
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023 3687

Gaze and Environmental Context-Guided Deep
Neural Network and Sequential Decision Fusion

for Grasp Intention Recognition
Bo Yang , Student Member, IEEE, Xinxing Chen , Member, IEEE, Xiling Xiao , Pei Yan ,

Yasuhisa Hasegawa , Member, IEEE, and Jian Huang , Senior Member, IEEE

Abstract— Grasp intention recognition plays a crucial
role in controlling assistive robots to aid older people and
individuals with limited mobility in restoring arm and hand
function. Among the various modalities used for inten-
tion recognition, the eye-gaze movement has emerged as
a promising approach due to its simplicity, intuitiveness,
and effectiveness. Existing gaze-based approaches insuf-
ficiently integrate gaze data with environmental context
and underuse temporal information, leading to inadequate
intention recognition performance. The objective of this
study is to eliminate the proposed deficiency and estab-
lish a gaze-based framework for object detection and
its associated intention recognition. A novel gaze-based
grasp intention recognition and sequential decision fusion
framework (GIRSDF) is proposed. The GIRSDF comprises
three main components: gaze attention map generation,
the Gaze-YOLO grasp intention recognition model, and
sequential decision fusion models (HMM, LSTM, and GRU).
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To evaluate the performance of GIRSDF, a dataset named
Invisible containing data from healthy individuals and
hemiplegic patients is established. GIRSDF is validated
by trial-based and subject-based experiments on Invisible
and outperforms the previous gaze-based grasp intention
recognition methods. In terms of running efficiency, the
proposed framework can run at a frequency of about 22 Hz,
which ensures real-time grasp intention recognition. This
study is expected to inspire additional gaze-related grasp
intention recognition works.

Index Terms— Grasp intention recognition, gaze, envi-
ronmental context, object detection, hidden Markov model,
deep neural networks.

NOMENCLATURE

Gaze Related Contents
n Index of frame captured from scene camera.
k Index of gaze point extracted from eye-tracker in

each frame.
fn The nth scene image frame.
gn(k) kth unaligned gaze point on nth frame. gn(k) =

[gn,x (k), gn,y(k)].
Gn Set of unaligned gaze points on nth frame. Gn =

{gn(k) = [gn,x (k), gn,y(k)], k = 1, . . . , K }.
ḡn(k) kth aligned gaze point on nth frame. ḡn(k) =

[ḡn,x (k), ḡn,y(k)].
Ḡn Set of aligned gaze points on nth frame. Ḡn =

{ḡn(k) = [ḡn,x (k), ḡn,y(k)], k = 1, . . . , K }.
w1 Gain of gaze map generation.
σ Standard deviation of gaze map generation.
imgn,k The gaze map is generated by the gaze point gn(k).
gmn The gaze map is generated by the aligned gaze

points set Ḡn .

Grasp Intention Related Contents
ls Sliding window size for gaze map generation.
lz Number of gaze points in the sliding window ls .
lw Sliding window size for sequential fusion.
λ j HMM model. λ j =

(
A j , B j , π j

)
, j = 1, 2. λ1 is

the HMM model for IT and λ2 is the HMM model
for IA.

A j The transition probability matrix.
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B j (n) The emission probability matrix
given observation on . B j (n) =[

p j
(
on | in, j = 0

)
,. . . ,p j

(
on | in, j = m j

)]
.

p j
(
on | in, j

)
The emission probability of observing
sample on given the latent state in, j .

Q j The set of IT states. Q1 = {0, . . . , m1}

and Q2 = {0, . . . , m2}.
in, j Subject’s latent state of λ j . in,1 ∈ Q1 and

in,2 ∈ Q2.
sn, j The smoothed latent state. sn,1 ∈ Q1 and

sn,2 ∈ Q2.
sopt

n, j The optimized latent state. sopt
n,1 ∈ Q1 and

sopt
n,2 ∈ Q2.

p j (sn, j ) The probability distribution of the current
smoothed state.

O The set of possible observations of two
HMMs. O = {o0, . . . , on}.

on The observation of HMM, i.e., the input
sample of Gaze-YOLO. on is composed
of the scene image and the gaze map
concatenated in the channel dimension,
which can be expressed as on = fn ⊕gmn .

I. INTRODUCTION

THE upper limb assistive robots, such as prostheses [1],
supernumerary robotic limbs [2], and exoskeletons [3],

can help the elderly and infirm people with upper limb
disabilities restore arm and hand functions. However, a barrier
to using these assistive technologies is the lack of appropriate
human-robot interaction (HRI) that allows people to express
their grasp intentions intuitively and naturally. There have
been many studies for upper limb intention recognition and
prediction, utilizing electromyography (EMG) signals [4],
Electroencephalogram (EEG) signals [5], etc. Although these
biosignals can be effectively used for intention recognition,
they can not be applied to all populations, such as stroke
patients [6].

Eye-tracking is an emerging technology for users’ gaze
point estimation [7]. Even in severe hemiplegia and other
motor disorders, the human oculomotor system typically
remains intact [8], [9], making eye-tracking accessible to users
with disabilities. It has been shown that gaze is related to
intention and that a person’s gaze can express intention and
anticipate actions [10], [11]. The natural and intuitive link
between intention and gaze makes it a promising approach
to exploiting gaze for grasp intention recognition. In grasp
intention recognition, there are two attributes that we need to
focus on, one is the intentional target (IT), which is used to
indicate the object that the user is interested in and viewing,
and the other is the intentional action (IA), which is used
to indicate whether the user has a grasp intention on this
object [12], [13], [14], [15], [16], [17]. With IT and IA, the
assistive robot can help the user with the grasping task.

Typically, studies on gaze-based upper limb assistive
robots focused on two aspects: 1) gaze point estima-
tion and trajectory planning and 2) intention recognition.
The first category of studies explored gaze points to

determine target position and plan robots’ movement tra-
jectories [9], [14], [15], [17], [18], [19], [20]. Faisal et al.
proposed a 3D gaze calibration method utilizing continu-
ous robotic arm trajectories [18]. Furthermore, Faisal et al.
implemented a grasp assist task by leveraging the estimated
3D gaze points [14], [18]. Wang et al. proposed a method
that combines a depth camera and an eye-tracker to estimate
3D gaze points [15]. However, the estimation of 3D gaze
in real environments has certain limitations, such as being
sensitive to the user’s head motion or requiring additional
optical devices to track head motion. Chen et al. developed
a lightweight multi-model network for appearance-based eye
gaze tracking. Their method fused eye and head features
to improve gaze estimation accuracy and achieved a 27 ×

speedup [20]. Yang et al. introduced a set-membership filter
based on eye-movement modality, which effectively improves
the gaze signal quality [21]. Most of these studies primarily
utilized machine learning techniques to estimate gaze points
based on eye features or incorporated additional depth cameras
to provide depth information. However, these methods do not
resolve the problem of recognizing the user’s grasp intention,
including IT and IA.

The second category of studies mainly focused on intention
recognition. Li et al. constructed a naive Bayesian model for
intention inference based on the correlation between objects
and intentions [22]. Koochaki et al. used a density-based spa-
tial clustering of applications with noise (DBSCAN) to extract
gaze features and infer intention [23]. Such studies are only
suitable for activities of daily living (ADL) intention inference,
not grasp intention recognition. Another part of the stud-
ies focused on the foundation of intention recognition–grasp
intention recognition. In [15] and [16], fixations with dwell
times longer than two seconds were utilized to determine the
grasp intention. In [24], a network based on the egocentric
view termed VIDEO-Net was introduced to recognize the
IA but has not determined IT. In [12], a weakly-supervised
network was used to recognize IT, and then an extra long-short
term memory (LSTM) was used to identify IA. The Earth
Mover’s Distance (GazeEMD) was exploited to evaluate the
similarity between gaze points and target saliency to determine
the IT by Shi et al. [25]. In [26], a gaze point motion model
TAGMM was used to process the gaze data, and then multiple
features were proposed for identifying IA and IT.

While these studies have produced positive outcomes, they
still have some issues. The first issue is that gaze and environ-
mental context (scene image) interact minimally and do not
efficiently integrate. Typically, these algorithms require target
detection techniques to detect objects in the scene, followed by
the construction of a set of features for intention recognition
based on the object coordinates and the gaze points. As a
result, intention recognition is influenced by object detection
performance and gaze data quality. For example, gaze points
that fall outside the bounding box due to noise but are close
to the boundaries may still indicate that the user’s IT is the
object. However, a method relying on the bounding box would
misclassify this object as not being IT. The ideal approach
is to fuse gaze data and scene images to extract effective
features to identify intention. Convolutional neural networks
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have proven to be a powerful technique for extracting features
in image tasks. However, due to dimensional inconsistencies,
discrete gaze point coordinates are challenging to be fed into a
2D convolutional network. Moreover, the gaze point can only
provide information about a single pixel point, which does not
reflect the actual human vision characteristics. Human eyesight
is an area rather than a single point. Consequently, there is
a dearth of an effective approach to extract gaze and scene
features and perform intention recognition.

Another issue is the underuse of temporal information,
which may result in a lack of accuracy in gaze-based
grasp intention recognition. As previously reported, existing
gaze-based grasp intention recognition methods had an accu-
racy of less than 76% [12], [25]. Human upper limb intentions
are continuous in a grasping task–the user’s gaze usually
stays on the object until the grasping action is completed.
Therefore, a sequence model could be established to fuse
temporal information to increase grasp intention recognition
performance, which has been proven feasible in human behav-
ior prediction [27], gesture recognition [28], and intention
recognition [29]. Neural networks, such as LSTM and gated
recurrent units (GRU), are effective approaches for fusing tem-
poral information. While these models improve the accuracy
of human intention recognition, they are data-intensive and
require training. Consider the grasp intention is classified into
several classes, each of which can be described in probabilistic
terms. Bayesian models provide an alternative method to fuse
temporal information and optimize sequential decisions in sce-
narios involving probabilities. Additionally, the probabilistic
model is interpretable.

From the previous analysis, the challenges in achieving
gaze-based grasp intention recognition are as follows:

1) How to develop a framework for integrating gaze data
and environmental context (scene images) to simultane-
ously detect IT and recognize the corresponding IA.

2) How to fuse sequential decisions to improve the accu-
racy of intention recognition.

Our objective is to establish a gaze-based framework for
object detection and its associated grasp intention recognition
based on multimodal information (gaze data and environ-
mental context). To achieve this objective, we designed a
gaze-based grasp intention recognition and sequential decision
fusion framework (GIRSDF). This framework is composed of
a gaze attention map generation method, a Gaze-YOLO net-
work, and sequential decision models. The main contributions
of the present paper include the following:

1) In terms of grasp intention recognition, a novel end-
to-end deep neural network Gaze-YOLO is designed.
This network employs gaze data and scene images as
the inputs for scene objects detection and corresponding
intention detection.

2) In terms of Gaze-YOLO inputs, a gaze attention map
generation method based on human visual properties is
proposed to align the representation of gaze data with
the scene image.

3) In terms of sequential decision optimization, models
that (HMM) do not require training and models (LSTM

and GRU) that need training are constructed to fuse
sequential decisions and improve intention recognition
accuracy.

4) A dataset named Invisible is established. The dataset
containing data from seven healthy individuals and two
hemiplegic patients. The proposed framework’s perfor-
mance is evaluated on the dataset.

The rest of the paper is organized as follows: Section II
describes GIRSDF. Section III introduces the experimental
results of the proposed framework. Section IV presents the
discussion. Section V concludes the paper.

II. THE METHODOLOGY

The proposed GIRSDF is shown in Fig. 1, including a gaze
attention map generation approach, a Gaze-YOLO intention
recognition network, and a sequential decision fusion model.
The following discussion will introduce each component of
the grasp intention recognition framework.

A. Eye-Tracker Output
The eye-tracker (Pupil-Invisible: Pupil Labs, Berlin,

Germany), which comprises eye cameras and a scene camera,
delivers the user’s two-dimensional (2D) gaze point coordi-
nates on the scene image. The 2D gaze point coordinates are
indicated as gn(k) = [gn,x (k), gn,y(k)], where n is the scene
image index, and k is the gaze point index in one scene image.
The scene camera is sampled at 30 Hz and the eye camera
is sampled at approximately 200 Hz. Thus, a scene image
contains multiple gaze points. A snapshot of the outputs of
the eye-tracker are displayed in Fig. S1 in the Supplementary
Document.

B. Gaze Attention Map Generation
During the use of the eye tracker, the subject’s head

movement will cause the gaze points move across in different
scene frames. The gaze points should be aligned to the same
scene image to eliminate the effects of the subject’s head
movement. Consider a video clip F = {fn, n = 1, . . . , N } and
fn associated gaze points Gn = {gn(k), k = 1, . . . , Kn}, where
fn is scene image frame. Then we adopt Diaz’s approach [12]
to align the gaze points.

Ḡn = align(Gn, fn). (1)

The utilization of gaze points encounters two difficulties.
The first is that the gaze point coordinates cannot be fed
into the image processing 2D convolutional neural network.
Another difficulty is that the gaze point can only provide
information about a single point, which is inconsistent with
visual properties. As demonstrated in Fig. 2, when a person
stares at a target, the eyesight is focused on the region of
interest rather than a single location. The region’s center
is the most concerned and interested area determined by
the brain, and the attention progressively attenuates to the
surroundings [30]. To solve these two problems, we propose a
method for generating gaze attention maps from gaze points.

We utilize Gaussian functions for generating gaze attention
maps to model human visual attention’s decay process from
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Fig. 1. GIRSDF framework. This framework includes a gaze attention map generation approach, a Gaze-YOLO intention recognition network, and
sequential models. Gaze-YOLO’s input is the gaze attention map and the corresponding scene image; Gaze-YOLO completes the object detection
in the scene and recognizes the intention for each object. The grasp intention results are converted into probabilities of different types of IT and
IA, respectively. Then the sequential models fuses the probabilities of the current sample and previous samples to estimate the ultimate intention
decision.

the gaze point coordinates to the surrounding environment.
The gaze attention map is generated as follows:

imgn,k (x, y) = w1 exp

(
−

L
([

x, y
]
, gn(k)

)2
2σ 2

)
, (2)

where imgn,k represents the gaze attention map of gn(k) and
imgn,k(x, y) is the pixel value in the x th row and yth column
of this grayscale image. σ 2 is the Gaussian function’s variance,
which represents the attention decay rate and w1 is the gain
factor. L(·) denotes the Euclidean distance. Assume an aligned
gaze point set Ḡbu f = {Ḡn+1−ls , . . . , Ḡn} contains lz gaze
points, where ls is the size of the sliding window. As a result,
the gaze attention map of Ḡbu f is synthesized by multiple gaze
points:

gmn =

Kn+1−ls∑
k=1

imgn+1−ls ,k + . . . +

Kn∑
k=1

imgn,k,

lz = Kn+1−ls + . . . + Kn, (3)

where gmn is the gaze attention map of Ḡbu f . It corresponds
to the reference scene image fn . Fig. 2 depicts the procedure
for generating the gaze attention map. The gaze attention
maps mimic human vision and furnish a more detailed visual
attention distribution and information than a single gaze point.

C. Gaze-YOLO
1) Network Architecture: In this subsection, we designed

an intention recognition network Gaze-YOLO inspired by
YOLO [31], which was a high-efficiency network, but was
only applicable to object detection. A spatial pyramid pool-
ing (SPP) module is integrated in Gaze-YOLO to achieve

Fig. 2. Gaze attention map generating process. The upper part
represents the human visual attributes, and a Gaussian function is used
to model this process; the lower part represents the gaze attention map
generation process based on the Gaussian function. The gaze attention
maps are represented as grayscale images (the Apriltags pasted on the
table is not relevant to this paper).

feature fusion of different scales. The detail of the pro-
posed Gaze-YOLO is shown in Fig. S2 in the Supplementary
Document.

The gaze attention map gmn and the corresponding scene
image fn are concatenated in the channel dimension as the
input of Gaze-YOLO. Gaze-YOLO predicts object boxes on
three different scales. The input image is divided into grids
on each scale. Then three prediction boxes are generated for
each grid. For object detection, each box is responsible for
detecting an object, which is composed of bbox coordinates
(i.e., tx , ty , tw, th), objectness scores pobj (i.e., whether the box
contains an object), and object class scores po,0,. . . ,po,m1−1
(i.e., possibilities that the object belongs to different classes).
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Fig. 3. The left part represents the components in a Gaze-YOLO
prediction box. Multiple prediction boxes in the left part are processed
by NMS, and then the Gaze-YOLO output in the right part is obtained.

Besides the object detection properties, in the prediction box of
each grid, four dimensions are added and denoted as pvo, pnv ,
pgo, and png , respectively, as shown in Fig. 3. pvo determines
the probability that the object is the IT, while pnv determines
the probability that the object is not the IT. The probability of
grasp intention on the object is determined by pgo, while the
probability of no grasp intention on the object is determined by
png . vo and nv mean viewing object and not viewing object,
respectively. go and ng mean grasping object and not grasping
object, respectively. It is worth noting that if the subject has
grasp intention for the object, the object must be IT.

2) Loss Function: The proposed Gaze-YOLO model gener-
alizes the loss function of YOLO by introducing the losses of
grasp intention recognition. The entire loss function is shown
in Eq.(4)

Loss = α1Lcoord + α2Lobj + α3Lcls

+ α4L IT + α5L IA, (4)

where Lcoord is the localization loss, Lobj is the object loss,
and Lcls is the class loss. α represents the gain factor of the
losses. The object detection losses are inherited from YOLO.
Except the object detection losses, we design intention losses,
including the IT loss L IT and the IA loss L IA. Both of them
use the binary cross-entropy loss, which can be expressed as

L I T = −

S2
−1∑

i=0

B−1∑
j=0

I obj
i j

∑
v∈{vo,n v}

[
p̂i (v) log (pi (v))

+
(
1 − p̂i (v)

)
log (1 − pi (v))

]
,

L L A = −

S2
−1∑

i=0

B−1∑
j=0

I obj
i j

∑
g∈{go,n g}

[
p̂i (g) log (pi (g))

+
(
1 − p̂i (g)

)
log (1 − pi (g))

]
. (5)

S2 denotes the number of grid and B denotes the number
of prediction boxes generated by each grid. I obj

i j indicates
whether the j th prediction box of the i th grid contains an
object, and its value is 1 if it does and 0 if it does not.
p̂i (·) represents the intention label. pi (·) represents the inten-
tion prediction. Multiple prediction boxes are processed by
Non-Maximum Suppression (NMS) to obtain the Gaze-YOLO
output. In our work, there are a total of m1 classes of objects
numbered 0 ∼ m1 −1 (m1 = 10). The prediction box with the
highest score in each class is selected and output in the NMS
process. The VO score vector Pvo =

[
pvo,0, . . . , pvo,m1−1

]

and the NV score vector Pnv =
[

pnv,0, . . . , pnv,m1−1
]

of all
m1 − 1 objects are utilized to determine the IT (i,e., whether
or not the subject is looking at this object). When an object
is missing from a scene image, the pvo corresponding to the
missing object is set to 0 and the pnv is set to 1. The GO
score vector Pgo =

[
pgo,0, . . . , pgo,m1−1

]
and the NG score

vector Png =
[

png,0, . . . , png,m1−1
]

are utilized to determine
IA (i.e., whether or not the subject wants to grasp this object).
As shown in the lower-left part of Fig. 3, “VO” denotes IT
and “NV” denotes non-IT. “GO” means the subject wants to
grasp this object and “NG” means the subject has no grasp
intention for this object.

The user’s IT which is recognized by Gaze-YOLO, denoted
as in,1 ∈ Q1 = {0, . . . , m1}, where 0 ∼ m1 − 1 indicate dif-
ferent IT types, and m1 indicates “no target”. in,1 is computed
according to

in,1 =

 arg max
j

(
pgo, j

)
, if pgo, j ≥ 0.5

m1, if pgo, j < 0.5,

j = 0, . . . , m1 − 1. (6)

The user’s IA which is recognized by Gaze-YOLO, denoted as
in,2 ∈ Q2 = {0, m2}, where number 0 indicates the intention
of grasping, and number m2 = 1 indicates the intention of no
grasping. in,2 is computed according to

in,2 =

{
0, if pgo,in,1 > png,in,1

1, if pgo,in,1 < png,in,1 or in,1 = m1.
(7)

D. Sequential Decision Fusion of Intention Recognition
Considering that the use of short-term information to rec-

ognize human intentions is not robust. For instance, people’s
blinks cause a sudden change in the gaze points; or head move-
ment may cause the camera to capture error images, which will
cause errors in intention recognition. An intuitive approach
is to fuse temporal information to improve the accuracy of
intention recognition, Two HMMs λ1 = (A1, B1, π1) and
λ2 = (A2, B2, π2) are constructed to describe the transition
relationship of IT and IA, respectively. The HMM λ =

(A, B, π) consists of a state transition probability matrix A,
an emission probability matrix B, and an initial probability
π . The initial state is not taken into account for sequential
decision fusion in this work. The subject’s IT is regraded as
the latent state in,1. The subject’s IA is regraded as the latent
state in,2. The set of possible observations for both HMMs
are denoted as O = {o0, . . . , on}, where on is the observation;
i.e., it is the input sample of Gaze-YOLO. on = fn ⊕ gmn ,
where ⊕ represents the concatenation operation of the channel
dimension. Since the two HMMs are in a similar form, only
the detail of λ1 is presented in the following paragraphs, but
the readers can take it as a reference for both HMMs.

The emission probability p1(on
∣∣in,1 ) is calculated from the

output of Gaze-YOLO with Eq. (8).

pvo,m1 = 1 − max
(

pvo, j
)
, j = 0, . . . , m1 − 1,

pvo = softmax
([

pvo,0, . . . , pvo,m1

])
,

p1(on
∣∣in,1 = j) = pvo

[
j
]
, j = 0, 1, .., m1, (8)
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where pvo,m1 denoted the VO score of “no target”. Thus the
emission probability matrix of observing sample on can be
defined as

B1(n) = p1(on
∣∣in,1 )

=
[

p1(on
∣∣in,1 = 0), . . . , p1(on

∣∣in,1 = m1)
]
. (9)

Since the input samples are determined at each instant, the
emission probability matrix is determined and calculated based
on the VO score. The estimated category of in,1 may not be
robust due to the blinks or the blurred scene image. To make
the system tolerant of errors, we introduce a smoothed state
sn,1 ∈ Q1 to substitute in,1, by calculating the average
probability distribution in the sliding window:

p(sn,1 = j) =

{
p1(on

∣∣in,1 = j ), if n ≤ lw∑n

h=n−lw+1
p1(sh,1 = j)/lw, if n > lw,

p1(sn,1) =
[

p(sn,1 = j)
]
, j = 0, . . . , m1. (10)

In HMM, transferring between two adjacent latent states
is characterized by transition probability. The transition prob-
abilities between different states constitute the transition
probability matrix, which can be constructed from our life
experience. Empirically, we have the following assumptions on
the transition probability matrices A1 and A2, whose elements
ai j represent the transition probabilities from the previous state
i to the next state j .

For the transition probability matrix A1 of IT, we have the
following empirical rules:

• The probabilities of IT remaining at the same objects are
higher than the probabilities of switching to other objects
(ai i > ai j , i ̸= j).

• The probabilities of IT remaining at the same objects
are almost equal, and the probabilities of IT staying at
no target are lower than the probabilities of staying at a
object (ai i > am1m1 , i = 0, . . . , m1 − 1).

• The probabilities of IT switching from no target to
objects are almost the same, which are higher than the
probability of IT switching between different objects
(am1 j > ai j , i ̸= j, i = 0, . . . m1 − 1, j = 0, . . . m1 − 1).

• The probabilities of IT switching from other objects
to no target are the same, which are higher than the
probabilities of IT switching between different objects
(aim1 > ai j , i ̸= j, i = 0, . . . m1 − 1, j = 0, . . . m1 − 1).

• The probabilities of IT switching between different
objects are almost the same and are the lowest (ai j , i ̸=

j, i = 0, . . . , m1 − 1, j = 0, . . . , m1 − 1).
For the transition probability matrix A2 of IA, we have the
following empirical rule:

• The probabilities of IA remaining at the same actions
are higher than the probabilities of switching to the other
action (ai i > ai j , i ̸= j).

The two transition probability matrices are then initialized as
shown in Supplementary Document Fig. S3.

We used the modified Viterbi algorithm [27] to implement
the sequential decision and estimate the smoothed state sn .
Due to the similarity of estimating IT and IA, we will only
discuss the sequential decisions of IT. The posterior probability

Fig. 4. The sequential decision fusion process. The observed samples
are first utilized to compute the smoothed state and then output the
optimized state at the latest moment.

distribution of the last smoothed state sn−1,1 can be calculated
with Eq. (11):

p̂1(sn−1,1 = i) =

m1∑
j=0

p1(sn−1,1 = i) × ai j,1 × p1(on
∣∣in,1= j)

p̂1(sn−1,1) =
[

p̂1(sn−1,1 = i)
]
, i = 0, 1, . . . , m1. (11)

Then, the smoothed state with the max probability is chosen
as the latest smoothed state

sopt
n−1,1 = arg max

i

(
p̂1
(
sn−1,1 = i

))
(12)

The posterior probability distribution of the current smoothed
state is updated by:

p̂1(sn,1 = j) = p1(sn−1,1 = sopt
n−1,1)

× asopt
n−1 j,1 × p1(on

∣∣in,1 = j ),

p̂1(sn,1) =
[

p̂(sn,1 = j)
]
, j = 0, 1, . . . , , m1. (13)

Finally, the current smoothed state probability is normalized
as:

p1(sn,1) =
[

p1(sn,1 = j)
]
, j = 0, 1, . . . , m1,

p1(sn,1 = j) = p̂1(sn,1 = j)/
∑m1

i=0
p̂1(sn,1 = i). (14)

The sequential decision fusion process is shown in Fig. 4 and
the whole framework is summarized in Algorithm 1.

To verify the effectiveness of sequential decision fusion,
two neural networks, LSTM and GRU, were designed as
comparisons. The outputs of Gaze-YOLO were converted into
the probability of 10 (objects) × 2 (intentions) + 1 (intention-
free) = 21 classes of intentions. These probabilities were used
to train LSTM and GRU. Both the LSTM and GRU consisted
of an input layer, a hidden layer, and a fully-connected output
layer with a softmax activation function. The input feature
size and sequence size were set to 21 and lw, respectively.
The hidden layer size was set to 128, and the output layer
size was set to 21 to output the probability of each type of
intention.

III. EXPERIMENTS AND RESULTS

This study aims to discover the underlying mechanism
underpinning grasp intention recognition from gaze. There-
fore, we collected data from healthy and hemiplegic subjects
and conducted trial-based experiments and subject-based
experiments.
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Algorithm 1 GIRSDF (HMM)
1: Input: Frames: fn , unaligned gaze points on the nth frame:
Gn = {gn(k) =

{[
gn,x (k), gn,y(k)

]
, k = 1, . . . , K

}
,

IT transition probability: ai j,1, IA transition probability:
ai j,2;

2: Initialize: Sequential fusion sliding window size lw and
gaze map generation sliding window size ls ;

3: Output: Optimized smoothed state of the last time sopt
n−1,1

and sopt
n−1,2, the probability distribution of IT current

smooth state p(sn,1), the probability distribution of IA
current smooth state p(sn,2);

4: Obtain aligned gaze points by (1);
5: if n ≥ ls then
6: Establish aligned gaze points buff Ḡbu f =

{Ḡn+1−ls , . . . , Ḡn};
7: Generate gaze maps by (2)-(3);
8: Calculate VO, NV, GO, NG scores:
9: Pvo, Pnv, Pgo, Png = Gaze-YOLO(fn, gmn);

10: Calculate the emission probability p1(on
∣∣in,1 ) distri-

bution using (8)-(9);
11: Calculate the smooth state probability distribution

p1(sn,1) using (10)
12: Calculate the posterior probability distribution

p̂1(sn−1,1) of the last smooth state by (11);
13: Choose the smooth state sopt

n−1,1 with the max proba-
bility as the latest smooth state (12);

14: Update the posterior probability distribution p̂1(sn,1)

of the current smooth state using (13);
15: Normalizing the current smooth state probability

p1(sn,1) using (14);
16: // The sequential decision fusion process for IA is

similar to IT.
17: end if

A. Dataset and Experiment Setup

We conducted visually guided natural grasping and viewing
experiments to establish datasets for grasp intention recogni-
tion. Seven healthy subjects and two hemiplegic subjects were
recruited and instructed to wear a eye-tracker and perform
tasks. Their gaze and actions were recorded to build the
dataset. Each subject was asked to perform two categories of
tasks: grasping and viewing. Gaze-based human-robot interac-
tion often encounters the Midas touch problem [22], [25]. This
issue pertains to a situation where, when a user attempts to
interact with a target using gaze, two possibilities arise: either
the user is “just looking at the target,” or the user is “intending
to interact with the target.” To address the Midas touch
problem in the gaze interface, subjects were also instructed
to perform an intention-free viewing task. This task merely
requires the subjects to look at the object without engaging
in any intentional interaction. The data gathered during this
task enabled GIRSDF to overcome the Midas touch problem.
There were ten objects in our experiments. All participants
signed an informed consent that was approved by the ethical
committee of UHCT (UHCT-IEC-SOP-016-03-01). Details of
the experiments and information of datasets are shown in

TABLE I
GAZE-YOLO PERFORMANCE ON OUR DATASET

Supplementary Document Section III. Datasets can be found
at Dataset.

Two different experiments were conducted to verify the
effectiveness of GIRSDF.

1) Trial-based experiments: Each subject completed
repeated trials of each task. One repetition was selected as the
test set, and the rest were used as the training set. To obtain
statistically significant results, we utilized a five-fold cross-
validation procedure.

2) Subject-based experiments: one subject’s data were used
as the test set, and the left subjects’ data were utilized as the
training set. We conducted experiments with each subject left
out by turn to verify the intention recognition framework.

We further investigated the impact of data size and diversity
on sequential decision fusion. For data size, training and
test sets were divided according to trial-based experiments.
Specifically, we utilized the p% (p = 5, 15, . . . , 100) of data
from the training set to train the sequential model. For data
diversity, training and test sets were divided according to the
subject-based experiments. The data collected from different
numbers (1)-(8) of subjects were used to train the sequential
model. In addition, to verify the validity of the gaze-attention
map, we conducted both comparison and ablation experiments,
the details of which are provided in Supplementary Document
Section V.

The sliding window size ls was set to 18 for generating gaze
attention maps. Furthermore, w1 was set to a suitable value so
that the maximum value of the gaze attention map pixels was
about 255. σ was set to 25 to reduce the pixel value to 0 at
a diameter of 90 pixels centered on the gaze point, similar to
the clear region of human vision. The sequential fusion sliding
window lw was set to 5, taking about 0.5 seconds to initialize.

B. Object Detection Results of Gaze-YOLO
First we evaluated the performance of Gaze-YOLO on

object detection and the results were shown in Table I. From
the results, we know that the object detection performance
of Gaze-YOLO is close to that of YOLO with only a slight
degradation (no statistical difference), but the network can
perform intention recognition for each object.

C. Statistical Analysis
Statistical tests were performed in groups. Metrics (accu-

racy, F1 score, and success rate) corresponding to different
parameters (factors) are divided into groups, e.g., accuracy
values for different numbers of neurons (e.g., 32 and 64).
The trial-based experiment group size was 5 (5 folds), while
the subject-based experiment group size was 9 (9 subjects).
The Shapiro-Wilk Test was initially conducted on each group
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TABLE II
GRASP INTENTION RECOGNITION RESULTS IN THE TRIAL-BASED AND SUBJECT-BASED EXPERIMENTS. THE BOLDED DATA DENOTES THE

OPTIMAL RESULTS, AND THE UNDERLINED DATA DENOTES THE SUBOPTIMAL RESULTS. ASTERISKS INDICATE SIGNIFICANT

DIFFERENCES COMPARED WITH GIRSDF (HMM)

of data to test whether it followed a normal distribution. For
data following normal distributions, the analysis of variance
(ANOVA) was applied to detect whether there was an overall
significant difference. Suppose an overall significant differ-
ence was found; the T-Test was then conducted to perform
the pairwise comparison (other parameters versus reference
parameters). For data that did not follow a normal distribution,
a non-parametric test (Kruskal-Wallis H Test) was performed
to check for overall significant differences among groups. Sup-
pose an overall significant difference was found; the Wilcoxon
signed-rank Test was subsequently performed for pairwise
comparisons. The differences were considered significant if
p < 0.05 was achieved.

D. Trial-Based Grasp Intention Recognition
Three metrics including success rate, accuracy, and F1 score

are introduced as evaluation metrics. The success rate quan-
tified the proportion of successful trials to the total number
of trials. A successful trial means no errors occur from the
moment when the correct intention is identified to the end
of the trial. The performance of our GIRSDF framework was
compared with other approaches. Additionally, three sequential
decision fusion strategies were compared.

The grasp intention recognition results of trial-based exper-
iment are shown in Table II and Fig. 5. The proposed
GIRSDF outperforms other gaze-based grasp intention recog-
nition methods in trial-based experiments. The best accuracy
achieved by GIRSDF is 94.15% (LSTM), and the best success
rate of GIRSDF is 89.34% (HMM). The confusion matrix
depicting the intention recognition results is displayed in
Fig. 6. The utilization of various decision fusion methods
eliminated some of the errors and increased the accuracy
of most classes. Consequently, the overall success rate of
the framework is improved. Here, only a comparison of
the two methods is presented. For additional methods and
their respective confusion matrices, please refer to Fig. S5
and Fig. S6 in the Supplementary Document. The results
indicate that all three sequential decision fusion methods
significantly improve the performance of GIRSDF compared
with Gaze-YOLO (all p < 0.01), especially the success rate.
This improvement can be attributed to sequential decision
fusion can effectively correct unexpected intention recognition

Fig. 5. The accuracy and success rate in the trial-based experiments
with the Invisible dataset. Error bars represent mean ± one standard
deviation in five repetitions. Asterisks indicate significant differences
compared with Gaze-YOLO. Seven healthy subjects (S1-S7) and two
hemiplegic subjects (H8-H9) participated in the experiments.

errors, which may arise from blurred scene images or outliers
in the gaze points. Moreover, there is no significant difference
between the results of the three sequential decision methods
(accuracy: p = 0.93; F1 score: p = 0.93; success rate:
p = 0.39). This result suggests that both the training-free
HMM and trained LSTM and GRU can optimize intention
recognition and achieve comparable performance. Notably, the
HMM has a lower computational burden than LSTM and
GRU, owing to its simpler design. Although the advantage
is not obvious, the proposed GIRSDF has advantages over
LSTM and GRU in that HMM is simple in design and of a
low computational burden.

E. Subject-Based Grasp Intention Recognition
The subject-based experiment results are provided in

Table II. The accuracy and success rate of each subject are
presented in Fig. 7. The proposed GIRSDF achieves the best
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Fig. 6. The confusion matrices for Gaze-YOLO and GIRSDF (HMM) in the trial-based experiments. G and V are the abbreviations of grasp and
view. ITF is the abbreviations of intention-free.

Fig. 7. The accuracy and success rate in the subject-based experi-
ments. Error bars for the overall results represent mean ± one standard
deviations in different subjects. Asterisks indicate significant differences
compared with Gaze-YOLO.

accuracy of 88.12% (HMM) and the best success rate of
79.87% (GRU), demonstrating similar characteristics between
grasp intentions and gaze among different subjects, including
hemiplegic patients (H8 and H9). The results for hemiplegic
patients H8 (acc: 86.77%; success rate: 90.63%) and H9 (acc:
81.72%; success rate: 80.00%) demonstrate the feasibility of
using gaze to recognize grasp intentions for people who retain
eye-movement control ability.

Compared with Gaze-YOLO, the accuracy of GIRSDF
improved by 3.01% (HMM: p < 0.01), 2.75% (LSTM:
p < 0.01), and 2.70% (GRU: p < 0.01), respectively, after
incorporating different sequential decision fusion strategies.
Similarly, the success rate improved by 10.04% (HMM: p <

0.01), 10.26% (LSTM: p < 0.01), and 10.43% (GRU: p <

0.01), respectively. This result proves the effectiveness of
sequential decision fusion in enhancing grasp intention recog-
nition performance. Moreover, there is no overall significant
difference in the results of the three sequential decision fusions
methods (accuracy: p = 0.96; F1 score: p = 0.95; success
rate: p = 0.98).

Although the performance of GIRSDF is degraded com-
pared to trial-based experiments, the proposed GIRSDF still
outperforms other gaze-based grasp intention recognition
methods. The degradation of grasp intention recognition per-
formance in the cross-subject case is caused by a lack of data
from the test subject when tuning the model.

F. Intention Recognition Results in Healthy and
Hemiplegic Subjects

In this subsection, the variability in intention recognition on
healthy and hemiplegic subjects are analyzed. In the trial-based
experiments, the results on healthy subjects are combined with
those on the hemiplegic subjects H8 and H9, respectively, for
statistical analysis. The results are presented in Table III.

In the trial-based experiments, no significant differences are
found between the hemiplegic and healthy subjects for most
metrics. Interestingly, the hemiplegic subjects exhibited higher
accuracy, F1 score, and success compared with the healthy
subjects, indicating more remarkable behavioral similarity
between them. During our experiments, we discovered that
the hemiplegic patients demonstrated similar behaviors when
performing the same task. In the subject-based experiments,
the accuracy and F1 scores on H8 and H9 are lower than
those on the healthy subjects, which can be explained in two
aspects. First, the hemiplegic patients may exhibit different
visual behaviors during grasping and viewing tasks compared
to the healthy individuals. Second, the calibration accuracy of
the eye-tracker varies between subjects, which results in dif-
ferences in the recorded data even though the subjects’ visual
behaviors are similar. The closer the calibration accuracy is
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Fig. 8. Accuracy and success rates for different data size and diversity. The shaded area indicates the one standard deviation.

to that of the healthy subjects, the greater possibility that the
accuracy will be high. However, only two hemiplegic patients
participated in our experiment. To gain a deeper understanding
of the dissimilarity between hemiplegic and healthy subjects,
further research with a number of hemiplegic patients is
needed.

G. Comparison of Data Size and Data Diversity
The average accuracy and F1 scores with different data sizes

and diversities are shown in Fig. 8. When the percentage of
training data is increased from 5% to 20%, the accuracy and
success rate improve significantly (LSTM accuracy:p < 0.01,
success rate: p < 0.01; GRU accuracy:p < 0.01, success
rate: p < 0.01) as shown in Fig. 8(a) and (b). This result
demonstrates that LSTM and GRU are sensitive to training
data size. When the data size exceeds 20%, the performance
improvement is not significant (LSTM accuracy:p = 0.08,
success rate: p = 0.22; GRU accuracy:p = 0.07, success
rate: p = 0.12). There is no overall significant difference
(accuracy: p = 0.93; F1 score: p = 0.93; success rate:
p = 0.39) between the performance of the three sequential
decision fusion methods when the 100% of the training data
is utilized.

As shown in Fig 8(c) and (d), the performance of LSTM
and GRU is significantly improved when the training data
of more than one subjects is utilized (LSTM accuracy:p =

0.03, success rate: p < 0.01; GRU accuracy:p = 0.03,
success rate: p = 0.02). The reason for the poor performance
when the models are trained on only one subject’s data
may be the insufficient size of the training data. After the
training data with more than two subjects, the performance of
LSTM and GRU improves but is not statistically significant
(LSTM accuracy:p = 0.75, success rate: p = 0.34; GRU
accuracy:p = 0.70, success rate: p = 0.36). This indicates that
increasing data diversity (data from different subjects) has no
appreciable effect on the results of intention recognition. There
is no significant difference (accuracy: p = 0.96; F1 score:
p = 0.95; success rate: p = 0.98) between the performance of

the three sequential decision fusion methods when the training
subjects are all the remaining subjects.

The experimental results demonstrate that LSTM and GRU
require training and are data-intensive. When the training data
is sufficient, LSTM and GRU perform well. Additionally,
LSTM and GRU are not user-specific, and the models trained
on various trainging subjects can be applied to the test subjects.
HMMs utilize pre-built models that do not require explicit
training and are suitable for situations with insufficient training
data. A suitable sequential decision fusion method can be
selected according to the training data size for good grasp
intention recognition performance.

H. Time Consumption
The intention recognition framework’s time consumption is

quantified and summarized in Table S1 in the Supplementary
Document. Gaze-YOLO’s training times are approximately
14 mins per epoch, while LSTM and GRU’s are approxi-
mately 11.7 seconds. HMMs do not require training. After
training, the inference times of LSTM, GRU, and HMM
are 3.4 ms, 3.39 ms, and 0.02 ms per frame, respectively.
The results reveal that HMM has the lowest computational
complexity compared with LSTM and GRU. Considering the
gaze attention map generation, the proposed GIRSDF runs
with a frequency of about 22 Hz, which can satisfy the real-
time requirements.

IV. DISCUSSION

A. Datasets
In the Invisible dataset, ten representative kinds of objects

were chosen. Different subjects, including healthy individuals
and hemiplegics, participated in the experiment. Notably, our
dataset only contains one object for each class. If multiple
similar objects exist, it is difficult for the annotator to correctly
identify which one among them is to be grasped during the
annotation process. Therefore, different kinds of objects are
selected to speed up the labeling process.
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TABLE III
RESULTS OF GRASP INTENTION RECOGNITION ON THE HEMIPLEGIC PATIENTS AND HEALTHY SUBJECTS. ASTERISKS INDICATE SIGNIFICANT

DIFFERENCES (p < 0.05) FROM THE HEALTHY SUBJECTS. NO STATISTICAL ANALYSIS RESULTS ARE AVAILABLE FOR

THE SUBJECT-BASED EXPERIMENTS

For all samples of each trial, we assigned the identical
intention label. In practice, subjects may not gaze at the target
object for a short period of time before the start or after the
end of the trial (e.g., the user’s gaze is not on the target object
at first but moves quickly to the target object from elsewhere
after locating it and then performing the task). It is possible to
reduce the weights of these samples to eliminate the potential
effects on the training process.

B. GIRSDF
Considering the possible connection between gaze and grasp

intentions, we designed GIRSDF for grasp intention recogni-
tion. Trial-based and subject-based experiments on Invisible
dataset were organized to demonstrate the generalization per-
formance and effectiveness of the framework. The proposed
framework only relies on gaze to recognize grasp intentions
and does not require the user to learn specific behaviors, which
is promising to be applied to hemiplegics and the elderly.

The gaze maps generated by all the gaze points are com-
bined to create the final gaze map, which effectively reduces
the influence of abnormal gaze points. When outliers occur,
the pixel values in the generated gaze map are extremely low,
among which the maximum is roughly 2. This low value has
a smaller effect than the gaze maps generated from the normal
gaze points, which makes Gaze-YOLO insensitive and robust
to outliers.

GIDSDF can be easily extended to handle multiple objects.
By augmenting other object categories in the dataset (the non-
intention samples are labeled as NV and NG), Gaze-YOLO
can adapt to scenes containing more kinds of objects. The
transition probability matrix of HMM presented in this study
is constructed using a fixed number of objects. It is possible to
develop an adaptive HMM construction approach by combin-
ing the number of detected objects in the scene with the rules.
The transition probability matrix is built on empirical rules
that are interpretable and valid. Compared to LSTM and GRU
models, HMMs impose a low computational burden and do not
require training. With sufficient training data, LSTM and GRU
may achieve better performance. A suitable sequential decision
fusion method can be selected for optimal grasp intention
recognition performance according to the training data size.

It is notable that there is an apparent variation in the
intention recognition accuracy in the trial-based experiments.
This phenomenon is because the visual behavior of subjects

may vary across replicate trials, which makes the trials with
similar behavior highly accurate and the rest less accurate.
The results of grasp intention recognition validated the effec-
tiveness of GIRSDFD and demonstrated its applicability for
assistive robot control. As reported in [14] and [15], the
gaze-based grasp assistive robot will execute the grasping
action after detecting successive identical intentions. With
this premise, the success rate can reach 100%. The subject-
based experiments further verify the GIRSDF’s generalization
ability and the existence of subject-to-subject similarity in gaze
behavior. Even on hemiplegic subjects, satisfactory results are
obtained. The generalization ability minimizes the need for
new users’ data and offers the possibility of recognizing the
grasp intentions of new users, whose data are often difficult
to obtain. In addition, there is no significant difference in
the eye movements between healthy people and hemiplegic
patients [34]. Therefore it is possible to apply the trained
model to patients.

C. Limitations and Future Works
Although the proposed GIRSDF achieves the optimal grasp

intention recognition results and good generalization, there
are some limitations. As shown in the confusion matrices
of Fig. S5 and S6 in Supplementary Document, most grasp
intention recognition errors are the different IAs of the same
IT (e.g., grasp cup and view cup are misidentified). This is
due to the fact that vision is typically capable of reliably
recognizing IT, but variations in the gaze signal can lead to
IA recognition errors. Inspired by EEG signals in intention
detection [5], we plan to incorporate EEG signals to improve
IA identification ability. Second, GIRSDF has not been applied
to control the assistive robot. In practical applications, a depth
camera or a pose detection network [35] will be utilized to
determine the position of the intentional target to accomplish
the assistive grasping tasks.

V. CONCLUSION

In this work, a gaze-based generic framework GIRSDF
is proposed for grasp intention recognition and performing
sequential decision fusion. This framework consists of a gaze
attention map generation approach, a Gaze-YOLO grasp inten-
tion recognition model, and sequential decision fusion models.
A dataset Invisible containing healthy and hemiplegic subjects’
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data is established to validate the performance of GIRSDF.
Trial-based and subject-based experiments demonstrate the
framework’s effectiveness and generalization ability for grasp
intention recognition. The experimental results further revel
the similarity of different subjects’ gaze behavior and grasp
intention. Experiments on data size and data diversity illus-
trate the sensitivity of LSTM and GRU to data size. HMM
employs pre-designed models that do not require training. The
proposed framework can run at a frequency of about 22 Hz,
which can satisfy the need for real-time intention recognition.
Future work includes fusing EEG signals to improve intention
recognition performance and applying GIRSDF to control the
assistive robot for validation and evaluation.
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