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An Adaptive Spatial Filtering Method for
Multi-Channel EMG Artifact Removal During

Functional Electrical Stimulation With
Time-Variant Parameters
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Zhenhu Liang , and Ping Xie

Abstract— Removing the stimulation artifacts evoked by
the functional electrical stimulation (FES) in electromyo-
gram (EMG) signals is a challenge. Previous researches on
stimulation artifact removal have focused on FES modula-
tion with time-constant parameters, which has limitations
when there are time-variant parameters. Therefore, con-
sidering the synchronism of muscle activation induced by
FES and the asynchronism of muscle activation induced
by proprioceptive nerves, we proposed a novel adaptive
spatial filtering method called G-S-G. It entails fusing the
Gram-Schmidt orthogonalization (G-S) and Grubbs crite-
rion (G) algorithms to remove the FES-evoked stimula-
tion artifacts in multi-channel EMG signals. To verify this
method, we constructed a series of simulation data by
fusing the FES signal with time-variant parameters and
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the voluntary EMG (vEMG) signal, and applied the G-S-G
method to remove any FES artifacts from the simulation
data. After that, we calculated the root mean square (RMS)
value for both preprocessed simulation data and the vEMG
data, and then compared them. The simulation results
showed that the G-S-G method was robust and effective at
removing FES artifacts in simulated EMG signals, and the
correlation coefficient between the preprocessed EMG data
and the recorded vEMG data yielded a good performance,
up to 0.87. Furthermore, we applied the proposed method
to the experimental EMG data with FES-evoked stimulation
artifact, and also achieved good performance with both
the time-constant and time-variant parameters. This study
provides a new and accessible approach to resolving the
problem of removing FES-evoked stimulation artifacts.

Index Terms— Artefact removal, adaptive spatial filtering,
EMG, functional electrical stimulation, G-S-G method.

I. INTRODUCTION

FUNCTIONAL electrical stimulation (FES) is a neu-
romodulation technique that induces muscle activation

to produce movements. It is commonly used in rehabilita-
tion therapy to maintain and restore motor function after a
stroke [1], [2], [3], [4], [5], [6], [7]. However, it is a great
challenge to realize real-time close-loop control in the FES
process [8], [9], [10], [11]. Although some studies based on
electromyogram (EMG) signals have been initiated [12], [13],
[14], [15], [16], several problems remain, such as how to
remove the stimulation artifacts in EMG signals. Studies have
shown that the stimulation artifacts in EMG mainly involve the
initial spikes and M-waves [17], which generate more energy
than that of the EMG signals in humans [18]. Therefore,
there is a need to investigate various methodologies to remove
stimulation artifacts in EMG. Researchers have begun to
explore the removal of FES artifacts in EMG signals, such
as the Blank Window [16], Filter [19], [20], [21] and Blind
Source Separation (BSS) [22], [23], [24]. The Blank Window
method is the most primitive method. It entails removing the
FES artifacts by setting the values of the time period in which
the FES artifacts concentrate at zero. However, despite the
simplicity of this method in FES artifact removal, increasing
the stimulus intensity also induces more artifacts in EMG [17],
hindering artifact removal. In attempts to resolve the above
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problems, some researchers have used filters to remove stimu-
lation artifacts in EMG signals. For example, Rune Thorsen et
al. used digital comb filters to suppress the spurious harmonics
induced by FES [25]. Additionally, Muraoka et al. proposed
multiple band-pass filters to suppress stimulation artifacts [18].
Although these methods can preserve EMG information after
denoising in some slow movements, they have limitations for
high-intensity motions. The BSS technology, as a powerful
methodology for separating the source from the mixtures to
obtain a series of components with statistical independence,
provides a new method for removing FES artifacts. Two
classical methods, empirical mode decomposition (EMD) and
independent component analysis (ICA), have been widely
applied. For example, Rakesh used EMD with Notch filtering
to eliminate stimulation artifacts in EMG data [23]. Also,
Zhou et al. devised a new method to extract EMG signals
contaminated by FES under time-varying parameters [26].
In the case of a fixed stimulation frequency, this method can
produce a superior effect in removing stimulation artifacts.
However with this method, it takes a long time to parse the
signal. Especially for FES-evoked harmonics with time-variant
parameters, this method’s real-time performance is limited.

In recent years, template subtraction has been widely used
to remove FES artifacts [27]. This method utilizes the sim-
ilarity principle of waveforms between stimulation artifacts
under the same parameters to realize artifact removal. For
example, Yeom et al. proposed an Adaptive Gram-Schmidt
Filter (AGSF) algorithm for stable real-time estimation of
continuous stimulation [28]. Li et al. proposed a strategy
combining blanking and template subtraction methods to
suppress stimulation artifacts in an EMG-driven closed-loop
FES system [27]. However, the above methods can only
handle fixed-parameter stimulation artifacts, but not variable-
parameter artifacts. Additionally, the amplitude, spectrum and
shape of the M-wave can change with muscle fatigue, affecting
the removal efficiency of template subtraction. The disadvan-
tages of this approach are that stimulation artifacts are difficult
to manage under variable parameters, and the initial spikes
are difficult to remove [15]. To address this issue, Zhu et
al. proposed a new DBGS method to remove the stimulation
artifacts of time-variant parameters in real-time. However, the
DBGS method is limited by the length of the data. Therefore,
a new method which is suitable for real-time analysis of FES
artifacts with time-varying parameters is needed.

The main contribution of this study is to propose a new
adaptive spatial filtering method, defined as the G-S-G method,
which combines the G-S algorithm with the Grubbs criterion
for removing the multi-channel EMG artifact during FES with
time-variant parameters. To this end, we created a set of
simulation data by fusing the FES artifacts with time-variant
parameters and the voluntary EMG (vEMG) signals, and
applied the G-S-G method to remove any FES artifacts from
the simulations. After that, we calculated the root mean square
(RMS) value for both preprocessed simulation data and vEMG
data, and then compared them. Furthermore, we applied the
proposed method to experimental EMG data with FES-evoked
stimulation artifacts. This study provides a new approach to
the issue of removing FES-evoked stimulation artifacts.

II. MATERIALS AND METHODS

A. Subjects

Eight healthy controls (mean age 25±5 years; mean height
69.3±12.8kg; mean weight 171.8±6.6cm; 5 males) without
any history of neurological disease were enrolled in the study.
Participants were tested according to the Oldfield question-
naire [29]. This experiment complied with the Declaration of
Helsinki and was approved by the Yanshan University Ethical
Review Committee. All participants gave informed consent,
and none of the subjects had previous experience with similar
experiments.

B. Experimental Paradigm

The experiments were conducted in an electromagneti-
cally shielded and dimly lit room. All participants were
dressed in comfortable attire and performed elbow flexion
with their left hand, following the instructions of the target
task (Figure 1(A)). Figure 1(B) illustrates the placement of
the EMG electrodes on both sides of the muscle belly, as well
as the positioning of FES electrodes along the direction of the
muscle fibers. The distance between the EMG electrodes is
4 cm, and the FES electrodes were symmetrically placed with
an 8 cm distance between them. And the upper arm is at an
angle of 150◦ to the forearm (Figure 1(C)). The experimental
flow is depicted in Figures 1(D)-(F).

Considering the effect of the stimulation parameters on
the EMG signal, we focused on the stimulus frequency
and stimulus intensity. For this, we designed five tasks:
(i) voluntary EMG (vEMG) recording during elbow flex-
ion without FES (Figure 1(D)), (ii) EMG recording with a
time-constant parameter FES (tc-FES) during elbow flexion
(Figure 1(E-e1)), (iii) EMG recording with tc-FES when there
was no action (Figures 1(E-e2)), (iv) EMG recording with
time-variant parameter FES (tv-FES) during elbow flexion
(Figures 1(F-f1)), and (v) EMG recording in conjunction
with tv-FES during periods of inactivity (Figures 1(F-f2)).
To record EMG data without FES artifacts, we developed a
type (i) task consisting of 4 repetitive trials, and each trial had
4s relaxation and 3s elbow flexion. To obtain EMG data with
tc-FES artifacts, we designed the type (ii) task to perform the
same actions as task (i). Unlike in task (i), in the type (ii)
task, we added the FES stimulation with several time-constant
parameters with all of the frequency-intensity combina-
tions. The parameter combinations are shown in Figure 1(E).
We performed the task (ii) in each time-constant frequency-
intensity combination. Meanwhile, we also designed a set of
control tasks that only used the tc-FES artifacts described in
the type (iii) task. Additionally, we developed task (iv) as the
same as the actions in type (i) to record EMG data with tv-
FES artifacts. Unlike the type (ii) and (ii) tasks, in the type
(iv) task, we added FES stimulation with several time-variant
parameters, which are listed in Figure 1(F). We performed the
type (iv) task along a series of time-variant frequency-intensity
combinations with intervals of 2 s. We also designed a set of
control tasks with only time-variant parameter FES artifacts,
as described in the type (v) task. During the experiment, each
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Fig. 1. Experimental paradigm: (A) schematic diagram of the experiment; (B) position of the EMG and FES electrodes; (C) schematic diagram of
the target action (D) for (i) type of task: EMG signal recording when performing the upper limb action without FES, (E-el) for (ii) type of task: EMG
signal recording when performing the action with tc-FES (E-e2) for (iii) type of task: EMG signal recording when there is no action with tc-FES.
(F-f1) for (iiv) type of task: EMG signal recording when performing the action with tv-FES (F-f2) for (v) type of task: EMG signal recording when
there is no action with tv-FES.

subject had to rest for 20 minutes between each task to avoid
fatigue.

C. EMG Data Recording and Reconstruction
During the experiment, we recorded dual-channel EMG data

from the biceps brachii muscle using the Trigno™Wireless
EMG system (Delsys Inc, Ustimulation artifact) [30]. Before
the electrode application, we cleaned the skin surface with
alcohol. Figure 1(B) shows the distance between the two
centers of the electrodes. At the same time, we also placed the
FES electrodes next to the muscle, as shown in Figure 1(B).
EMG data was amplified (1000), bandpass filtered (0.5-200Hz)
and digitized (2000Hz). We recorded EMG data according to
the above task types shown in Figure 1(D-F), respectively.
In this study, we used EMG data in type (i), (iii) and (v)
tasks to reconstruct the simulation EMG data to validate the
proposed method. Then, we used this method to remove any
FES artifacts from the raw EMG data for both the (ii) and the
(iv) type tasks. To differentiate the EMG data from the five
task types, we simplified the EMG signal types, as shown in
Table I.

D. An Adaptive Spatial Filtering
The primary noises in EMG are initial spikes and M-waves,

which are caused by FES and have serious negative effects on
EMG data. Considering the correlation and synchronization
of the stimulation artifacts in multichannel EMG [31], [32],
we proposed a novel adaptive spatial filtering method, defined
as the G-S-G method. It combines the G-S algorithm [28]
with the Grubbs criterion [33] to remove both the initial

TABLE I
SIMPLIFICATION FOR ALL TYPES OF EMG SIGNAL

spike and the M-waves in the EMG signals. Before that,
we filtered raw EMG signals with a 20-200 Hz passband using
a zero-phase-shift filter to reduce the high-frequency noise and
low-frequency drift. Then we introduced a non-overlapping
sliding window [34], [35] with window size T to divide the
multichannel EMG data X = {x1, x2, · · · , xi , · · · , xM } with
data length L into a series of segments as follows:

X =
{

X1, X2, · · · , X j , · · · , X N
}

=



x1,1, x1,2, · · · , x1, j , · · · , x1,N
x2,1, x2,2, · · · , x2, j , · · · , x2,N

...
...

...
...

xi,1, xi,2, · · · , xi, j , · · · , xi,N
...

...
...

...

xM,1 , xM ,2, · · · , xM, j , · · · , xM,N


(1)
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where the variates i (i = 0, 1, · · · , M) and j ( j =

0, 1, · · · , N ) were the index for the EMG channels and the
sliding window, respectively, and M and N indicated how many
channels and windows there were, respectively. The vector xi, j
denotes the EMG data in the i th channel and j th window.
Subsequently, we analyzed the vector x∗, j in the j th window
according to the following formula [28]:

ε⃗0
∗, j = x∗, j (2)

wk
∗, j =

ε⃗kT
∗, j · ε⃗k

M−k, j∥∥∥εk
M−k, j

∥∥∥ (3)

ε⃗k+1
∗, j = εk

∗, j − wk
∗, j · ε⃗k

M−k, j (4)

y∗, j = ε⃗k+1
∗, j (5)

where k (k = 0, 1, · · · , M − 1) represented the order of
the algorithm, and ∗ indicated one-channel EMG data. The
variate ε⃗k

∗, j denoted one-channel EMG data in the j th window
after the kth order algorithm, while wk

∗, j was the correspond-
ing coefficient. After going through all channels in the j th
window, we could remove the M-waves and most of the
initial spikes, and obtain an EMG signal in the j th window
Y j =

{
y1, j , y2, j , · · · , yi, j , · · · , yM, j

}
. After that, we needed

to remove any outlier values. Thus, we first rectified the EMG
data Y j in the sliding window, and then applied the Grubbs
criterion to identify and reject any outliers sequentially, and
further remove any initial spikes. The specific steps are as
follows:

Z j =
∣∣Y j

∣∣ (6)

After that, we calculated the G value for each g point in the
i th channel in the j th segment window. The formula is as
follows:

Gi, j,g =

(
zi, j,k − z̄i, j

)
ẑi, j

(7)

where k is the sequence number of the measurement point;
z̄i, j and ẑi, j were the average value and standard deviation in
the i th channel and j th window, respectively. Next, we needed
to decide whether this was an outlier at this point. Typically,
we would set a threshold G p. if Gi, j,g > G p, and the value
at point g was abnormal. However, before this, we judged
weather the data had been derived from the muscle activation
by RMS values. If so, we then set a greater G p value, defined
as G p1; if not, we set a lower G p2 value. In our study,
considering that the data length of the slide window was 100,
we set the G p1 as 0.1 and the G p2 as 0.05. If the value at
this point was abnormal, we set the outliers to zero in dataset
Y j without rectification, and obtained the multichannel EMG
data in the j th window Ȳ j =

{
ȳ1, j , ȳ2, j , · · · , ȳi, j , · · · , ȳM, j

}
.

After that, we used the band-pass filter to
remove any harmonic interference and obtain the
S j =

{
s1, j , s2, j , · · · , si, j , · · · , sM, j

}
in the j th window.

The same process was suitable for the other segments, and

we obtained the preprocessed EMG data set as follows:

S =
{

S1, S2, · · · , S j , · · · , SN
}

=



s1,1, s1,2, · · · , s1, j , · · · , s1,N
s2,1, s2,2, · · · , s2, j , · · · , s2,N

...
...

...
...

si,1, si,2, · · · , si, j , · · · , si,N
...

...
...

...

sM,1, sM ,2, · · · , sM, j , · · · , sM,N


(8)

The signal processing flow is shown in Figure 2.
Figure 2(A) shows a flow chart of the G-S-G algorithm,
Figures 2(B)-(F) show a diagram for the G-S-G method.

E. Evaluation Indices
To verify the effectiveness of the G-S-G method in removing

FES artifacts, we introduced root mean square (RMS) [26],
[27] to quantify the denoised EMG signals. If the length of
the EMG data is L , the RMS value of each EMG channel after
denoising in each segment is calculated as follows:

RM Si, j =

√∑T
t=1 s2

i, j,t

T
(9)

where si, j,t is the t point in the i th channel of the j th segment.
T is the window length, RM Si, j indicates the RMS values in
the i th channel in the j th segment. After that, we obtained
the series RM Si =

{
RM Si,1, RM Si,2, · · · , RM Si,N

}
for the

i th channel. Next, we calculated the correlation coefficient
(r) of the RMS values between the de-noising EMG data
and the vEMG data by Pearson correlation analysis. The
greater the coefficient r , the better the preprocessing effect.
To evaluate the robustness of the G-S-G algorithm to FES
artifact under different parameters, we calculated the signal-
to-noise ratio (SNR).( [36] for each channel of the synthetic
signal as follows:

SN R = 10 lg
∑

V 2∑
(H − V )2 (10)

where H represents the synthesized signal after algorithm
processing, V represents the original uncontaminated EMG
signal.

For real signals, it is not possible to obtain the original
uncontaminated EMG signal. Therefore, we took the processed
non-activity segments as noise and calculated the SNR of the
signal by comparing it with the activity segments as follows.

SN R = 10 lg
∑

(Rb)
2∑

(Ra)2 (11)

where Ra represents the non-activity segments and Rb repre-
sents the activity segments.

III. RESULTS

A. Performance Test for the G-S-G Method
We mainly utilized the computation libraries such as

NumPy, SciPy, and Pandas in Python environment for data
processing. We also employed the Excel software to plot
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Fig. 2. Flow chart of the G-S-G algorithm. (A) is the flow chart of the G-S-G algorithm. (B)-(F) show the diagram for each step of the G-S-G method.

some visual figures. This platform configuration meets the
requirements of our algorithm and ensures the accuracy and
efficiency of computations.

1) Results for Tc-FES-sEMG: Construction for simu-
lation EMG data with time-constant parameters FES
artifacts:

To verify the effectiveness of the G-S-G method, we first
fused the vEMG signal and the tc-FES artifacts at a ratio
of 1:1 to construct simulated EMG data with FES arti-
facts with time-constant parameters.( [36]. Figure 3 (A)-(C)
show a schematic diagram of the design process with a
frequency-intensity combination (20Hz, 20ma). As shown
from the figure, the EMG (Figure 3(A)) produced a lower
amplitude than the tc-FES signal (Figure 3(B)). Therefore, the
tc-FES-sEMG signal presented a trend similar to the tc-FES
signal (Figure 3(C)). This indicates that the EMG is disturbed
by FES artifacts. We also obtained the same results under the
conditions of other frequency-intensity combinations.

Furthermore, to demonstrate the similarity between the
signals of the two channels involving the vEMG, the tc-FES,
and the constructed tc-FES-sEMG signals, we plotted several
fragments in Figures 3(D)-(F), respectively. As shown, the
correlation between the two channels of the vEMG signal was
weak, while the correlation between the two channels of the
tc-FES signal was high. The results showed that the correlation
between the tc-FES-sEMG signal of the two channels was
also high, suggesting that the key correlation had been caused
by the high similarity between the two tc-FES artifacts.
In addition, we plotted the correlation coefficient between
two channels of the tc-FES signal, tc-FES-sEMG signal and
tc-FES-EMG signal in each condition in Figures 3(G)-(I),
respectively. There was high correlation as to whether it
happens in the FES signal, FES-sEMG signal or FES-EMG
signal (p>0.98). This also showed the influence of the FES
artifacts in the EMG signal, which provided a prerequisite for
the execution of the proposed algorithm.

Preprocessing for the tc-FES-sEMG signa: After construct-
ing simulated EMG data with time constant parameter FES
artifacts, we divided the tc-FES-sEMG signals into several
non-overlapping segments of 100 data points each using a
sliding window approach. Then, we filtered the signals using
a 20-200Hz bandpass filter. Subsequently, we applied the
G-S-G method to remove FES artifacts. Figures 4 (A)-(C)
show the results for frequency-Amplitude combinations of
(20 Hz, 10 mA), (20 Hz, 15 mA), and (20 Hz, 20 mA),
respectively. As shown in the figure, the proposed G-S-G
algorithm effectively removes FES artifacts under different
parameters. To demonstrate the superiority of the G-S-G
method, we compared it with the 2nd-order G-S-G method in
the time domain (2tG-S-G), as presented in Figures 4(D)-(F).

To quantitatively evaluate the performance of our algorithm,
we calculated the correlation coefficients and SNR for the
2nd-order G-S algorithm and G-S-G algorithm in the spatial
domain, and different orders of the G-S algorithm (ntG-S)
and G-S-G algorithm (ntG-S-G) in the time domain. The
results are shown in Figures 4 (G)-(J). The results indicate that
the multi-channel G-S algorithm outperforms the time-domain
G-S algorithm in terms of artifact removal, regardless of
whether the subsequent Grubbs’ criterion for outlier removal
is introduced. Furthermore, the artifact removal effect is more
pronounced when the Grubbs’ criterion is applied, highlighting
the necessity of outlier removal. Additionally, the G-S-G
algorithm has a smaller impact on signal quality when stimulus
intensity varies, making it more suitable for higher intensity
levels.

2) Results for the Tv-FES-sEMG: Furthermore, we con-
structed the simulation EMG data with time-variate parameter
FES artifacts, named tv-FES-sEMG, by fusing the vEMG
signals and tv-FES artifacts at a ratio of 1:1. The con-
struction method was the same as the tc-FES-sEMG signal.
We randomly selected a fixed tv-FES signal with parameters
ranging from 10-30Hz to 10-20mA. Figures 5 (A)-(C) show
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Fig. 3. Construction for simulation EMG data with time-constant parameter FES artifacts. (A)-(C) show a schematic diagram for the construction
process with the frequency-intensity combination (20Hz, 20ma). (D)-(F) exhibit the similarity between the two channels’ signals for vEMG, tc-FES,
and the constructed tc-FES-sEMG signal, respectively. (G)-(I) show the correlation coefficient between two channels of the tc-FES signal, tc-FES-
sEMG signal and tc-FES-EMG signal in each condition, respectively.

the vEMG, tv-FES and tv-FES-sEMG signals, respectively.
As shown, there is a large artifact in the tv-FES-sEMG signal.
After that, we applied the G-S-G method to the tv-FES-
sEMG signal and obtained good performance, as shown in
Figure 5(D). To examine the preprocessing effect of the G-S-G
algorithm, we also calculated the RMS correlation coefficient
between the vEMG and the processed tv-FES-sEMG signal
(Figure 5(E)). Additionally, we calculated the SNR value of
the processed tv-FES-sEMG signal (Figure 5(F)). As shown
in Figure 5, the RMS correlation coefficient and SNR val-
ues of the processed tv-FES-sEMG signal are larger than
traditional time-domain methods, comparable to the results
obtained under constant parameters. This demon-strates the
effectiveness of the G-S-G method in removing time-varying
parameter FES artifacts from EMG signals.

B. Stimulation Artifact Removal for FES-EMG Signals
1) Results for Tc-FES-EMG: Figure 6 shows the experimen-

tal data with tc-FES artifacts and the results after applying the
G-S-G algorithm for FES artifact removal. Figures 6(A), (B)
show the raw tc-FES-EMG signals for 20Hz, 15mA, and 20Hz,
20mA parameters, respectively. Figures 6(C), (D) show the
G-S-G algorithm processing results of tc-FES-EMG signals
under 20Hz, 15mA, 20Hz, and 20mA parameters, respectively.
It can be seen that the proposed G-S-G algorithm also has a

good processing effect on the real signal. To quantitatively
evaluate the algorithm’s performance, we computed the SNR
for both the traditional time-domain G-S algorithm and our
proposed algorithm, as shown in Figures 6(E), (F). The results
demonstrate that our algorithm yields higher SNR values com-
pared to the traditional time-domain G-S algorithm. Moreover,
the removal of outliers further enhances the SNR, highlighting
the superiority of our algorithm.

2) Results for Tv-FES-EMG: Additionally, we conducted an
analysis on the tv-FES-EMG signals with parameters rang-
ing from 10-30Hz and 10-20mA, as depicted in Figure 7.
Figure 7 shows the processed results of the tv-FES-EMG
signals for both channels. The comprehensive results show
that our algorithm also has good performance in processing
FES artifacts under time-varying parameters.

IV. DISCUSSIONS

We have proposed a novel G-S-G method to remove the
stimulation artifacts evoked by FES in EMG signals. Our
simulated results showed that the G-S-G method was robust
to the FES artifacts with varying parameters. Further results
showed the algorithm’s effectiveness and stability. Further-
more, we applied the proposed method to the experimental
EMG data with FES-evoked stimulation artifact, and also
achieve good performance. Thus, this study provides a new
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Fig. 4. Results for FES artifact removal. (A)-(C) show the G-S-G results for the frequency-intensity combinations with (20Hz, 10mA), (20Hz,
15mA) and (20Hz, 20mA), respectively. (D)-(F) show the G-S results for the frequency-intensity combinations with (20Hz, 10mA), (20Hz, 15mA)
and (20Hz, 20mA), respectively. (G), (I) illustrate the RMS correlation between the vEMG signals and the processed tc-FES-sEMG signals under
different algorithms. (H), (J) show the SNR values for the processed tc-FES-sEMG signals under different algorithms.

approach to resolving the problem of removing FES-evoked
stimulation artifacts.

A. Existing Necessity of the G-S-G Method
Realizing feedback modulation of FES technology in clini-

cal application is a major challenge [12], [37], [38]. Existing
studies have pointed out that EMG signals provide an approach
to solving this problem [15], [39], [40]. However, removing the
stimulation artifacts in EMG signals remains a challenge, due
to the initial spikes and M-waves [17]. Although the amplitude
of the stimulation artifact is much higher than that of the EMG
signal, in some studies, the blank window method has been
applied to remove the artifacts by setting the values of the
time period in which FES artifacts dominate to zero [16].
However, when we perform the FES for a long time, the
artifacts may also last for several milliseconds, or even tens of
milliseconds, which increases the prepressing difficulty [17].

Secondly, the stimulus frequencies of the FES overlap within
the EMG signals’ frequency ranges [17], [41]. The acquisition
device captures both the EMG signals and the FES artifacts.
Thus, the two types of data mix. Some researchers have
pointed out that the filters and template subtraction methods
can remove the artifacts [20], [27]. However, as the muscle
fatigues, displacement and other functions change, and the
FES artifacts change in shape and amplitude [17], [41]. Each
of these factors significantly increase the difficulty of FES
artifact removal, and therefore some of the methods are
difficult to use on the general population. Thirdly, this will
inevitably lead to dynamic changes in stimulation param-
eters in the process of FES application, and the dynamic
changes in FES parameters will further limit the utility of
existing algorithms for stimulation artifacts under constant
parameters [16]. In addition, to realize the dynamic control
of stimulation parameters in FES applications, the algorithm’s
timeliness must also be satisfied. Thus, algorithm research with
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Fig. 5. Results for the tv-FES-sEMG signal. (A)-(D) show the vEMG, tv-FES, tv-FES-sEMG and the tv-FES-sEMG signal after the G-S-G method,
respectively. (E) shows the RMS correlation coefficient for each subject under variable parameters. (F) shows the SNR values for each subject.

minimal time consumption and rapid speeds is an inevitable
link [28], [42], [43]. Although there are many existing methods
for removing artifacts surrounding FES stimulation [21], [44],
most of them are implemented for a certain aim. Therefore,
it is difficult to achieve dynamic and real-time artifact removal
under variable-parameter FES.

Therefore, a new method suitable for real-time analysis
of FES artifacts with time-varying parameters is needed.
Considering the asynchronicity of EMG recruiting muscles
and the synchronicity of FES recruiting muscles [31], [32],
we proposed the G-S-G method to suit the artifact removal
requirements by fusing the G-S method and Grubbs criterion.
This method takes advantage of the correlation and synchro-
nization of stimulus artifacts between channels to remove the
M waves and most of the initial peaks. Then, it identifies the
remaining initial peaks in the signal as outliers and removes
them, so as to eliminate stimulation artifacts and extract
vEMG.

B. Merits of the G-S-G Method in FES Artifact Removal
The initial spikes and M-waves are the main inferences for

EMG signals during functional electrical stimulation. Previous
literature has pointed out that the current methods only can
remove one type or part of the FES artifacts, and therefore
they are limited in their capacity to eliminate them. For
example, the G-S method can remove M waves and most initial
spikes [28], and the Grubbs criterion can exclude the initial
spikes by identifying any outliers [33]. For this, we fused
the G-S method and Grubbs criterion to propose the G-S-G
method in this study. Our simulated and experimental results
showed good performance of the G-S-G method in removing
FES artifacts in EMG signals, especially for M-waves and
initial spikes (Figures 6 and Figures 7).

Fig. 6. Results for tc-FES-EMG. (A), (B) show the raw tc-FES-
EMG signals under the parameters of 20Hz, 15mA and 20Hz, 20mA,
respectively. (C), (D) show the preprocessed tc-FES-EMG signal
under the parameters of 20Hz, 15mA, and 20Hz, 20mA, respectively.
(E), (F) show the SNR values for the processed tc-FES-sEMG signals
under different algorithms.

The template matching method is the mainstream algorithm
for effectively removing stimulus artifacts in EMG signals.
Most traditional artifact removal methods are implemented
using time-domain signals as templates. However, high inten-
sity FES stimulation may cause muscle fatigue, even resulting
in changes in the artifact waveform in the time-domain [41].
This results in the difference in the matching between the
signal template and the actual output signal. Due to all
of these factors, most previous methods have limitations in
their ability to remove FES artifacts from EMG signals [15],
[22]. In the G-S-G method we proposed, the G-S method
and Grubbs criterion are fused, and the main idea of this
method is still template matching. In this method, we rely
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Fig. 7. Results for tv-FES-EMG. (A) shows the raw tv-FES-EMG signal.
(B), (C) show the two channels of the preprocessed tv-FES-EMG signal,
respectively.

on the high synchronization and correlation of the simulation
artifacts among the multi-channel signals within a calculation
window [31], so that they can be used as templates for each
other. In addition, we introduced a sliding window to divide
the signals into several segments, chose the templates, and
then calculated the G-S-G in each window. Thus, the template
in each window might vary as the FES artifacts change,
enabling the G-S-G algorithm to alleviate the problem of
template mismatch caused by muscle fatigue, artifact defor-
mation, parameter changes and other factors. Additionally,
we introduced a sliding window to split the long data into
a series of short segments, which also ensures the G-S-G
method’s real-time performance [35], [45].

C. Limitations and Future Work
In this study, we have shown that the G-S-G algorithm

yields superior performance in removing FES artifacts in
EMG signals. However, this method has several limitations.
Considering the high synchronization and correlation of the
simulation artifacts among the multi-channel signals, we need
a high requirement for the placement of the electrodes to
achieve the EMG signals. Additionally, when we perform
the FES with multiple targets in one muscle, it will cause
cross-interference of FES artifacts and reduce the correlation
and synchronization between the FES artifacts. This will
disable the fixed electrode positioning in our original method,
in which case the electrode position will need to be adjusted
self-adaptively according to real-time changes in FES artifacts.
In future work, we can use high-density EMG electrodes
to identify the correlation of FES artifacts between different
channels in real-time processing. This can avoid the problem
of inflexible positioning of electrodes to a certain extent and
improve the signal processing effect.

V. CONCLUSION

In this study, we have proposed an adaptive spatial filtering
algorithm that can extract vEMG with FES artifacts with time-

varying parameters. Unlike previous FES-induced stimulation
artifact removal algorithms, this G-S-G method targets the
synchronicity of vEMG recruiting muscles and the synchronic-
ity of FES-collecting muscles; the signals between channels
are analyzed as reference signals from each other. This
method overcomes the limitation of FES frequency and ampli-
tude during single-channel EMG preprocessing, realizing the
adaptive removal of FES-induced stimulation artifacts under
time-varying parameters in multi-channel EMG signals. It also
has a good effect on FES-induced stimulation artifacts when
the intensity is high. Moreover, the algorithm is simple and has
strong real-time performance. Thus, this is a superior method
for application to FES-induced stimulation artifact removal
under time-varying parameters in multi-channel EMG signals.

APPENDIX

We have added a video about the real-time removal of the
FES artifacts from raw EMG in appendix I, and also added
the key codes of our proposed algorithm in appendix II.
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