue onset to 4.5 s after cue onset between 1 Hz
and 30 Hz. The data form 0.5 s before cue onset to
cue onset was determined as baseline data of each trial.
Since the ERD/ERS phenomenon induced by one subject
was not apparent, this study superimposed and averaged the
time-frequency spectra of the evoked signals under all trials
of all subjects in same tasks.

Topographic maps represent the mean ERSP values of all
electrodes in the specific frequency band and time interval of
EEG signals. In this research, we averaged ERSP values across
all subjects to obtain a group-level ERSP topographic map
that helped analyze the spatial scalp distribution of ERD/ERS
information among the limb-related motor cortex.

D. Distinguishability of Motor-Related Channels
The EEG signals of different tasks correspond to different

types of classes. Suppose the ERD amplitude of one task at
all EEG channels in the specific frequency band is different
from that of the other task at some electrodes. Then the two
tasks can be distinguished. The Fisher score was used as the
criterion of distinguishability in this paper. It is defined as [37]:

Fisherscore =
|E RD1 − E RD2|

2

σ 2
1 + σ 2

2
(3)

E RDk =
Ptask − Pbaseline

pbaseline
∗ 100 (4)

P =
1
T

∫ t2

t1

∣∣ f f t (X t
c)

∣∣2dt (T = t2 − t1) (5)
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Fig. 3. Average ERSP figures of six tasks across all subjects at key electrodes C3, Cz, and C4 during ME (a) and MI (b) conditions. Red and blue
indicates ERS and ERD respectively. The different time-frequency areas were marked with black borders. LA: left arm; RA: right arm; LL: right leg;
RL: right leg; LLRA: left leg with right arm; RLLA: right leg with left arm.

where E RDi (i=1, 2) represented the ERD of one task; σi
represented the corresponding standard deviation of ERD;P
represents the mean power spectrum density (PSD) of
channel C. The Fisher score for each subject in each binary
classification task was calculated on the 1 Hz-wide band.
This band was named as subject-specific band due to it has
the best classification performance obtained through SSCSP
feature extraction method and machine learning algorithm.
In this study, the threshold Fisher score level for each subject
was set as the third quartile of Fisher scores across all tasks.
The greater the Fisher score corresponding to a channel, the
separability of the two tasks was greater.

E. Feature Extraction and Classification Methods
The Common Spatial Pattern (CSP) algorithm has been

widely applied for EEG signal feature extraction. This method
designs a spatial filter related to a specific task to maximize the
variance of the one-class signal while minimizing the variance
of the other-class signals. The K components related to a
specific task were extracted, eliminating irrelevant components
and noise [38]. Filter bank CSP (FBCSP) [39] is a is a
variation of CSP. The full frequency bands were divided
into multiple sub-bands; then the features of each band were
extracted by the CSP filter; finally, the optimal K features
among all sub-bands are selected by the feature selection
algorithm.

In this study, the traditional CSP method was applied to
data that was filtered from 4Hz to 30 Hz, which was the first
feature extraction method. The second CSP method was named
subject-specific CSP (SSCSP). The EEG data were filtered by
a 1Hz interval from 1Hz to 30Hz, resulting in 29 frequency-
band datasets. Next, the CSP was used to extract features on
each sub-frequency band. Features of each sub-band were then
used for classification through machine learning algorithms.
The sub-frequency band that showed the best classification
accuracy was determined as the subject-specific frequency

band. The third feature extraction method is FBCSP. The EEG
data were filtered by six filter banks, which were composed of
4-8 Hz, 8-12 Hz, 12-16 Hz, 16-20 Hz, 20-24 Hz, and 24-28 Hz.
Then the best four features were selected from the 4∗6=24
features by the Mutual Information-Based Best Individual
Feature (MIBIF) algorithms. According to the ERSP analysis,
preprocessed EEG data were extracted from 1 s to 4 s after
the cue onset for feature extraction and classification.

Then, to avoid potential biases that may be introduced
by using only one classifier, three classic machine learning
algorithms were applied to classify the features of each
paradigm. These algorithms included support vector machine
(SVM), K-nearest neighbor (KNN), and random forest (RF).
The classification tasks in each paradigm are as follows: (1)
single-upper-limb tasks: LA and RA; (2) single-lower-limb
tasks: LL and RL; (3) compound-limbs tasks: LLRA and.
RLLA. The 10-fold stratified cross-validation was applied to
evaluate the classification performance that presented by the
average accuracy.

III. RESULTS

To investigate the feasibility of the proposed paradigm, this
section first analyzes the results of time-frequency domain
features in each type of task and then presents the final
classification results. In Parts A, B, and C, the characteristics
of the event-related spectral perturbation, the brain spatial
activation distribution, and the separability of motor-related
channels are described, respectively. Finally, the classification
results are shown in part D.

A. Event-Related Spectral Perturbation
The event-related spectral perturbation across 1Hz to 30Hz

at electrodes C3, C4 and Cz of all subjects were shown in
Fig. 3. Noticeably, for all action patterns, long-lasting power
decreases around 1s at C3, Cz, and C4 electrodes after cue
onset, in both MI and ME. In the single-upper-limb swing
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Fig. 4. The ERD amplitude at C3, Cz and C4 electrodes in (a) ME and (b) MI conditions. ∗, ∗∗, ∗∗∗ represented that the p-value of one-way ANOVA
test is lower than 0.05, 0.01 and 0.001 respectively.

task (LA and RA), for example, when subjects executed or
imagined the action of the left upper limb, stronger ERD was
shown at C4 than at C3. In contrast, no obvious difference
between tasks of the single left leg and right leg (LL and RL)
could be found. However, while combining actions of both arm
and leg, it was easy to differentiate LLRA and RLLA tasks
by contrasting the ERD responses at C3 and C4. Specifically,
for the LLRA task, there was more lasting and distinct ERD
at electrode C3. Its feature bands included 10-15Hz and 20-
28Hz, which covered the mu and beta rhythms. For the
RLLA task, the feature bands were similar to the LLRA
task, but its feature electrode was C4. In terms of Cz, there
showed stronger ERD around 20Hz in RL, LLRA and RLLA
tasks during the ME condition; while in the MI state, the
stronger ERD phenomenon only showed in single-upper-limb
tasks.

The grand average amplitude of ERD(S) at mu and beta
frequency bands were presented in Fig. 4. It could be seen
that at the mu band, the difference between (1) LA and RA
or (2) LLRA and RLLA at C3 and C4 were significant. For
the electrode Cz, the significance level between LL and RL
was higher than the other two types of tasks in ME. However,
there was no significant difference between LL and RL tasks
at the beta band in MI.

B. Brain Spatial Activation Distribution
From Fig. 5, it was found that the ERD phenomenon is

more obvious in the mu and higher beta frequency bands.
Therefore, the following contents will discuss and analyze
the ERD topography in these two frequency bands. The
one-dimensional characteristic data of ERD was obtained
by averaging the time-frequency data in frequency and time
windows. In Fig. 5, the brain topographies of six tasks were
averaged across all subjects for ME and MI, respectively.

In both MI and ME conditions, there was a larger ERD
area in the motor cortex at mu rhythm. To be specific, for the
single-upper-limb task, the brain topographic map of the left
upper limb showed that the attenuation of EEG power at the
right brain region was more obvious than that of the left region.
A similar contralateral dominance phenomenon also showed
in the right upper-limb task. For single-lower-limb tasks, the

difference between LL and RL was not distinct as that of
single-upper-limb tasks. The common characteristic was that
broader ERD showed at the central area both in LL and RL
tasks. Nevertheless, compared with the single-lower-limb task,
the substantial ERD phenomenon of compound limbs showed
both at the contralateral hemisphere and the central SMA area,
which reflected the activities of both the unilateral lower limb
and the contralateral upper limb. However, as for the beta
rhythm, the distinct contralateral dominant phenomenon only
appeared in the compound-limbs tasks.

Furthermore, we compared the difference in induced ERD
between MI and ME. Overall, the ERD feature difference
was consistent in MI and ME. However, there still had some
distinctions. For example, the noticeable ERD was also shown
at the frontal and occipital lobes on the LA task. For the single-
leg task, the ERD of LL was intense around electrode C2.
For the compound-limbs task, unlike the ME condition, the
ERD in the beta band presents contralateral distribution in
compound-limbs MI tasks.

C. Separability Analysis of Motor-Related Channels
Fig. 6 and Fig. 7 showed the Fisher analysis of

motor-related channels in three two-class classification
tasks for all subjects in two situations. The top sub-figures
in each figure presented the Fisher scores of each EEG
electrode. The blue dotted lines were the subject-specific
threshold levels. From Fig 6 (a) and Fig 7 (a), it could be
seen that the number of channels that exceeded the threshold
level in single-upper-limb paradigm and compound-limbs
paradigm was larger than that of single-lower-limb paradigm
for most of the subjects.

Fig. 6 (b) and Fig. 7 (b) showed the distribution of channels
(red) that exceeded the threshold level. In single-upper-limb
paradigm, the highly separable channels usually appeared
at/around C3 and C4. For single-lower-limb paradigm,
it showed that most of the red channels neared channel Cz.
In terms of compound-limbs paradigm, the highly separable
channels showed not only on the upper-limb controlled area
but also around Cz. In addition, more than half of the subjects
had overlapping red channels between single-upper-limb and
compound-limbs paradigms.
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Fig. 5. The average brain topographical distribution based on ERSP values for the motor execution and motor imagery conditions respectively.

Fig. 6. Fisher scores of electrodes covering motor cortex in ME condition. The spatial maps showed the EEG electrodes that exceeded the
threshold level (red) in different tasks and conditions. The blue dotted lines represented threshold levels.

D. Classification Performance

The performance of all subjects who participated in ME
and MI experiments was illustrated in Table II and Table III,
respectively. First of all, it is apparent that there was the
same classification performance phenomenon in both ME and
MI: single-upper-limb task > compound-limbs task > single-
lower-limb task. Besides, for all three paradigms in ME and

MI, the average accuracies of the SSCSP method were always
the highest, followed by the FBCSP, and the CSP is the worst.

Take the results of the SSCSP as examples, mean accuracy
of compound-limbs tasks was as well as that of single-upper-
limb tasks in ME, with about 2% difference. Five of seven
subjects’ accuracies were higher than 90% in compound-limbs
tasks. In contrast, the best average accuracy of single-lower-
limb tasks was 64.91% ± 6.67%. In MI, accuracies of
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Fig. 7. Fisher scores of electrodes covering motor cortex in MI condition. The spatial maps showed the EEG electrodes that exceeded the threshold
level (red) in different tasks and conditions. The blue dotted lines represented threshold levels.

TABLE II
AVERAGE ACCURACY IN MOTOR EXECUTION (%)

all tasks had declined. The highest average accuracies of
single-upper-limb paradigm, single-lower-limb paradigm, and
compound-limbs paradigm declined to 79.38%, 62.98% and
73.70%, respectively. However, there were still three subjects
whose classification performance of compound-limbs tasks
was between 80% and 90%.

One-way ANOVA statistical analysis was performed
to further compare the classification performance differ-
ences between compound-limbs paradigm and single-limb
paradigms across combinations of three feature extraction
methods and three classification algorithms, which was shown
in Fig. 8. It could be found that there was no significant
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TABLE III
AVERAGE ACCURACY IN MOTOR IMAGERY (%)

difference between compound-limbs tasks and single-upper-
limb tasks in both ME and MI. As for comparison with
single-lower-limb paradigm, the classification performance of
compound-limbs paradigm was significantly (p < 0.05) better
than that of single-lower-limb tasks across all methods in
ME. But in MI, its performance was only significant in (1)
combinations of KNN and three feature extraction methods,
and (2) combination of RF and FBCSP methods.

IV. DISCUSSION

This study proposed a compound-limbs EEG-BCI paradigm
that integrated upper-limb swing and lower-limb stepping.
This paradigm not only activated more brain regions but
also had better classification performance. The feasibility
and effectiveness of the proposed paradigm were verified
in four aspects: (1) the event-related spectral perturbation
characteristics, (2) the brain spatial activation distribution, (3)
the separability of EEG electrodes, and (4) the classification
performance. These results are discussed in detail as follows.

From the ERSP result, the contralateral dominance effect
was not found in the single-lower-limb tasks. The ERD
amplitude results of LL and RL tasks suggested that more
neural activities were induced at C3 and C4 than that at

Cz, which was further verified in the ERSP topographical
distribution. As for the single-upper-limb tasks, the significant
contralateral dominance characteristic was consistent with the
previous studies [40], [41]. In terms of the focus paradigm of
this study, as we expected, when combing the unilateral lower
limb with the contralateral upper limb, the brain activation
level was increased compared with the single-lower-limb
tasks. The possible explanation was that the participation of
upper limb swing action made a contribution to the ERD
increase, which was also found in [30]. In addition, the
ERSP topographical distribution maps (Fig. 4) among all tasks
verified that compound-limbs tasks activated not only the
contralateral hemisphere areas that were related to upper-limb
actions but also activated the central parietal region that
controls lower limbs, which was a similar phenomenon in [26].
However, according to ERSP analysis of the single limb task,
contralateral lower limb movements may also activate the
ipsilateral upper limb control area. Therefore, it could be noted
that there was an overlap of activated electrode areas between
the LLRA and RLLA tasks.

The separability analysis of motor-related channels from
all subjects revealed that the number of distinguishable
channels of compound-limbs tasks was much more than that of
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Fig. 8. The classification performance and one-way ANOVA test of three classifiers combined with three feature extraction methods on two
experimental conditions. CL: compound-limbs paradigm; SUL: single-upper-limb paradigm; SLL: single-lower-limb paradigm.∗, ∗∗, ∗∗ indicated that
the p < 0.05, p < 0.01, p < 0.001, respectively.

single-lower-limb tasks in ME and MI, explaining the higher
classification results of compound-limbs tasks. A comparison
of this result with those of [25] confirmed that the regions
related to the left and right lower limbs were overlapping and
challenging to differentiate based on EEG signals. Besides,
for single-upper-limb and compound-limb paradigms, most of
electrodes that passed the threshold were the lateral ones. It is
consistent with the brain spatial ERSP distribution result that
the ERD phenomenon was distinct on the lateral side of motor
cortex area.

Three feature extraction methods and three machine learning
algorithms were adopted in this study. It is consistent with
the suggestion of previous studies that the performance of
the FBCSP method was better than that of traditional CSP
method. However, there is a new finding in this study
that using the SSCSP method improved the classification
performance. Especially in the MI condition, the accuracies
of SSCSP were about 16% higher than those of FBCSP.
This suggested that extracting features from subject-specific
1Hz-width frequency bands might provide more effective
and task-related information. Therefore, the matching of
the subject-specific frequency band and paradigms probably
should be considered.

In terms of the performance of the proposed compound-
limbs paradigm, the proposed compound-limbs EEG-BCI
paradigm realized a higher classification accuracy of human
stepping patterns than that of the single-lower-limb EEG-BCI
paradigm. Based on the result of the SSCSP method, the best

average accuracies of the compound-limbs paradigm under
two conditions were 24.30% (ME) and 11.02% (MI) higher
than those of the single-lower-limb paradigm. Besides, the
average performance of the compound-limbs MI paradigm
was 2.45%, 7.2%, and 13.95% higher than that of the
previous single-leg paradigms [21], [23], [24], respectively.
In Fig. 8, although the classification performance of the
compound-limbs paradigm was not always significantly better
than that of the single-lower-limb paradigm in MI, it could
be verified that the involvement of upper-limb action is
advantageous for classifying the patterns of human stepping
based on statistical significance test results of ME. In fact,
some people might not have the adequate ability to execute
the MI task. These people are defined as BCI illiteracy [42].
Although the multi-limb task could activate more motor
cortex [43], [44], it also depends on more concentration.
Therefore, subjects with lower accuracies of compound-limbs
MI tasks may have a poor ability to imagine multi-limbs
movement at the same time. These subjects might need
more practice for the adaptation of these imagination tasks.
Besides, it should also be noted that the highest average
accuracies of the compound-limbs paradigm were 2.03%
(ME) and 5.68% (MI) lower than those of the single-upper-
limb paradigm. The overlapping activation regions between
the LLRA and RLLA tasks may affect the degree of
difference in features, making it more difficult to distinguish
between them than the single-upper-limb tasks. Some studies
found that the ipsilateral cortex was also activated during
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the single upper-limb movement [45]. There existed similar
neural signal activities between ipsilateral and contralateral
hemispheres [46]. Besides, it was reported that the lower-limb
movement showed less lateralization in the motor cortex [47].
Based on these single upper-limb findings, we proposed a
hypothesis that compound-limbs tasks might produce more
similar neural activities in both upper-limb and lower-limb
motor control cortex areas. Therefore, the classification
accuracy of compound-limbs tasks could be lower than that
of the single-upper-limb tasks. However, benefiting from
larger activation levels of upper limbs, the difference between
compound-limbs tasks was easier to be decoded than that of
single-lower-limb tasks.

Although the classification accuracy of the single-upper-
limb paradigm was better than the proposed paradigm, the
single-upper-limb paradigm is not a natural and direct way
to reflect human walking intention. In terms of the previous
hand-foot paradigm [26], [27], [28], the imagination of playing
drums is still not similar with compound-limbs action of
human walking. In contrast, the proposed paradigm involved
simultaneous actions of the unilateral lower limb and the
contralateral upper limb, which is closer to the natural human
stepping posture. Besides, it is suggested that the swing of the
upper limbs plays an important role in human walking [30],
[48]. One of the advantages of this proposed compound-limbs
paradigm is that it might be beneficial for gait rehabilitation,
such as improving interlimb coordination and trunk stability
after stroke [49], [50]. Therefore, the possible application
of the proposed compound-limbs paradigm is to drive
lower-limb rehabilitation exoskeletons by decoding human
MI information. This system might not only present superior
performance in decoding human stepping intentions but also
contribute to coordination ability improvement between upper
and lower limbs.

Despite the fact that this work proposed and proved
the feasibility of the new paradigm for recognizing human
walking intention based on EEG signals, there are several
limitations worthing mentioned for practical applications.
First, developing a fast and effective EEG online preprocessing
platform is challenging. Signal quality plays an important
role in online classification performance. Therefore, we have
to exploit a real-time artifact-reduction algorithm to improve
the signal quality. Second, considering BCI systems requiring
robust decoding abilities in real-time scenarios [51], [52], the
current offline decoding accuracy (73.70%) needs to be further
improved in terms of feature extraction and decoding models.
Third, the current compound-limbs ME paradigm may not be
appropriate for patients since they generally have difficulty
in moving their upper and lower limbs coordinatively and
naturally.

V. CONCLUSION

This study proposed a new compound-limbs BCI paradigm
to decode the human lower-limb stepping intention from
EEG. The paradigm involved both the stepping action of
the unilateral lower limb and the swing action of the
contralateral upper limb simultaneously. With the analysis of
EEG characteristics, it can be seen that compound-limbs tasks

activated both upper- and lower-limb-related brain regions
and generated an evident difference between the stepping
intention of the left and right sides. Furthermore, the average
classification accuracies of compound-limbs paradigm were
higher than those of the single-lower-limb paradigm on both
the ME- and MI-EEG dataset. These findings demonstrated
that decoding step intention from compound-limbs tasks is
feasible and outperforms the traditional single-lower-limb
paradigm. Future work will focus on integrating this EEG-BCI
paradigm in real-life walking-assistive exoskeletons.

VI. SUPPLEMENTARY MATERIALS

The experimental video is attached along with the paper.
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