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Multimodal Autism Spectrum Disorder Diagnosis
Method Based on DeepGCN

Mingzhi Wang , Jifeng Guo , Yongjie Wang , Ming Yu , and Jingtan Guo

Abstract— Multimodal data play an important role in
the diagnosis of brain diseases. This study constructs
a whole-brain functional connectivity network based on
functional MRI data, uses non-imaging data with demo-
graphic information to complement the classification task
for diagnosing subjects, and proposes a multimodal and
across-site WL-DeepGCN-based method for classification
to diagnose autism spectrum disorder (ASD). This method
is used to resolve the existing problem that deep learn-
ing ASD identification cannot efficiently utilize multimodal
data. In the WL-DeepGCN, a weight-learning network is
used to represent the similarity of non-imaging data in the
latent space, introducing a new approach for constructing
population graph edge weights, and we find that it is benefi-
cial and robust to define pairwise associations in the latent
space rather than the input space. We propose a graph con-
volutional neural network residual connectivity approach to
reduce the information loss due to convolution operations
by introducing residual units to avoid gradient disappear-
ance and gradient explosion. Furthermore, an EdgeDrop
strategy makes the node connections sparser by randomly
dropping edges in the raw graph, and its introduction can
alleviate the overfitting and oversmoothing problems in the
DeepGCN training process. We compare the WL-DeepGCN
model with competitive models based on the same topics
and nested 10-fold cross-validation show that our method
achieves 77.27% accuracy and 0.83 AUC for ASD identifica-
tion, bringing substantial performance gains.

Index Terms— Medical imaging, autism spectrum disor-
ders, brain networks, graph convolutional neural network,
multimodal.

I. INTRODUCTION

AUTISM spectrum disorder (ASD) is a neurodevelop-
mental disorder characterized by social impairment and
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repetitive stereotypic behaviors [1]. Early diagnosis and inter-
vention can improve the prognosis of ASD, and the earlier the
age of treatment, the more significant the improvement [2].
Doctors determine whether a patient has an ASD based on
their behavior and daily performance, which is highly subjec-
tive [3]. Therefore, there is an urgent need for an objective
diagnostic method to assist physicians in diagnosing patients.

With the development of modern medical technology and
artificial intelligence [4], machine learning-based methods
for analyzing and studying brain magnetic resonance imag-
ing (MRI) of patients with ASD have achieved excellent
results [5]. A study by Dekhil et al. [6] converted the time
series to power spectral density for 34 independent sets of
components to analyze spatial graphs and used sparse autoen-
coders to reduce the input dimensionality for input into a
support vector machine (SVM). Li et al. [7] developed a novel
deep neural network framework that first trained a Stacked
sparse autoencoder to learn functional connectivity patterns
from an existing database of subjects. Heinsfeld et al. [8] used
an autoencoder to learn whole-brain functional connectivity
features. They constructed a deep neural network and used a
transfer learning strategy to successfully classify 1035 subjects
in the autism dataset. In recent years, non-imaging datasets
have been collected in large numbers. Factors such as patient
genetic sequences, gender, and intelligence quotient (IQ) play
an important role in disease diagnosis [9]. Multimodal comple-
mentation of imaging and non-imaging data will help improve
the performance of classification algorithms. However, non-
imaging data often has high dimensionality, which limits
the representational capacity of traditional machine learning
methods [10].

Deep learning methods offer the possibility of fusing multi-
modal data to diagnose mental disorders [11]. Peng et al. [12]
showed that deep learning can improve the classifica-
tion of brain age and sex prediction. Shi et al. [13] used
multimodal stacked denoised sparse autoencoders to fuse
cross-sectional and longitudinal features estimated from brain
MRIs. Khosla et al. [14] used the largest and most heteroge-
neous dataset (n = 774, site = 17) using a 3D convolutional
neural network (CNN). However, non-graph-based deep learn-
ing methods are not conducive to multimodal modeling and
typically only support the use of a single-modal, which limits
the performance of the model.

In recent years, graph neural networks have been proposed
to solve this problem [15], [16], [17]. A graph convolutional
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Fig. 1. Overview of the proposed WL-DeepGCN.

network (GCN) [18] extends the convolution operation on
Euclidean data to non-Euclidean graph data. Parisot et al. [19]
conducted research on ASD diagnosis using a GCN, using
non-imaging data such as age and gender to construct graph
edges, obtaining 69.5% accuracy, which is the first suc-
cessful attempt to apply a GCN to an ASD classification
task. Jiang et al. [20] proposed a hierarchical GCN framework
(Hi-GCN) to learn graph feature embeddings while consider-
ing network topological information and subject associations
and obtained 73.1% accuracy. Huang and Chung [21] proposed
a graph convolutional neural network called EV-GCN, which
uses pairwise association encoders to construct graphs. During
training, jump connections were used to avoid the overfitting
problem. The above methods study shallow GCNs. In the
field of image classification, the CNN depth is increasing [22]
to extract better and express the raw features and improve
model performance. However, there is a shortage of research
on deep-layer GCNs applied to ASD diagnosis.

The DeepGCN can more effectively learn the associa-
tion between neighboring nodes. Cao et al. [23] proposed a
16-layer GCN for ASD classification, randomly dropped edges
at each layer, and obtained a model accuracy of 73.7%. Due
to the limited data sample size [24], a DeepGCN is prone
to gradient explosion and gradient disappearance problems,
while the associations between non-imaging data are not well
utilized. For the above issues, in this study, we propose
combining the DeepGCN with a weight-learning network
(WL-DeepGCN) for ASD diagnosis. The main contributions
of our work are as follows.

(1) We propose a new DeepGCN framework for ASD diag-
nosis using brain functional networks for classification.
A weight-learning network automatically exploits the
pairwise associations of non-imaging data in the latent

space for constructing graph edge weights, building an
adaptive population graph model. Our method provides
the potential for extending to the diagnosis of other
psychiatric disorders.

(2) We propose the residual connections of a graph con-
volutional neural network to avoid the problems of
the DeepGCN gradient explosion and gradient dis-
appearance. The GCN residual unit can reduce the
feature information overfitting problem caused by the
convolution operation.

(3) We introduce an EdgeDrop strategy. Random edge drop-
ping in the graph during model training can make
the node connections sparser. This reduces the over-
smoothing aggregation speed and reduces subsequent
information loss.

(4) Our proposed WL-DeepGCN takes sufficient advantage
of the DeepGCN. Experiments are conducted on
a public dataset to evaluate the proposed method
compared with existing excellent methods. The
nested 10-fold cross-validation results show that
the proposed method facilitates feature learning and
improves classification performance. The source code
for the proposed architecture is publicly available at
https://github.com/Charles-wmz/WL-DeepGCN.

II. METHODOLOGY

An overview of the proposed method is shown in Fig. 1.
We use a population graph [25] structure to represent the
subject data and model the diagnostic task as a node clas-
sification task. First, a functional connectivity network [26]
is constructed in a whole-brain functional connectivity man-
ner [27], thus defining the population graph node features.
Second, the edges in the population graph are described as
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similarities in site, gender, and age for different subjects.
As shown in Fig. 1, the non-imaging data are used to optimize
the connectivity of the population graph in the potential
space using a weight-learning network (WL). The completed
graphs are processed using the EdgeDrop strategy to drop
edges randomly. Finally, we use the DeepGCN learn features
representations and perform the final classification using a
multilayer perceptron (MLP) [28]. The residual connectivity
of GCN is introduced to acquire a more profound feature
representation of each node, aggregating the untested nodes
and finally generating a fully labeled output graph. The
WL-DeepGCN model realizes end-to-end training [29] by
semi-supervised learning [30].

A. Data Acquisition and Preprocessing

Our experiments were implemented on the Autism Brain
Imaging Data Exchange (ABIDE) [31], an open-access mul-
timodal data repository. ABIDE-I collected data on 1112 sub-
jects from 17 sites worldwide. ABIDE-I contains MRI for
each subject, and sufficient phenotypic information. In this
work, we use resting-state functional MRI (rs-fMRI) [32], [33]
and non-imaging data, using a publicly available prepro-
cessed version of the dataset provided by the Preprocessed
Connectomes Project initiative, with preprocessing performed
by the Configurable Pipeline for the Analysis of Connec-
tomes (C-PAC). To ensure data quality and methodological
comparability, we excluded some data that lacked time series,
incomplete brain coverage, severe head movement, and other
scanning artifacts. Finally, we used the 871 subjects data,
which contained 403 individuals with ASD and 468 typical
controls (TC). The study used the Harvard - Oxford (HO)
Cortical Structural Atlas [34] to define network nodes. The HO
atlas combines processed cortical and subcortical regions of
interest (ROIs) using nearest neighbor interpolation to segment
the functional resolution, yielding 111 ROIs. Each participant’s
average time series of ROIs was extracted and used for
subsequent functional connectivity network construction.

B. Graph Nodes

We represent participants as N subjects, and each node
represents a feature extracted by the subject from the imaging
data. A concept widely used to generate features from fMRI
data is the strength of functional connectivity (FC) between
brain regions. Since a functional connectivity matrix is a real
symmetric matrix, to avoid feature redundancy, we remove
the values of the upper triangle of the matrix, and the main
diagonal of the matrix [35]. Finally, only the strictly lower
triangular part is retained to represent the degree of functional
connectivity of any two ROIs, and the final retained matrix
vectorization is expanded into a one-dimensional vector to
obtain an M dimensional feature vector required for classifi-
cation. The above processing is implemented for each subject
to get the input matrix X ∈ RN×M , where each vector in the
matrix represents the features of a node. Since the HO atlas
divides the fMRI data of each subject into 111 ROIs, each
node has 6105 dimensional feature vectors.

Fig. 2. Framework for the weight-learning network.

We obtained feature vectors with high dimensionality, espe-
cially concerning a graph size of 871 nodes, which will
have a negative impact on the performance of the algorithm.
We use recursive feature elimination (RFE) [36] to reduce the
dimensionality of the feature vectors. For the whole population
graph, we obtain the input matrix X ′ ∈ RN×C after feature
elimination.

C. Graph Edges
In constructing the graph, we use edges to represent the

description of the association between nodes, and the weights
of the edges encode the similarity between subjects and
influence the aggregation function in the graph convolution.
A weight-learning network establishes intersubject weights
based on the information provided by non-imaging phenotypic
data.

Since multimodal data have different statistical properties
and are prone to vanishing gradient problems during training,
we normalize and standardize the non-imaging input data u
to rescaled vector u̇. Specifically, we constructed dictionaries
from the phenotypic data u consisting of site, gender, and age
for each sample. Gender is denoted by (0, 1), the 17 sites
are coded as (0, 1, 2, . . . , 16), and the age takes values
in the range (6, 64). We normalized the sites and ages to
between (0, 1). The feature matrix is then normalized to
obtain the rescaled u̇. The rescaled vector passes through three
fully connected layers whose output dimensions are h1, h2,
and h2. Except for the last layer, a LeakyReLU activation
layer, a batch normalization layer, and a dropout layer are
added after each fully connected layer. The activation function
is used to introduce nonlinear factors to improve model
expressiveness. The batch normalization layer is used to solve
the problem of numerical instability in the neural network
so individual features of the same batch are not similar,
and the network can be trained more efficiently. To avoid
overfitting, the dropout layer in the WL network randomly
drops features with a WL-dropout probability. The framework
of the weight-learning network is shown in Fig. 2. To calculate
the edge weights w between two nodes, we perform the above
operation with two non-imaging inputs, ui and u j , while
sharing the weights, and we calculate the cosine similarity [37]
of the two potential feature vectors by Formula (1).

w(i, j) =
vi T v j

2 ∥vi∥ ∥v j∥
+ 0.5 (1)
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where vi and v j denote the feature representations of ui and
u j respectively after weight sharing network as inputs for
cosine similarity. As shown in Fig. 2.

According to the validation of the study by Huang and
Chung [21], it is beneficial and robust to define pairwise
associations on the latent space rather than the input space.
Our experiments also show that WL performs better in the
ASD classification task.

D. EdgeDrop Strategy
There are two main reasons why graph neural networks

fail to deepen: overfitting and oversmoothing. To solve these
two problems, this paper proposes an EdgeDrop strategy
inspired by the population graph improvement in the GCN
training process introduced by Yu et al. [38]. The main idea
of EdgeDrop is to randomly remove some edges from the
constructed population graph according to a certain proportion
before the training starts. Specifically, Eq nonzero elements
of the adjacency matrix A are randomly selected and set to
zero in the training. E is the total number of edges in the
raw population graph, and q is the drop rate. After dropping,
a new adjacency matrix is obtained as the final input to the
DeepGCN.

EdgeDrop can be seen as a data enhancement technique.
In the training phase, different random edge drops in the raw
graph also enhance the randomness and diversity of the input
data, which can alleviate the overfitting problem. EdgeDrop
can also be seen as a message-passing reducer, where the
message passing between neighboring nodes in GCNs is
achieved by connecting edges. The random deletion of some
edges makes the nodes more sparsely connected, which to a
certain extent, alleviates the oversmoothing problem caused by
the deepening of GCN layers.

E. Residual Connections for the GCN
We use Chebyshev polynomials [19], [39] proposed by

Defferrard et al. [40] to approximate convolutional kernels in
graph convolutional neural networks. CNNs allow the design
and training of deep models, from which we derive the
following relationship between layers of the DeepGCN.

y(l+1)
= G

(
D−

1
2 AD−

1
2 y(l)W (l)

)
(2)

where y(l) is the feature representation of layer l. y(0) = x .
W (l) is the learnable parameter of layer l, G is the activation
function, and D is degree matrix of adjacency matrix A.

In a DeepGCN, the problem of gradient explosion and
gradient disappearance [41] will cause the feature vectors to
converge to the same value. To solve this problem, we propose
residual connectivity for graph convolutional neural networks
to enhance the feature representation. We are inspired by
ResNet [42], which converts a solved network mapping func-
tion H (x) to a residual network mapping function H (x) =

F (x)+x. Updating the weight values of F (x) can get infinitely
close to the optimal solution.

We use residual units to implement DeepGCN with residual
connections, and the model is shown in Fig. 3. The constructed
graph X ′ ∈ RN×C is input to Gh convolutional layers.

Fig. 3. Residual connections for the deep graph convolutional neural
networks.

Except for the last convolutional layer (output layer), each
convolutional layer contains a ReLU activation layer followed
by a dropout layer. Finally, the new feature representation
X̂ ∈ RN×P is input to an MLP, and P is the number of
units in the hidden and output layers. The residual unit merges
the output of this layer and the output of the previous layer
as the input to the next layer, which results in the following
relationship between the DeepGCN layers:

y(l+1)
= S

(
y(l), W (l)

)
+ y(l) (3)

where S represents the mapping function, which can be a graph
convolution operation in GCN, which transforms the feature
y(l) and weight W (l) of the layer.

It is worth noting that the output layer does not use residual
units, which means that the MLP input is only the output of
the last DeepGCN convolutional layer and does not contain
the output before the output layer. The proposed residual
connectivity of the graph convolutional neural network can
reduce the problem of feature information overfitting caused
by the spectral graph convolution operation and improve the
performance of the model. The dropout layer is applied to
the new feature representation in the hidden layer, which can
further avoid the gradient problem in the DeepGCN.

The pseudocode is shown in Algorithm 1 to facilitate
understanding of the WL-DeepGCN.

III. EXPERIMENTS AND RESULTS

We evaluate the performance of the model by executing a
nested 10-fold cross-validation [43] on the ABIDE-I dataset.
The outer loop of the nested cross-validation is set to 10,
as well as the inner loop. In the outer loop, the dataset
is divided into training set and test set. In the inner loop,
the training set is further divided into new training set and
validation set. The test set of each fold is only used to evaluate
the model’s performance and is not involved in adjusting
model parameters or feature selection. This effectively avoids
the problem of feature peeking during the training process,
which can lead to artificially high model performance but weak
generalization ability in conventional 10-fold cross-validation.
We performed preprocessing and executed RFE to extract
2000-dimensional feature vectors. The non-imaging data age,
gender, and site are selected to learn the edge weights of the
graph. We set h1 = 256and h2 = 128 in the WL network, and
the dropout rate of the network to 0.3. In the GCN, we use
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Fig. 4. Classification results of different network depths and EdgeDrop strategy under 10-fold cross-validation.

Algorithm 1 WL-DeepGCN Pseudocode
Input: Raw features X , phenotypic features u, label Y ,

convolution layers Gh . GCN residual connections
mapping functions S

Output: Predicted probability of each subject Ypre.
1: X are extracted to obtain X ′. u are processed through the

weight-learning network.
2: X ′ and u are used to construct the initial graph G.
3: G is randomly dropped using the EdgeDrop strategy to

obtain G ′.
4: for gh ← 1,. . . , Gh do
5: if gh = 1 do
6: G ′ is used as input to the GCN to learn information

about neighboring nodes and clustering is conducted
to obtain a new graph G ′gh .

7: else do
8: G ′gh is used as input to the GCN to learn information

about neighboring nodes, perform clustering and
use GCN residual connections to obtain a new
graph G ′gh + 1.

9: G ′gh + 1 = S
(

G ′gh

)
+ G ′gh, G ′gh = G ′gh + 1

10: Gradient and cross-entropy losses are updated using
the Adam optimization algorithm l.

11: end if
12:end for

the 3 order Chebyshev polynomial approximation convolution
kernel with p = 16 units in the hidden layers and output
layers. We train a 200-epoch graph-based model using the
Adam optimizer. For the WL-DeepGCN, the learning rate is
set to 0.001, the dropout rate to 0.2, and q = 0.3 in the
EdgeDrop strategy. We employ an early stopping mechanism

with an early stopping patience of 20 epochs to avoid overfit-
ting. All models are developed using the open-source machine
learning library PyTorch, and experiments are performed on a
GeForce GTX 3060 GPU.

A. Performance Evaluation
For performance evaluation, we use the accuracy (ACC),

precision, recall, F1 score and area under the curve (AUC)
as evaluation metrics. A true positive (TP) is the correct
classification for positive classes. A true negative (TN) is the
correct classification for negative classes. A false positive (FP)
is the incorrect prediction of a positive. A false negative (FN)
is the incorrect prediction of a negative. These evaluation
indicators are defined as follows:

ACC =
TP+TN

TP+TN+FP+FN
(4)

Precision =
TP

TP+FP
(5)

Recall =
TP

TP+FN
(6)

F1 =
2× Precision× Recall

Precision+Recall
(7)

B. Effect of Network Structure on Results
To evaluate the effect of GCN depth on the classification,

we conducted experiments setting the number of convolutional
layers Gh = 2, 4, 8, 16 in the training settings. Additionally,
to verify the effectiveness of EdgeDrop for ablation experi-
ments, we conducted experiments without EdgeDrop strategy
in the model under the same experimental conditions to
observe the effect of EdgeDrop on the DeepGCN. Fig. 4 shows
how the number of GCN layers and the EdgeDrop strategy
affect the results under nested 10-fold cross-validation.
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Fig. 5. Classification results of our proposed model with nested 10-fold cross-validation in three connection modes: no connections, jump
connections and GCN residual connections. (a) performance of the model under 4-layer GCN; (b) performance of the model under 8-layer GCN.

As depicted in Fig. 4, the performance of the model with-
out EdgeDrop starts to decline significantly after a slight
improvement in performance at the 4-layer GCN as the
network architecture deepens. The accuracy of the model
with EdgeDrop continues to increase but peaks at a GCN
depth of 8 layers. Combining the performance metrics of
different network structures, we conclude that a DeepGCN
with eight convolutional layers and the EdgeDrop strategy
has the best classification performance.

In the experiments, the classification accuracy increases
with the deepening of the model after adding the EdgeDrop
strategy. This indicates that the EdgeDrop strategy increases
the diversity and randomness of the data by randomly drop-
ping some edges, which can alleviate the overfitting and
oversmoothing problems that occur in the DeepGCN training
process. The EdgeDrop strategy has good generalization and
can be applied to any network model with a graph structure
without additional parameters. As seen in Fig. 4, after the
number of network layers reaches 8, the performance of
the model begins to decrease, and the underlying reason
is the limitation of the network depth on the model expression.
However, after 2 layers, the performance of the model with
the EdgeDrop strategy is always higher than that of the model
without the EdgeDrop strategy. This also verifies that the
EdgeDrop strategy can improve the DeepGCN performance.

C. Effect of Connections Pattern on Results
In addition to our proposed residual connectivity for GCN,

researchers have investigated DeepGCN gradient explosion
and gradient disappearance. Huang and Chung [21] proposed
jump connectivity for a GCN to fuse the hidden features.
We perform experiments with no connections, jump con-
nections, and GCN residual connections under 4-layer and
8-layer DeepGCN using the EdgeDrop strategy to verify the
effectiveness of GCN residual connections. The experimental
results are shown in Fig. 5 and Table I.

As shown in Fig. 5, the orange color represents the GCN
residual connections, which are at the top of the metrics and
outperforms the other two connection approaches. The jump
connections have some effect on improving the model perfor-
mance compared to the no connections approach because the

TABLE I
AUC OF OUR PROPOSED MODEL WITH THREE TYPES OF

CONNECTIONS: NO CONNECTIONS, JUMP CONNECTIONS

AND GCN RESIDUAL CONNECTIONS

jump connections fuse some of the features at different depths
in the final output, reducing the problem of information loss
due to convolution operations.

From Fig. 5 and Table I, we can observe that under the
8-layer DeepGCN, the jump connections pattern achieves
8.97% higher accuracy, 10.02% higher F1 score, and 8.66%
higher AUC compared to the no connections pattern. Further-
more, the GCN residual connections pattern achieves 1.84%
higher accuracy, 1.46% higher F1 score, and 1.43% higher
AUC than the jump connections pattern. The DeepGCN with
4-layer has the same trend, which indicates that the results of
the experiments are very robust. The experiments show that
adding residual units to the DeepGCN allows each layer to
fuse the hidden features of the upper layer before the input.
Compared to the jump connections’ last fused features, our
proposed GCN residual connections approach is more accurate
than the jump connections. GCN residual connections can
better maintain the integrity of information and reduce infor-
mation loss, thus avoiding the problems of gradient explosion
and gradient disappearance. Our experiments validate the great
potential of residual connections in the DeepGCN.

D. Effect of Weight-Learning Network on Results
To prove that the weight-learning network we proposed

is effective, we will experiment with the model without a
weight-learning network and the model with a weight-learning
network under the condition that the number of network
layers is 8, using GCN residual connections and EdgeDrop
strategy. Models that do not use a weight-learning network
build an unweighted graph, with edges randomly connected
between nodes according to a uniform distribution. In this
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TABLE II
MODEL PERFORMANCE OF UUNWEIGHTED GRAPH AND

WEIGHT-LEARNING NETWORK

case, the calculation of GCN mainly focuses on the connection
relationship between nodes without considering the specific
weight value. Table II shows the experimental results of the
two methods.

From the results of this set of experiments, the
weight-learning network we proposed is beneficial to con-
structing the edges of the population graph and significantly
impacts model performance. The weight-learning network
initializes edge weights by learning the pairwise correlations
of non-imaging data in the latent space. Compared with the
unweighted graph without initialized edge weights, the ACC
and AUC of the model can be improved by 3.26% and 5%,
respectively, which proves the effectiveness of our proposed
weight-learning network.

E. Comparison of Overall Performance
To validate the WL-DeepGCN model advances while

ensuring comparable results, we further compared the
WL-DeepGCN with several baselines and state-of-the-art
models on the same topic. We have selected four classic meth-
ods, HOFC [44], GCN [45], DNN [8], and ASD-DiagNet [46],
as the baselines. Hi-GCN [20] adopts a hierarchical perspec-
tive for graph embedding learning, considering the structural
information within individual networks and the topic rele-
vance in the global population network. This enables the
capturing of fundamental embedding features. MVS-GCN [24]
combines graph structure and multi-view graph embedding
to identify potential functional subnetworks. EV-GCN [21]
incorporates an edge-variational autoencoder to learn potential
representations among nodes in the graph, followed by further
processing and prediction using a 4-layer GCN. Table III
shows the results of our comparison with existing methods.
It is worth noting that, to ensure consistent experimental
conditions, we employed nested 10-fold cross-validation rather
than traditional 10-fold cross-validation. This cross-validation
method, especially during the replication of EV-GCN, involves
re-partitioning the dataset, where the newly partitioned dataset
keeps the test set separate from the model training and feature
selection processes. We can obtain more reliable and unbiased
performance estimates for the models using nested cross-
validation.

Table III presents the classification results on the ABIDE
dataset. We can see that the WL-DeepGCN method proposed
in this paper achieves the highest performance with 77.27%
ACC and 82.59% AUC. The deeper network structure and
optimization strategies provide improved feature representa-
tions for the model classification task.

Firstly, it is observed that methods based on GCN generally
outperform non-graph-based models. In particular, the DNN,

TABLE III
PERFORMANCE COMPARISON BETWEEN OUR PROPOSED MODEL AND

SEVERAL STATE-OF-THE-ART MODELS ON THE SAME TOPIC USING

10-FOLD CROSS-VALIDATION ON THE ABIDE-I DATASET

as a single modality method using fMRI data, achieves only
68.27% accuracy. In addition, we can see that the accu-
racy and AUC of ASD-DiagNet are 70.04% and 71.39%,
respectively, which are higher than the model proposed
by Heinsfeld et al. [8]. This shows that the data augmen-
tation method has a certain impact on model performance
improvement. However, it is not easy to express a profound
representation of features through an autoencoder, and using
only a single-layer perceptron as a classifier does not achieve
excellent classification results. This combined approach also
uses only a single modality for research. This indicates that
fusing multi-modal inputs provides more features information
compared to using single-modal inputs. This aligns with the
clinical practice, where clinical doctors consider not only
radiological data but also additional patient information such
as age, gender, etc., to improve the reliability of diagnoses.
By integrating multiple modalities, the diagnostic process can
be enhanced and made more accurate and robust. At the same
time, it can be seen that the GCN-based method we proposed
is superior to the classic methods such as DNN proposed by
Heinsfield et al. and ASD-DiagNet proposed by Eslami et al.

Secondly, for Hi-GCN, our proposed approach improved the
accuracy by 4.17%. This improvement can be attributed to
weight-learning network, which extracts more useful informa-
tion by learning from the phenotypic data features compared
to randomly initialized edge weights.

Furthermore, the accuracy of MVS-GCN is 69.89%, preci-
sion is 63.82%, recall is 70.18 and AUC is 68.73%. Compared
with it, our method also significantly improved the perfor-
mance of the model. The complementary information among
multiple views provides richer feature information. However,
MVS-GCN requires learning a more significant number of
parameters, making the model difficult to converge and may
result in weak generalization ability.

Finally, EV-GCN achieves better performance compared to
the above two graph-based models. EV-GCN has an accuracy
of 75.37% and an AUC of 79.12%. However, it still falls short
compared to our proposed method. The most likely reason for
this discrepancy lies in the depth limitation of GCN and the
fixed hidden layer of the autoencoder. The limited depth of
GCN restricts the model’s ability to capture complex feature
representations, and fixed hidden layer of the autoencoder
hampers the learning of latent features across different topics.
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Fig. 6. The average performance of our proposed method in nested
10-fold cross-validation. (a) Boxplots of the ACC, precision, recall and
F1 score; (b) ROC curves.

In contrast, our proposed model addresses these limitations by
introducing EdgeDrop and GCN residual connections. These
techniques effectively alleviate the depth limitation and enable
more flexible learning of latent features across different topics,
resulting in superior performance compared to EV-GCN.

We can see from the number of parameters that MVS-GCN
needs to learn more parameters and has the longest run-
ning time in the experiment. The GCN model proposed by
Parisot et al. [45] has the least parameters. In addition, the
model with the least number of parameters is EV-GCN,
which has a running time of 38min 57s under the nested
10-fold cross-validation experiment. Further, we find that the
number of parameters of the GCN-based models is generally
lower than the other compared methods. A large number of
parameters that need to be trained are simultaneously present
in ASD-DiagNet. Its running time is longer and reaches 16h
54min 28s. Our proposed model only needs to train 0.16M
parameters, and the running time is 32min 43s. Outperforms
EV-GCN, which has more parameters, demonstrating that
our method performs better in model structure and algorithm
optimization. It demonstrates the efficiency of our proposed
method. In addition, we use Student’s t-tests to evaluate the
difference between our method and other methods. We set
the significance level α = 0.05 to determine the statistical
significance. From Table III, we can observe that all p-values
are less than 0.05. The statistical analysis further shows that
our proposed method has significant advantages.

We present the detailed WL-DeepGCN performance metrics
in Fig. 6. Fig. 6(a) shows a boxplot of the ACC, precision,
recall, and F1 score of our proposed method in the nested
10-fold cross-validation case, and the green line represents

the mean values. Our method exhibits an average precision
of 77.70%, indicating that the model possesses high confi-
dence. In addition, the average recall of 80.96%, reflects that
the model has a high breadth. The F1 score also yields an
excellent result of 78.95%.

Fig. 6(b) shows the ROC curve changes for the test set in
the nested 10-fold cross-validation case. From Fig. 6(b), it is
clear that the area under the curve of the model is large, and
the average AUC is 82.59% from Table III, which indicates
that the model has very high robustness. In addition, the true
positive rate of our WL-DeepGCN increases at the beginning
of the ROC curve, which means that the model has a higher
diagnostic rate and a lower misdiagnosis rate for ASD. This
makes it possible to provide accurate and reliable results for
clinical applications.

In our proposed WL-DeepGCN model, the weight-learning
network for edge construction is one of the critical reasons
why our method outperforms other methods. It is good at
learning associations from non-imaging data in the latent
space. The non-imaging data are an essential complement to
subject information in the population graph in the form of
edges and edge weights to represent the association between
phenotypic information such as age, gender, and site among
different subjects. In addition, GCN residual connections alle-
viate the gradient problem by integrating the output results of
different layers. This is one of the ways we can solve the prob-
lem that GCN cannot be too deep. Through more profound
feature expression, our method is superior to other models.
Finally, EdgeDrop makes node connections more sparse by
randomly dropping some edges. In summary, our method
outperforms other methods. This method can be extended to
other classification tasks for mental disorders, transforming
the disease prediction problem into a GCN node classification
task, thus providing an effective way to classify large-scale
heterogeneous datasets.

F. Leave-One-Site-Out Classification

To evaluate model performance across sites, we performed
Leave-one-site-one-out cross-validation. According to this
evaluation method, data from one site is excluded from the
training process and then used as a test set to evaluate the
performance of the model. Table IV reports the accuracy
versus other methods.

In the studies of Heinsfeld et al. [8], Eslami et al. [46],
and Almuqhim and Saeed [47] they used the CC200 atlas.
To ensure the comparability of the results, we also used CC200
in the experiment. From these results, our method shows
better accuracy on 13 out of 17 sites. The model achieved
an average accuracy of 74.2%, and outperforming other state-
of-the-art methods. The accuracies of MAX_MUN, SDSU,
STANFORD, TRINITY, and USM are all lower than 70.0%.
This suggests that the data from these sites have variability
absent from other sites.

Overall, the WL-DeepGCN model exhibits better perfor-
mance on more sites than the other three state-of-the-art
methods, demonstrating our proposed model’s robustness and
generalizability.
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Fig. 7. The blue nodes represent autism spectrum disorder (ASD), and the orange nodes represent typical controls (TC). (a) visualization of raw
features in 2-dimensional space; (b) embedding representations learned by the MVS-GCN; (c) embedding representations learned by the Hi-GCN;
(d) embedding representations learned by the EV-GCN; (e) embedding representations learned by the WL-DeepGCN.

TABLE IV
LEAVE-ONE-SITE-OUT CROSS-VALIDATION RESULTS

FOR DIFFERENT METHOD

G. Visualization

To explicitly demonstrate the capability of our proposed
WL-DeepGCN for feature learning and fusion on the ABIDE-I
dataset, we use the t-SNE technique [48] for two-dimensional
feature visualization. As shown in Fig. 7(a), the raw features
of both the ASD and typical control (TC) types are randomly
distributed in the binary mapping, and the nodes of both
types are mixed unordered and without clear boundaries.
This reflects the great difficulty in classifying directly using
raw features. Fig. 7(b) shows that MVS-GCN exhibits some
classification capability, but the data distribution remains
complex and disordered. The aggregation results of Hi-GCN
show significant improvement, with a more organized overall
distribution. Although it already demonstrates good classifi-
cation capability, Fig. 7(c) reveals that some of the subjects’
data points are scattered far away. From Fig. 7(d), we can
see the visualization results of EV-GCN, which has better
inter-class discrimination ability than MVS-GCN and better
intra-class aggregation ability than Hi-GCN. But there is
still a particular gap compared with our proposed method.
The visualization of node embedding after WL-DeepGCN
convolution is shown in Fig. 7(e), where the TC nodes
have overall similarity with the submap corresponding to
the ASD class. The algorithm clearly distinguishes between

ASD patients and typical controls and reflects the discrepancy
between the classes. This indicates that the fused multimodal
features exhibit better intraclass clustering performance and
interclass discriminability, demonstrating the effectiveness of
the WL-DeepGCN.

IV. CONCLUSION

We propose a multimodal, cross-site data-based Deep-
GCN model to identify autism spectrum disorders. The
WL-DeepGCN is based on a GCN with whole-brain functional
connectivity as the node feature representation. A weight-
learning network is proposed to represent the similarity
between non-imaging data. Deepening the network structure
enables the GCN to learn the neighbor information of nodes
better, thus aggregating nodes to complete the classification
task of unlabeled nodes. To avoid the gradient disappearance
and gradient explosion problems, we propose GCN resid-
ual connections to fuse the potential features and introduce
the EdgeDrop to alleviate the overfitting and oversmooth-
ing of DeepGCN, thus improving the robustness of the
model. Experimental results on the ABIDE-I dataset show
that the WL-DeepGCN method brings substantial performance
improvement for predicting autism spectrum disorders com-
pared with existing methods. There are still some limitations
to our work. First, we have yet to fully address the problem
of gradient disappearance in deeper GCNs, which means
that backpropagation through deeper layers of the network
is oversmoothed, ultimately leading to convergence of the
features of the graph vectors to the same values. Although
our research model has reached eight layers, continuing to
deepen the number of layers will result in severe performance
degradation. We can consider using low-rank approximation,
local aggregation and improved gradient clipping methods to
deepen the network and effectively reduce the computational
cost of the model. They can alleviate the gradient disappear-
ance problem in GCN from the aspects of weight matrix,
graph structure and gradient itself. Second, the ASD-related
dataset has a small number of samples, which also limits the
performance of the model to a large extent. Although the
data enhancement method proposed by ASD-DiagNet [46]
alleviates this problem to some extent, the model perfor-
mance is still far from the clinical requirements. In addition,
in the ABIDE dataset, the male-to-female ratio of the samples
is unbalanced, with more men than women. More female
volunteers should be called in the follow-up work to solve
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this problem. Finally, as with other approaches using deep
learning for psychiatric disease diagnosis, our approach lacks
interpretability for biomarkers. Although the structure of the
network is interpretable of the network, the model is unable to
address the effect of the feature set on the predicted outcome.
Interpretability is essential in trusting such models, which is
necessary to understand brain abnormalities and differences
between controls and patients. In our future work, we will
attempt to use techniques such as feature importance scores
and saliency maps to identify the most critical nodes and
connections in the GCN as candidates for biomarkers, which
help to explain the regions and nodes of interest for the model.
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