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Abstract— Ultrasound (US) muscle image series can be
used for peripheral human-machine interfacing based on
global features, or even on the decomposition of US images
into the contributions of individual motor units (MUs).
With respect to state-of-the-art surface electromyography
(sEMG), US provides higher spatial resolution and deeper
penetration depth. However, the accuracy of current
methods for direct US decomposition, even at low forces,
is relatively poor. These methods are based on linear
mathematical models of the contributions of MUs to US
images. Here, we test the hypothesis of linearity by
comparing the average velocity twitch profiles of MUs when
varying the number of other concomitantly active units.
We observe that the velocity twitch profile has a decreasing
peak-to-peak amplitude when tracking the same target
motor unit at progressively increasing contraction force
levels, thus with an increasing number of concomitantly
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active units. This observation indicates non-linear factors
in the generation model. Furthermore, we directly studied
the impact of one MU on a neighboring MU, finding that
the effect of one source on the other is not symmetrical
and may be related to unit size. We conclude that a
linear approximation is partly limiting the decomposition
methods to decompose full velocity twitch trains from
velocity images, highlighting the need for more advanced
models and methods for US decomposition than those
currently employed.

Index Terms— B-mode, intramuscular electromyography,
motor units, surface electromyography, ultrasound.

I. INTRODUCTION

IN VOLUNTARY movements, action potentials (APs)
discharged by motor neurons (MNs) reach muscle fibers,

eliciting their contraction. The MN and innervated fibers
constitute the motor unit (MU) – the smallest functional
unit of human movement. At present, tools have been
developed which allow us to decompose the spiking activity
of MUs, which is a useful resource for decoding neural
activity in humans. Most commonly, high-density surface
EMG (HDsEMG) is used for investigating MUs [1], [2], [3].
However, although HDsEMG is non-invasive, it has low
spatial resolution [4], [5], [6] and poor penetration [6], [7],
so only superficial muscle layers contribute to the signal.
Intramuscular EMG (iEMG) can measure the MU activity
in deeper muscle layers, but it is invasive and can only
detect a small area around the recording electrode sites [8].
Alternatively, ultrasound (US) has greater penetration and
spatial resolution while still being non-invasive. Thus, it could
provide a more complete picture of muscular activity than
EMG-based approaches.

In contrast to EMG, which relies on identifying the
unique electrical APs generated by each MU, US-based
MU decomposition identifies the times of occurrence of
mechanical velocity twitches generated by each MU. This
is possible using ultrafast US (> 1000 frames/s) [9], which
has a sufficient temporal and spatial resolution to capture
the mechanical displacement of muscle units. The times of
mechanical velocity twitches generated by muscle units have
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a precise temporal association with the discharge times of the
innervating MN so that US decomposition can be used to
unravel the neural activity traveling along MNs. In this way,
a mechanical measurement provides a neural interface with
the output layers of the spinal cord.

While the source mixing model for EMG signals is linear,
the motion of a muscle unit and its summation with those
of other units likely results in complex interactions. The
structure of skeletal muscles is extremely complicated, with
dense packing of fibers surrounded by connective tissue, bone,
skin, and blood vessels. When a MU contracts and relaxes,
it pushes and pulls on nearby fibers and connective tissue and
sets up propagating waves within the muscle tissue [10], [11].
Overlapping MU territories present intermingled fibers from
different MUs contracting at different times [12]. Furthermore,
a twisting motion of contracting MUs has been identified
in both stimulated [13] and voluntary [14] contractions.
Hence spatially distant regions are seen to move in unison.
Importantly, unlike EMG, which is made of electric potentials
of short duration, the elicited motion of muscle fibers has a
smaller bandwidth and, therefore, longer duration.

Despite the complicated motion, methods have been
proposed for the estimation of the neural drive to muscles
(individual MU discharge times) via the decomposition of
US image series assuming linear models [15], [16], [17].
These methods treat the problem as a blind source separation
challenge, where each MU is the source of a unique
spatio-temporal signal. To solve the separation problem,
spatio-temporal independent component analysis (st-ICA) has
been applied [15], [18]. The main assumptions of this approach
are that the source signals are independent of each other
and are all non-gaussian and that they are mixed following
a linear instantaneous mixing model. Using these methods
at low force levels (such that a single unit was detected
using EMG), approximately 30% of MUs detected using
needle EMG (gold standard) were also detected from US,
with a rate of agreement (RoA) in the identified discharge
times of approximately 75% [16], [19]. This performance
level is substantially poorer than observed when decomposing
US signals simulated by linear superposition models (75-
95% of the MUs detected with a RoA of 90% for up to
20 active MUs [15]). This discrepancy may point out that the
linear instantaneous model assumption for the sources is being
violated and, therefore, the method fails to properly identify
the sources. Further understanding the intricacies of any non-
linearities involved and the limits of a linear approximation is
key for developing future US decomposition algorithms, which
would enable full decoding of the neural drive to the entire
muscle cross-section, something impossible with current EMG
methods.

The linearity of twitch summation for multiple active
MUs has previously been considered from two main
perspectives: the skin displacement via mechanomyography
(MMG) and the force output at the tendon. Using the former
method, Orizio et al. [20] found that at very low stimulation
frequencies MMG twitch summation can be considered linear,
however within the physiological range of firing frequencies,
MMG twitch summation is non-linear, resulting in a different

MMG signal to the algebraic sum of the individual signals.
However, MMG is measured at the skin surface. Thus, it does
not provide a local measure of muscle displacement.

Studies utilizing force measurements have had a large
variety of results, mainly showing non-linear force twitch
summation. In the cat medial gastrocnemius and cat
soleus [21], [22] the simultaneous activation of multiple MUs
resulted in a larger force output than the algebraic sum of
the individual MUs. In contrast, the cat soleus [22] and
tibialis anterior [23] muscles showed lower force outputs
when simultaneously active than their algebraic sum. The
rat soleus [24] showed almost linear summation, whereas
the rat gastrocnemius [25] and the cat peroneus longus [26]
showed an MU-dependent mix of super-additive and sub-
additive results. Results are highly variable for different
muscles and species, likely resulting from the large differences
in fiber orientation, pennation, length, connectivity, and force
transmission to the tendon. The non-linearity observed in force
studies is attributed to muscle fiber connectivity and pennation
angle.

The main objective of this study was to determine if the
superposition of individual MU activity can reasonably be
considered linear from a velocity field perspective. For this
purpose, we analyzed if the velocity twitch profile of a
MU is influenced by the activity of other MUs. We used
a combination of HDsEMG and US with a modified spike-
triggered averaging (STA) method to obtain the response in
a given region to a MU firing, termed the velocity twitch
profile. We compared the velocity twitch profiles of the same
MUs during voluntary isometric contractions at 2%, 5%, 10%,
and 20% of the maximum voluntary contraction (MVC) force.
Further, in a second study, we used a combination of iEMG
and US to isolate extremely close muscle units and to study
their influence on each other in terms of US images.

II. METHODS

Two experiments were conducted. Experiment 1 combined
HDsEMG and ultrafast US, which allowed for large
populations of MUs to be analyzed. Experiment 2 used iEMG
and ultrafast US to detect MUs clustered in a small region,
allowing for a more specific analysis of MU interactions. The
methods section will be divided into two sections describing
each experiment.

A. Experiment 1: HDsEMG and US
1) Participants: 12 healthy participants were recruited for

this study. However, system and synchronization errors caused
data from two participants to be unusable. Hence data
from 10 participants were used for all the analyses (n =

10, 26.2 ± 2.9 yr, 173.2 ± 7.3 cm, 69.1 ± 12.0 kg).
Before the experiment, the experimental protocol was clearly
explained to the participants, and they signed an informed
consent form. Procedures and experiments were approved
by the Imperial College Research Ethics Committee (ICREC
reference: 20IC6422) in accordance with the Declaration of
Helsinki.
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2) Instrumentation: This experiment required the synchro-
nized acquisition of HDsEMG, ultrafast US, and force data.
The HDsEMG signals were recorded using two grids of
64 electrodes each (5 columns and 13 rows; gold coated; 8 mm
interelectrode distance; OT Bioelettronica, Torino, Italy).
Signals were recorded in monopolar derivation, amplified,
sampled at 2048 Hz, A/D converted to 16 bits with gain 150,
and digitally bandpass filtered between 10 Hz and 500 Hz
with an EMG pre-amp and a Quattrocento Amplifier (OT
Bioelettronica, Torino, Italy). The US data were recorded
using an L11-4v transducer with 128 elements and a center
frequency of 7.24 MHz. The Vantage Research Ultrasound
Platform (Verasonics Vantage 256, Kirkland, WA, USA)
was controlled using custom codes written in MATLAB
(Mathworks, Massachusetts, USA). The Vantage Research
Ultrasound Platform is not clinically approved, however
appropriate safety precautions were taken to ensure no harm
was done to the participants by keeping acoustic parameters
below the safe limits set by the FDA [27] (see Supplementary
materials for full safety details). Single angle plane wave
imaging at 1000 frames per second was used, resulting in
30,000 data frames for 30 s recordings. Whilst ultrafast
US imaging is limited only by the time of flight of the
acoustic waves, and thus can reach up to 20,000 frames per
second [28], we used 1000 frames per second as this was
sufficient to capture MU twitches. Although the signal to noise
ratio could be improved by using multiple angle isonification
and compounding, this would require limiting the frame
rate or recording length due to data storage limitations. The
method was tested with compounding; however, the results
did not significantly change so no compounding was used.
Furthermore, we prioritized long recording lengths to increase
the number of events over which the STA was performed.
Delay and sum beamforming produced B-mode images (357
by 128 pixels). For synchronization, the Verasonics trigger
function was used to produce a 1-µs active low output,
which was elongated by an Arduino Uno and fed into
the Quattrocento Amplifier to allow for alignment of the
recorded US and HDsEMG data. Finally, the force data were
recorded using an ankle dynamometer and fed through a
Forza force amplifier (OT Bioelettronica, Torino, Italy) into
the Quattrocento Amplifier.

3) Experimental Procedures: The skin area above the
tibialis anterior muscle (TA), chosen for its long muscle fibers
and low pennation angle [29], was shaved and cleansed with a
chemical abrasive and alcohol. Next, the muscle was palpated,
and the HDsEMG electrode grids were attached to the skin.
The first electrode grid was placed proximally, following the
direction of the muscle fibers. The second electrode was
placed distally, leaving a 1 cm gap between the electrodes.
The electrodes were secured using Tegaderm Film Dressings
and self-adhesive medical bandages. Next, using a custom-
designed 3D-printed probe holder, the US probe was attached
to the leg in the gap between the EMG grids with the imaging
plane perpendicular to the muscle fibers. As such, the resultant
images were cross-sectional views of the TA muscle. A water-
based US gel improved the coupling between the probe and the

Fig. 1. The experimental set-up and procedures for experiments 1
(left) and 2 (right). In both experiments ultrasound (US) was used,
with the imaging plane perpendicular to the length of the muscle.
Additionally, either high-density surface electromyography (HDsEMG)
or intramuscular EMG (iEMG) was used. In each case, the participant
followed force ramps by isometric ankle dorsiflexions with online
feedback on the produced force, as shown at the bottom of the figure.
At each force level plateau, a 30-s synchronised recording of US and
EMG was taken.

leg. Next, the participant was seated at a comfortable distance
from a computer screen, and their leg was secured into an
ankle dynamometer with their foot at a 90-degree angle to
their leg. Soft padding was placed around the leg to provide
comfort and secure the leg in position.

In contrast to our previous study in which feedback was
based on online decomposition of MU firing times [14], real-
time force feedback from the ankle dynamometer was used for
this experiment, and as such, the participant was guided by on
screen force ramps. Initially, the participant was instructed to
perform the strongest dorsiflexion contraction they could, and
their MVC force was recorded. Following this measure, they
performed four ramp contractions at 2%, 5%, 10%, and 20%
MVC. The ramps were 50-s long, with 5-s rise and fall times
and a 40-s plateau. Once the participant reached the plateau
and the force was judged stable, the experimenter began a 30-s
US recording. Between each ramp the participant rested for
60-s which, given the very low force levels and hence low
fatiguing effect [30], was long enough for the muscle to fully
relax and recover. The protocol is illustrated in Fig. 1.

4) Data Processing: The HDsEMG signals were decom-
posed using a validated method [31], in four intervals,
corresponding to the four contraction forces. On each interval,
a fastICA algorithm was used to iteratively optimize a
separation vector for each active MU, maximizing the
sparseness of the sources and outputting an estimated
discharge time series for each MU. The separation vectors
from each interval were applied to all other intervals to identify
the same MUs across different contraction levels. Then any
duplicate MUs were removed. Hence the same decomposed
unit was tracked across all intervals (and, therefore, forces).
K-means clustering was used to separate the high peaks
(corresponding to MU spikes) from the low peaks (other MU
spiking activity and noise). The estimated discharge times
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Fig. 2. Diagram showing the processing pipeline for each contraction level. B-mode ultrasound images are recorded at 1000 frames per second
and 2D autocorrelation methods are used to estimate the tissue velocity from the reconstructed radio-frequency images (either towards or away
from the probe). Simultaneously recorded EMG signals were decomposed into motor unit (MU) firing times, then a spike-triggered averaging (STA)
method was used to identify the MU motion domain (the region which moved synchronously in response to a MU firing), and the MU velocity twitch
– the STA velocity profile in this region.

were manually refined and edited by an expert [32]. MUs were
retained if they were active in all four intervals or in all but the
2% MVC force interval. The US data was beamformed, and a
2D autocorrelation method [33] was used on the reconstructed
radio-frequency data to calculate a tissue velocity series, using
a sliding window of 2 ms in time and 1 mm in depth. In this
work, a negative velocity indicated motion away from the
probe (and hence the skin).

At each contraction level, a previously validated STA
method [14], was used to detect MU motion domains. The
processing and terminology are summarized in Fig. 2. In short,
an STA of the velocity maps was computed, resulting in 100-
frame (100 ms, 50 ms before, and 50 ms after firing time)
videos for each MU. For each pixel in the image series,
the squared sum of the STA divided by the variance of the
curves making up the STA was calculated such that regions
with high motion and low variability across triggers have high
magnitudes. The map was then modulated with a −1 if the
direction of the motion was away from the probe at the time
of the EMG spike. The map was finally thresholded at 65%
of the maximum (both towards and away from the probe).
The threshold was chosen empirically in another study [14],
however the change to the velocity profile is very small
when this threshold is changed within a reasonable window.
The resultant regions were termed the MU motion domains
– the regions of the muscle cross section which moved
synchronously in response to MU firings.

Although recordings were performed at 4 contraction levels,
at 2% MVC force, very few MUs were identified. Since
we tracked the same units across all contraction levels, low
numbers of MUs obtained at 2% MVC would restrict our
analysis to only 45 unique MUs (4.5 ± 4.1 per participant).
Conversely, by excluding the 2% MVC force level from
the analysis and considering only the 5%, 10%, and 20%
contraction levels, 170 MUs (17 ± 12 per participant) could
be identified and tracked across forces. Hence, most of our
results come from analyzing three out of the four force levels.

Further processing was divided into two categories:
processing on all four contraction levels and processing on
just the highest three contraction levels. For the former, if a

pixel was present in the MU motion domain in 3 or more
of the 4 maps, it was selected as part of the region used
for comparison. For the latter, if a pixel was present in the
MU motion domain in 2 or more of the 3 relevant maps,
it was selected as part of the region used for comparison.
This ensured that the selected region was within the common
MU motion domain. Some typical MU territories and common
regions are shown in Fig. 3 for each scenario. MUs whose
motion domains across contraction levels did not overlap were
discarded. Hence the remaining MUs were able to be tracked
with high spatial consistency across contraction levels. Next,
the average STA within this set of selected pixels (i.e., the
region selected for further analysis) was calculated for each
force level. These were termed MU velocity twitches.

The MU velocity twitch peak-to-peak amplitude was
compared across force levels. Furthermore, individual (non-
averaged) velocity twitches were studied as follows: the
correlation of each individual velocity twitch with the average
MU velocity twitch across all force levels was calculated,
and the twitches were sorted into either a ‘correlated’ group
(correlation with the grand average twitch ≥ 0.5) or an
uncorrelated group (correlation < 0.5). Given that correlation
is dependent on the shape and not on amplitude, this criterion
separated twitches into those with similar shapes (invariant of
their peak-to-peak amplitude) and those with dissimilar shapes.
One STA was then calculated for the correlated group and one
for the uncorrelated group.

5) Statistics: All results were statistically analyzed using the
following steps. First, the normality of the distributions was
tested using a Shapiro-Wilk test (p < 0.05). In all cases, at least
one involved group failed the normality test. Thus, methods
that do not require normality were used. In all cases, the data
were paired (e.g., same MU at different contraction levels,
same MU with different processing), so the non-parametric
Friedman test was used, followed by a post-hoc Conover
test with Bonferroni corrections for multiple comparisons.
In these cases, the corrected p-value (weighted by the number
of pairwise comparisons) is shown. The significance level was
set as p < 0.05. The p-values are stated on each graph with
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Fig. 3. Four examples of motor unit (MU) motion domains at different contraction levels (yellow = MU domain), alongside their overlapping territories
and the territories selected for analysis. Left two columns: MUs active at 2%, 5%, 10%, and 20% MVC (rows 1 to 4), their summed territories (row
5) and the region selected for analysis (row 6). The first column shows an example where there is little noise and the regions all clearly overlap.
The second column shows an example where noise, especially at 20% MVC, results in a worse STA performance, hence overlap is only required in
3 or more maps. Right two columns: MUs active at 5%, 10%, and 20% MVC (rows 2 to 4), their summed territories (row 5) and the region selected
for analysis (row 6). The third column shows an example where there is little noise and the regions all clearly overlap. The fourth column shows an
example where noise, especially at 20% MVC, results in a worse STA performance, hence overlap is only required in 2 or more maps.

3 significant figures, and any p-values lower than 0.001 are
labeled as p < 0.001.

B. Experiment 2: iEMG and US
1) Participants: One participant was recruited for this study

(n = 1, 32 yr, 183 cm, 73 kg). Before the experiment, the
experimental protocol was clearly explained to the participant,
and they signed an informed consent form. Procedures
and experiments were approved by the Imperial College
Research Ethics Committee (ICREC reference: 19IC5641) in
accordance with the declaration of Helsinki.

Whilst the main conclusions of the study were drawn from
experiment 1, the purpose of the second study was twofold:
to confirm the results of experiment 1 using iEMG, the
benchmark method for HDsEMG decomposition; to provide
more insight into the specific interactions between nearby
units. As such, no broad conclusions are drawn from this
experiment.

2) Instrumentation: The instrumentation for recording the
US, force, and synchronization data was the same as in
experiment 1. Three thin-wire bipolar iEMG electrodes were
used to record the EMG data (OT Bioelettronica, Torino,
Italy). The acquisition of the EMG was performed using
the Quattrocento amplifier (OT Bioelettronica, Torino, Italy)

at a sampling frequency of 10240 Hz, bandpass filtered
between 10 Hz and 4400 Hz.

3) Experimental Procedures: The skin above the partici-
pant’s TA was cleaned and wiped before the experiment began.
Three thin wire bipolar EMG electrodes were inserted along
the length of the muscle fibers at approximately 45 degrees
until the tip of the insertion needle was approximately 1.5 cm
deep. The first electrode was inserted to align with the center
of the US probe. The insertion was done by an expert and
guided using US to ensure the needle tip was positioned
correctly. Once the electrode was correctly positioned, the
needle was removed, leaving just the thin wire electrode in
place. The US probe was attached to the leg as in experiment 1,
and the leg was secured in the ankle dynamometer.

The participant performed an MVC contraction. Next, two
repeats of four force ramps were performed at 5%, 10%,
20%, and 30% MVC. Each ramp consisted of a 5-s rise, a
40-s plateau and a 5-s fall. Once the participant reached the
plateau, a 30-s US recording was stored (see Fig.1). Between
each ramp, the participant rested for 60-s. Once one set of
8 ramps had been completed, a second wire electrode was
inserted medially with respect to the first electrode, and the
8 ramps were repeated. Finally, a third electrode was inserted
laterally with respect to the first electrode, and the 8 ramps
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Fig. 4. A: An example of a common region of the motor unit across contraction levels (top) and velocity twitch profiles, showing a decrease in
peak-to-peak amplitude at increasing contraction levels (middle). When only the highly correlated twitches are included (bottom), the peak-to-peak
amplitude is more consistent. B: Velocity twitch amplitude of spike-triggered average (STA) velocity twitch when all firings contribute to the STA (legt)
decreases as the contraction level increases. All contraction levels are significantly different with p < 0.001. When only highly correlated velocity
twitches were considered (correlation with overall average twitch profile ≥ 0.5) (right), the amplitude was more consistent across contraction levels.
All groups were statistically different, with all p< 0.001, except between 10% and 20% where p = 0.0467 (with correction). In each case, the p-value
was much higher than that for the left plots. In each plot the mean value is shown by the dotted red lines.

were repeated again. This resulted in a total of 24 synchronized
paired 30-s recordings of iEMG and US.

4) Data Processing: The iEMG data were high-pass filtered
at 1000 Hz and EMGLAB’s [34] automatic decomposition was
used on the full iEMG signal. An expert visually corrected
the spike trains for missing or double firings. The resultant
templates and spike trains were exported to MATLAB, and any
MUs with spike trains with inter-spike interval coefficient of
variation greater than 30% were discarded [35]. The remaining
MUs were used for further analysis.

The data processing for the US data was the same as in
experiment 1. Using the velocity maps calculated from the
US and the firing times from the iEMG decomposition, the
same STA processing as described in experiment 1 was carried
out, resulting in MU motion domain maps and velocity twitch
STAs. Any MUs whose motion domains were not within
the expected detection region of the EMG electrode or were
noisy (scattered around the map rather than concentrated)
were discarded. Next, pairs of nearby MUs were used for the
analysis of how the activity of one MU (MU1) was affected
by its neighbor (MU2) in two ways:

(i) For a given MU (MU1), the activity of a nearby MU
(MU2) occasionally began mid-way through the contraction.
Thus, MU1s activity could be separated into two time
intervals: activity before the nearby unit was active and activity
after. The n velocity twitches before MU2 was active were
used to produce an STA representing the activity of MU1 in
the ‘active alone’ condition. Then, n of the velocity twitches
(selected randomly) in the second group (MU1 and MU2 both
active) were used to produce an STA of MU1s activity in
the ‘active together’ condition. This was repeated until the
remaining number of twitches in the second group was less
than n. The STAs were then averaged to produce an average
twitch in the ‘active together’ condition. Finally, the STA of
MU1 before and after MU2s activity began were compared to
analyze the impact of MU2 on MU1.

(ii) The firing times of MU1 were categorized into two
groups: those which aligned with firings from MU2 and those

which did not. The window for alignment was adjusted on
a case-by-case basis to ensure equal numbers in each group,
always within the range of ±10-20 ms. Using each of these
groups, an STA of the velocity profile in the motion domain
of MU1 was calculated to produce an aligned spikes STA and
an unaligned spikes STA. This enabled the study of quasi-
individual MU activity versus activity alongside a nearby unit.
The MUs were then investigated the other way around to
determine if the impact of one MU on another is symmetrical.

III. RESULTS

A. Experiment 1: HDsEMG and US
On average, the peak-to-peak amplitude of the velocity

twitch decreased as the contraction level increased. In other
words, the average velocity twitch of individual MUs was
suppressed as contraction force increased from 2% to 20%
MVC. An example of this phenomenon is shown in Fig. 4A.
The relative peak-to-peak amplitude of the velocity twitch
profiles across the contraction levels is shown in Fig. 4B.
For each contraction level, the distribution of peak-to-peak
amplitudes was statistically significantly different (p < 0.05).
This is shown in Fig. 5, where the 10% and 20% MVC
contractions are compared with the 5% contraction, and the
groups are statistically different (p < 0.05).

It must be noted that, contrary to the global muscle force,
the velocity twitch is a signal in space and time. At low
contraction forces, it is possible to identify velocity twitches
isolated from the others because of the sparseness of the
signal in both space and time. In a series of velocity twitches,
we assumed that some would be isolated while others were
not. We identified the isolated velocity twitches by determining
the group of twitches ‘correlated’ with the grand average STA
(see example in Fig. 6). The correlated group comprises the
twitches that are mostly preserved in individual activations
and that, therefore, are least influenced by other MUs. When
we used only the correlated velocity twitches to determine
the STA, the peak-to-peak amplitude remained constant across
contraction levels, as shown in Fig. 4 and Fig. 5. This is
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Fig. 5. Left: Example of normalised velocity twitch sizes for the same MU considering all velocity twitches (top) and just correlated velocity
twitches (bottom). Right: Peak-to-peak amplitudes of velocity twitch profiles at 10% and 20% MVC compared with 5% velocity twitch profile (i.e.,
the difference between the values marked on the right-hand side of the left plot). When all velocity twitches are used to produce the STA, the STA is
suppressed for both 10% and 20% (p < 0.001, n = 170). When just the highly correlated twitches are considered, the 10% and 20% twitches are
more similar to each other and those at a 5% contraction level (p = 0.009, n = 170).

an interesting result since it indicates that when considering
isolated twitches, the twitch response was not influenced by the
force level or the number of active MUs. This result indicates
that it is unlikely that the decrease in velocity twitch amplitude
when considering the entire discharge time series is due to
changes at the whole muscle level, such as stiffness (otherwise
a decrease would also occur when selecting a group of twitches
with correlated shapes). Rather, results reflect that the non-
linear effects (causing the reduction in STA velocity twitch
amplitude) are local and depend on the mechanical disturbance
due to the activity of closely located MUs. With increasing
MVC levels, we see a decrease in the percentage of twitches
which fall into the highly correlated group (Fig. 7) due to an
increase in the number of active nearby MUs.

B. Experiment 2: iEMG and US
In this experiment, MUs close to each other were identified

due to the small detection volume of the bipolar iEMG
electrodes. In a number of recording intervals, the activity
of one unit began after the beginning of the recording. This
allowed us to separate the recording into two intervals and
compare the MU velocity twitch profiles of a unit active
throughout the whole recording with and without the second
MU active. Fig. 8 shows that the STA peak-to-peak amplitude
decreased when a nearby unit was active for an MU active
throughout the whole recording time (see Supplementary
materials for further examples). Therefore, the activity of an
MU is affected by its neighbors. Interestingly, the STA of a
motor unit never increased in amplitude when a second unit
became active (it always decreased), ruling out the possibility
that the effect was due to synchronized MU activity, which
would have conversely increased the STA amplitude [36]. This
supports the results from experiment 1 – once the nearby unit
is active, the already active unit will contribute with a different
velocity twitch that, on average, is of lower amplitude.

For the example of Fig. 8 (and those in the Supplementary
materials), there is a mean increase in discharge rate between
green and grey segments, which could increase fusion and
cause a decrease in velocity fluctuations. However, this

Fig. 6. Plots to show effects of separating correlated and uncorrelated
group for a 20% MVC contraction. Left: spike-triggered average (STA)
produced using all velocity twitches. Middle: STA produced using
velocity twitches with a correlation with the average twitch across all
force levels of > 0.5. Right: STA produced using velocity twitches with a
correlation < 0.5. With increasing force level, the size of the STA in the
left plot decreases due to the number of contributing lines in the right
plot increasing. However, the middle plot remains consistent – we are
able to extract a ‘template’ twitch profile that is the same at all levels, but
motion of nearby units causes an increasing number of twitches to not
fit the expected velocity twitch pattern.

change is of approximately 0.5 pulses per second and could
only, therefore, explain a very small change in magnitude
(maximum decrease of approximately 4% [37], [38]).
In contrast, we saw an average decrease of 45% in peak-to-
peak amplitude. Hence, a change in fusion cannot explain the
decrease in amplitude.

Fig. 9 shows an example of the analysis (ii) described
in section I.B.4 (see Supplementary materials for a further
example). The middle plots show that the STA using the
‘unaligned’ firings only differs from that using the ‘aligned’
firings for one unit (MU1 in A), suggesting a non-symmetrical
relation between units. From the bottom plot, we observe that
the relation between velocity twitch shape and time to the
closest firing of the other unit is complicated – this is likely to
depend on geometry: overlapping MUs with aligned velocity
twitches may reinforce each other, whereas neighboring units
with overlapping velocity twitches may oppose each other
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Fig. 7. Boxplots showing percentage of velocity twitches which have a correlation ≥ 0.5 with the overall average velocity twitch STA. In each case,
one dot at each force level corresponds to one motor unit (MU), so one MU will have a dot representing its percentage correlation at each force level.
Left: For 2%, 5%, 10%, 20% MVC (n = 45, p-values have Bonferroni correction - multiplied by 6 for 6 pairwise comparisons, significance p<0.05).
The number of correlated velocity twitches decreases with increasing contraction level, however 10% and 20% are not significantly different. Right:
For 5%, 10%, 20% MVC (n = 170, p-values have Bonferroni correction - multiplied by 3 for 3 pairwise comparisons, significance p<0.05). Here the
group sizes are much larger, and all groups are significantly different.

Fig. 8. Example spike-triggered averages (STA) for a motor unit (MU1)
before and after the activity of a nearby motor unit (MU2) has started.
Red curve is the STA for MU1 over the whole time (n = 245). Green
curve is STA of MU1 using all spikes in the green region of the upper
plot (n = 46). Thin grey lines are STAs with randomly distributed spikes
of MU1 from the grey region of the upper plot, ensuring equal numbers
of triggers as used for green curves (n = 46). The thick grey curve is the
average of the thin grey curves (n = 4). In the middle plot all curves are
set to 0 at 50 ms (time of firing) for ease of comparison. The peak-to-
peak amplitude of MU1 STA decreases when MU2 is active – the activity
of MU2 suppresses the activity of MU1. The lower plot shows the green
and grey curves with their standard errors.

and cancel out. Furthermore, because of the long duration of
the velocity twitches, the ‘unaligned’ group also includes the
activity of the two units partly overlapped in time.

IV. DISCUSSION

We used concurrent HDsEMG and US, and iEMG
and US recordings to analyze the linearity of velocity
twitch summation with respect to local muscle velocity in

voluntary contractions. Using state-of-the-art HDsEMG MU
decomposition, we compared STA twitches for one MU
across increasing contraction forces, thus with increasing co-
active units. We hypothesized that if the system is linear,
the effects of the activation of neighboring units (producing
twitches at random times relative to the studied unit) will
not change the average velocity profile obtained using
the STA process, resulting in unchanging average twitch
profiles at increasing force levels (see the simulation in the
Supplementary material). Conversely, we found that the peak-
to-peak amplitude decreased. Thus, we conclude that there
are mild non-linearities present in the system. The results
were consistent in the second experiment. We show that
this decrease is not a result of a change of global muscle
stiffness. Instead, we believe that the non-linearity results in a
non-stationary velocity twitch that changes depending on the
statistics and times of discharge of other nearby MUs, because
of the mechanical coupling of the MUs.

At the low force levels used in this experiment, we expect
the majority of active MUs to be slow-type [39], [40], which
are stiffer [41] and less likely to have tapered intramuscular
ends [42] than their fast counterparts, hence we expect the
majority of the force to be transmitted longitudinally for the
MUs considered here [43]. As such, although we expect some
lateral force transmission between units and the extracellular
matrix, this interaction is minimized. Stronger coupling effects
may therefore be expected for fast units, increasing non-linear
effects even more at higher force levels; however, this is yet
to be explored. Furthermore, slow MUs have optimum force-
tension lengths shorter than that of the whole muscle [44]
which has been hypothesized to contribute to non-linearities in
force twitch summation for slow MUs [43]. This phenomenon
alongside increased lateral force transmission between MUs
and with the extracellular matrix, which is more pronounced
when more units are active, may influence our results.

The straightforward way to test for linearity would have
been to activate two MUs separately and concurrently and
compare their activity in the two cases. However, this approach
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Fig. 9. A: Top panel: regions of MU1 and MU2. Middle panel: The blue curve is an STA of MU1 with firings from MU1, which are within a set window
around firing times of MU2 (window adjusted in each example to ensure an equal number of firings used for each STA). The red curve is an STA
of MU1 with firings from MU1 which are not within the set window around the firing times of MU2. The difference in these curves shows that the
proximity of a firing of the nearby unit impacts the twitch of a given unit. Bottom panel: for each firing time of MU1, the correlation of the twitch with
the overall STA multiplied by the size of the twitch is plotted against the absolute time to the closest firing of MU2. A very weak linear relationship
is shown (R2 = 0.102). B: The motor units used in A are swapped. In the middle panels, no difference is seen between the blue and red curves,
suggesting that, in these cases, the firing of the nearby unit does not affect the unit’s twitch profile. The bottom panels show an approximately
10 times weaker linear relationship (R2 = 0.0112). Although a MU is affected by the firing of another nearby unit, this relationship is not reciprocal,
and thus the other unit may not be impacted.

has practical constraints in voluntary contractions. First, MUs
are recruited sequentially, therefore, individually activating
the higher-threshold MU is often impossible. Furthermore,
stable individual MU control over long time intervals may be
challenging for naïve subjects [2]. Instead, we concurrently
recorded HDsEMG and US at 4 stable contraction forces.
Since the number of active MUs increases with increasing
force, the different forces correspond to different numbers of
active MUs [45]. In these conditions, if the velocity fields of
MUs are independent and linearly superimpose, increasing the
number of active MUs will not impact the velocity twitches.
Using the STA method, we therefore compared the velocity
twitches by tracking MUs across forces to determine the
system linearity.

Contrary to global muscle force which is the combination
of all MU outputs into a one-dimensional temporal signal
(summing all activity over space), the US velocity signals
have both spatial and temporal dimensions, increasing the
sparseness of the system. Hence, we can observe velocity
twitches that are isolated from the twitches of other units.
We assumed that the isolated twitches were those of more
consistent shape over time, and we identified them as the
‘correlated’ twitches. The correlated velocity twitches did
not change in amplitude when the number of active MUs
increased, indicating that the changes in the grand average
twitch are due to temporally local non-linearities that occur
when two or more MUs discharge close in time and space.
This also excludes that the observed non-linearities are due to

a change in the whole muscle properties, at least in the range
of investigated forces.

While MU shortening (and hence force transmission) occurs
along the length of the MU, we measured the velocity
profile perpendicular to the length of the unit to maximize
the number of units found using EMG which cross the US
imaging plane. Given that skeletal muscle is approximately
incompressible [46], [47], the longitudinal contraction is
assumed to be proportional to an axial expansion, hence the
axial ‘thickening’ velocity is assumed to be proportional to the
longitudinal shortening velocity. This proportional relationship
has been shown using bi-directional strain imaging [48] as well
as MMG [49]. Therefore, we infer MU twitch velocity profiles
from their radial expansions. In future, either employing
transverse oscillations in the US transmit paradigm to enable
2D velocity tracking [50], or 3D imaging techniques [51]
should be considered.

In all data shown here, the MU velocity twitch was negative
(here defined as away from the US probe). However, in many
cases, we observed examples of regions that also moved
toward the probe. These may be in conjunction with negative
motion (MU twisting/complicated motion), or the only motion
associated with that unit. Detection of motion away from the
probe is easier as any motion towards the skin may be reduced
due to compression from the probe or may result in small
skin motions and hence of the probe, thus minimizing relative
motion. As such, the data in this work are limited to motions
away from the probe. However, the same conclusions can
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be drawn when considering the positive motions (results not
shown).

Crucially, we show that MU twitches do not sum linearly
and hence linear decomposition methods, such as the currently
used stICA, may be sub-optimal to fully decompose twitch
times. On the other hand, at least at the contraction forces
considered in this study, the non-linear effects were limited to
a decrease in average twitch amplitude with relatively similar
waveforms, thus the linearity assumption may still be used
within certain limits. It has also to be noted that current
separation methods for US decomposition are based on the
further assumption of linear instantaneous mixtures, which
is certainly not met since the mixtures are convolutive (not
instantaneous). It is likely that the assumption of instantaneous
mixtures in these methods is a stronger limiting factor than the
assumption of linearity.

Future efforts should test whether linear models of
convolutive mixtures, not currently analyzed, would provide
a sufficient approximation of the underlying generation model
so that linear convolutive source separation approaches would
substantially surpass linear instantaneous methods in term of
accuracy in discharge times identification. Once these models
are fully exploited, the current study indicates that future
research should be further directed towards methods which
do not impose the linearity assumption in the underlying
model, such as non-linear ICA [52], [53], using deep learning
to decouple MU activity from that of other units and the
extracellular matrix [54], [55], or taking inspiration from
methods for dynamic EMG decomposition in which the MU
AP shape changes over time [56], [57]. The ability to directly
infer neural information from an US image series will enable
a transition from US-based muscle machine interfaces [58]
to more natural neural interfaces which, unlike their EMG
counterpart, are not limited to superficial muscle only.

However, understanding the workings of intra-muscular
motion has broader implications than US interpretation and
processing, such as in musculoskeletal modelling. Generally,
a muscle is modeled as a single actuator [59], geometrically
described as a line segment between its insertion points on
the skeletal bodies [60], assuming all fibers have the same
length and neuromuscular properties using multiscale sim-
plifications [61]. Some muscle modeling developments have
aimed for a more physiological underpinning by describing
the dynamics of the individual MUs of the muscle, for
example by using controlled pools of in-parallel mathematical
models of individual MUs with artificial [45], [62], [63], [64]
and experimentally generated [65] MU firing times. Other
studies have developed volumetric representations of muscles
described as collection of spatially-arranged fibers [66], [67].
However, both approaches assume no inter-unit connectivity
between the modeled fiber actuators. In such cases, the relative
motions between fibers are assumed to be independent and
their generated forces are modelled to add linearly, which
contradicts physiological findings [61], [68]. Experimental
insights into the true impacts of the inter-relation between
MUs could improve these models, and US detection methods
could enable a precise mapping of MUs within the muscle
volume.

Using iEMG, we could study MUs with very close
territories because of the small detection volume of the iEMG
electrodes. Here, we could directly study cases where MU
activity was initiated mid-way during the contraction. In all
cases, the velocity twitch of a given MU was suppressed
when the activity of a nearby unit began. This supports
the conclusions of experiment 1 – the nearby units’ activity
impacts the velocity twitch profile of a given unit and causes
the velocity twitch profile to decrease in amplitude. However,
a new finding from experiment 2 (Fig. 9) was that MUs do
not influence each other in symmetrical ways. When looking
at pairs of MUs, one unit appears influenced by the firing of
the other more than vice-versa.

Fig. 9 shows the non-symmetrical effect of MUs on their
velocity twitches. It is reasonable to assume that a larger unit
would have a greater effect on the velocity field of the muscle
with respect to a smaller unit, as it involves the movement
of more fibers. According to the size principle [39], [40] the
later recruited units will be larger, so we would expect that
all the ‘MU2’s in Fig. 8 are larger than the ‘MU1’s, albeit
the difference would be small as the recruitment thresholds
are very close together. In each case here, we see that the
firing of MU2 affects MU1, as we expect from the recruitment
order reasoning. However, we have not investigated the effect
of MU1 on MU2. Further protocol development to allow for
investigation into recruitment order and MU velocity twitch
profiles should be done using iEMG and US on a larger MU
population.

V. CONCLUSION

We used ultrafast US in conjunction with both HDsEMG
and iEMG to study the linearity of the summation of velocity
twitches of active MUs. We found that at increasing force
levels, where increasing numbers of MUs are active, the
STA twitch amplitude monotonically decreased. Hence the
system is non-linear. We conclude that linear methods for
decomposition are unlikely to successfully decompose full
velocity twitch trains from US image series. However, when
considering only a subset of discharge times, we were able to
extract a velocity profile not influenced by force. This result
indicates that the non-linearity of the system is not due to the
properties of the whole muscle but rather to local mechanical
coupling between muscle units. Finally, we observed that
the influence of one MU on another MU velocity profile is
not symmetrical. These results provide information to design
more advanced US decomposition algorithms than currently
available and to interpret the contribution of individual MUs
to muscle movement.
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