
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023 3619

Narcolepsy Diagnosis With Sleep Stage
Features Using PSG Recordings
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Abstract— Narcolepsy is a sleep disorder affecting mil-
lions of people worldwide and causes serious public health
problems. It is hard for doctors to correctly and objectively
diagnose narcolepsy. Polysomnography (PSG) recordings,
a gold standard for sleep monitoring and quality mea-
surement, can provide abundant and objective cues for
the narcolepsy diagnosis. There have been some studies
on automatic narcolepsy diagnosis using PSG recordings.
However, the sleep stage information, an important cue
for narcolepsy diagnosis, has not been fully utilized. For
example, some studies have not considered the sleep
stage information to diagnose narcolepsy. Although some
studies consider the sleep stage information, the stages
are manually scored by experts, which is time-consuming
and subjective. And the framework using sleep stages
scored automatically for narcolepsy diagnosis is designed
in a two-phase learning manner, where sleep staging
in the first phase and diagnosis in the second phase,
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causing cumulative error and degrading the performance.
To address these challenges, we propose a novel end-to-
end framework for automatic narcolepsy diagnosis using
PSG recordings. In particular, adopting the idea of multi-
task learning, we take the sleep staging as our auxiliary
task, and then combine the sleep stage related features
with narcolepsy related features for our primary task of nar-
colepsy diagnosis. We collected a dataset of PSG record-
ings from 77 participants and evaluated our framework on
it. Both of the sleep stage features and the end-to-end fash-
ion contribute to diagnosis performance. Moreover, we do a
comprehensive analysis on the relationship between sleep
stages and narcolepsy, correlation of different channels,
predictive ability of different sensing data, and diagnosis
results in subject level.

Index Terms— Narcolepsy diagnosis, sleep staging, PSG
recordings, multi-task learning.

I. INTRODUCTION

SLEEP plays a critical role in promoting mental and
physical health [1], [2]. Problems with the quality, timing

and amount of sleep severely interfere with normal physical,
mental, social and emotional functioning. Such problems are
brought about by sleep disorders which affect millions of peo-
ple worldwide and cause serious public health problems [3].
There are about 50 to 70 millions people in America suffering
from a chronic sleep or wakefulness disorder [4], such as
narcolepsy, insomnia, restless legs syndrome, and sleep apnea.
Among the disorders, narcolepsy, characterized by excessive
daytime sleepiness and brief episodes of involuntary sleep,
may severely interfere with work or social commitments in
daily life [1]. Patients suffer from the sudden onset and
irresistible urges to sleep. Meantime, about 70% of patients
affected also experience episodes of sudden loss of muscle
strength, known as cataplexy [5]. Moreover, narcolepsy tends
to happen among relatively young people, for which 15 and
36 years of age is the peak time periods [6]. It is extremely
harmful to young people’s physical and mental health and
even leads to a variety of complications, such as depres-
sion, mania, bipolar disorder and schizophrenia. Given the
fact that narcolepsy has great harm, it is critical to diag-
nose narcolepsy, so as to timely protect mental and physical
health.

Early diagnosis of narcolepsy is typically based on the
presented symptoms. In clinical practice, doctors usually deter-
mine subjectively whether one has narcolepsy by asking the
patient through direct inquiries or questionnaires. In this way,
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Fig. 1. One real example of recorded PSG signals.

misdiagnosis may be caused, because narcolepsy and other
sleep disorders have some similar symptoms and patients
may not describe their symptoms accurately and objectively
enough. In fact, since people with narcolepsy are often mis-
diagnosed with other conditions, such as psychiatric disorders
or emotional problems, it can take years for someone to get
the proper diagnosis [6]. Due to the difficulty in diagnosing
narcolepsy, a comprehensive, objective, and high-quality man-
ner is urgently needed to help diagnose narcolepsy. With the
development of biomedical engineering and sleep medicine,
polysomnography (PSG) in hospitals or sleep centers has
become the most effective way to understand the sleep status
of subjects. The PSG consists of electroencephalogram (EEG),
electrooculogram (EOG), electromyography (EMG), and other
physiological signals (e.g., electrocardiogram (ECG), Nasal
pressure, and body position). PSG recordings are typically
segmented into epochs of 30-second duration, each of which
is manually assigned a sleep stage by an expert or technician.
This process of sleep staging follows the rule of the American
Academy of Sleep Medicine (AASM) sleep standard [7],
which defines five different sleep stages: Wake (W), rapid eye
movement (REM), and three types of non-REM sleep (N1,
N2, N3). A real example of PSG signals in our used dataset
is given in Fig. 1. Here, EEG, EOG and EMG signals in each
sleep stage are presented. Given the richness and objectivity of
sensing recordings, PSG has been considered the gold standard
for sleep monitoring [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19]. Some studies [20], [21], [22], [23] have
adopted traditional machine learning methods for automatic
sleep staging from PSG. Some studies [11], [14], [24], [25],
[26], [27], [28] have proposed deep learning models to predict
sleep stages from PSG. It provides abundant and objective cues
for narcolepsy diagnosis.

There have been some studies using PSG signals for sleep
disorder diagnosis [29], [30], [31], including narcolepsy. Some
studies [30], [32] extracted hand-crafted features from PSG
recordings, and then fed them into traditional machine learning
classifiers (e.g., random forest) for identifying narcolepsy. The
sequential relationship within each epoch and between epochs
is missed, which is important due to the sequential nature
of sleep. With the development of deep learning, the deep
neural network is used for narcolepsy diagnosis. However,
there are still some limitations that the sleep stage information,
an important cue for narcolepsy diagnosis, has not been
fully utilized. For example, some studies have not consid-
ered the sleep stage information to diagnose narcolepsy. The
difference of sleep stage label could be potential biomarkers
to classify narcolepsy [33], and the PSG signals belonging
to different sleep stages have different performance on nar-
colepsy diagnosis [31]. However, some studies ignore such

information, directly using PSG recordings for narcolepsy
diagnosis [30], [34]. Although the sleep stage information is
considered for diagnosis by some studies, the sleep stages
are manually scored by experts, which is time-consuming
and requires incredible amount of human labor. In some
previous studies, the sleep stage labels are first manually
assigned, and then combined with PSG recordings for nar-
colepsy diagnosis [31], [33], [35]. Besides, although some
studies scored sleep stages automatically, the methods for
narcolepsy diagnosis are designed in a two-phase learning
manner, and then they are combined with PSG signals for
diagnosis in the second phase [36]. The sleep stages scored
in the first phase contain incorrect labels which could not
be well optimized in the second phase, causing cumula-
tive error and degrading the performance for the disorder
diagnosis.

In order to address the limitations mentioned above, we pro-
pose a novel end-to-end framework for narcolepsy diagnosis
from PSG signals. We automatically score the sleep stages,
and then take advantages of them for narcolepsy diagnosis,
by adopting the idea of multi-task learning [37]. To evaluate
the framework, we collected a dataset of PSG recordings in
our cooperated hospital, consisting of 50 narcolepsy patients
and 27 people without disabilities. For convenience, we will
later call narcolepsy patients as “patients”, and people without
disabilities as “normals”. Compared with other approaches,
our framework achieves the state-of-the-art performance. Our
contributions are as follows:

• Considering that PSG recordings are the gold standard
for sleep monitoring, we collected a dataset of PSG
recordings in the cooperated hospital from 50 narcolepsy
and 27 healthy people to analyze the relationship between
sleep stages and narcolepsy and evaluate our method.
In the future, we will release the dataset.

• We design a novel end-to-end framework for automat-
ically diagnosing narcolepsy from PSG recordings by
adopting the idea of multi-task learning and setting sleep
staging as auxiliary task. Experimental results show that
both of the sleep stage related features and the end-to-
end fashion significantly contribute to the performance
of narcolepsy diagnosis.

• We do a comprehensive analysis, including the relation-
ship between sleep stages and narcolepsy, correlation of
different channels (e.g., EEG channel), predictive ability
of different sensing data (EEG, EOG, EMG, etc.), and
diagnosis results in subject level.

II. DATASET

We first collect a dataset, named as SSND (sleep-stage nar-
colepsy diagnosis), in our cooperated hospital. All experiments
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Fig. 2. Significance test on the number of epochs in each sleep stage for normals and patients.

TABLE I
SUBJECTS STATISTICS OF SSND DATASET

reported in this work were conducted on this dataset. We first
introduce the collection process in details.

A. Dataset Collection

We recruited 77 subjects with age from 11 to 49 (22.65,
±7.58), consisting of 42 females and 35 males, to collect PSG
recordings in Affiliated Mental Health Center & Hangzhou
Seventh People’s Hospital, Zhejiang University School of
Medicine. The research was performed at the Zhejiang Uni-
versity with Institutional Review Board approval and written
consent was obtained from all the subjects or their caregivers.
An overview statistics of subjects are shown in Tab. I.

In the collection procedure, each participant was asked to
be in a special ward in the hospital. Before collection, we first
need to place the multiple sensors to each participant’s body.
The technician put more than 20 wired attachments, including
the pulse oximeter, pressure transducer, thermocouple, and
electrodes on different positions of the subject’s body (such as
head, eyes, nose, chin, and leg). After that, each subject lies in
the bed and falls asleep gradually. The wired attachments begin
to collect physical signal from different parts of the subject’s
body. The PSG recordings were collected according to the
AASM sleep standard [7]. During the collection process, EEG,
EOG, ECG, Chin EMG and Leg EMG signals were sampled
at 512Hz which can capture the fine-grained information for
these signals. For each subject, we collected her/his PSG
recordings for one whole night, from about 21:00 to 5:00 the
next morning, about 8 hours in total. All signals were stored
using standard EDF+ data formats with .edf extension. The
recordings were segmented into epochs of 30 seconds, and
then each epoch was manually labeled as a sleep stage by
sleep experts or technician according to AASM [7], including
Wake, N1, N2, N3, REM, MOVEMENT, and UNKNOWN.

The sensors for the PSG include EEG (Electroencephalo-
gram), EOG (Electrooculogram), chin EMG (chin Electromyo-
gram), ECG (Electrocardiogram), Nasal Presure, Therm (Nasal
Thermistance), Thor, Abdo (Abdominal Movement), SpO2
(Oxygen saturation), Snore, PositionSen (Body position), Leg
EMG (Leg Electromyogram), IPAP (Inspiratory Positive Air-
way Pressure), EPAP (Expiratory Positive Airway Pressure),
and EtCO2 (End Tidal Carbon Dioxide).

To ensure a fair comparison, we initially performed pre-
processing on the datasets, and subsequently evaluated all the
methods using the same prepared datasets. Some signals such
as EEG, EOG, Chin EMG, and ECG were band-pass filtered
and notch filtered. In subsequent experiments, we removed the
epochs annotated as MOVEMENT or UNKNOWN.

B. Dataset Analysis
In order to give a better understanding of our SSND dataset,

we analyze it from different perspectives.
1) Sleep Stage Analysis: We first analyze sleep stage of our

SSND dataset by calculating the number of epochs in total, the
number of epochs in each sleep stage, and the proportion of the
epochs in each stage for all the subjects, patients and normals,
shown in Tab. II. It is worth noting that patients have a lower
proportion (22.03% vs 28.46%) of epochs in Wake stage than
normals, which shows patients are more likely to fall asleep in
bed than normals. This statistical result is consistent with the
basic characteristics of narcolepsy. Meanwhile, for patients,
both the proportion of epochs in N3 and REM are bigger that
those of normals (21.08% v.s. 16.81%, 16.15% v.s. 13.59%).
The statistical results of REM stage are consistent with the
previous discovery that patients with narcolepsy typically have
higher REM sleep density than normals [38].

To further analyze the relationship between sleep stage
distribution and narcolepsy, we conducted a significance test
on the number of epochs in each sleep stage and whether
one subject is a patient or normal, shown in Fig. 2. Here,
the “p” value is an indicator of the difference between the
patients and the normals on each stage. The “Sig” is an
indicator of significance. From Fig. 2 we can see, p values
in Wake, N1, N2, N3 and REM stages are repectively 0.1545,
0.0609, 0.5783, 0.0078 and 0.0012. “Sig:ns” denotes p≥0.05,
indicating there no significant difference between patients and
normals. “Sig:**” denotes p≤0.01, which indicates there a
significant difference between patients and normals. Obvi-
ously, compared with other stages, the differences in N3 and
REM stage between patients and normals are more significant
(p=0.0078 in N3 stage and p=0.0012 in REM stage). This
result indicates that patients with narcolepsy are more likely
to enter the N3 and REM stages than normals.

2) Hypnogram Analysis: To further analyze the relationship
between sleep stage and narcolepsy, we compare two examples
of hypnograms manually scored by a sleep expert from two
whole-night PSG recordings of a patient and a normal in
Fig. 3. Hypnogram is a graph that represents the stages of
sleep as a function of time. Hypnograms are usually obtained
by scoring the recordings from EEG, EOG and EMG. From
Fig. 3(a) we can see that transitions of sleep stages happen
frequently in a patient with narcolepsy. On the contrary,
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TABLE II
STATISTICS OF SLEEP EPOCHS

Fig. 3. The hypogram of one whole-night recording from (a) one patient and (b) one normal.

Fig. 4. Pearson correlation coefficient between different channels.

a normal can have more stationary transitions of sleep stages
than a patient, shown in Fig. 3(b). Above findings illustrate
that narcolepsy can bring brief arousals in sleep and promote
sleep fragmentation that typically disturbs sleep architecture.
It further proves that the known sleep stages can help diagnose
narcolepsy. Therefore, we try to introduce a sleep staging
task as an auxiliary task [39] in our deep learning model for
narcolepsy diagnosis, which helps compete the primary task
of narcolepsy diagnosis and improve the performance.

3) Correlation Analysis of Different Channels: In pervious
work, EEG, EOG, EMG and ECG have frequently been
given higher importance compared to other signals. Here,
we investigate the correlation between different modalities,
by calculating the Pearson correlation coefficient between
different signals from 13 important channels of EEG, EOG,
EMG, and ECG. The heatmaps of Pearson correlation coef-
ficient are shown in Fig. 4. Firstly, the heatmaps of all the
subjects, patients and normals are similar in our dataset, which
illustrates that overall results of Pearson correlation coefficient
on patients and normals are coincident. Then, the values of
Pearson correlation coefficient between 6 EEG channels are
high, especially the value between F4 and C4. It illustrates
that single-channel EEG may achieve the performance similar

to that of the fusion of 6 EEG channels. It is worth noting
that the value of Pearson correlation coefficient between
Chin1-Chin2 EMG and Chin3-Chin2 EMG is high, which
shows two Chin EMG channels are similar and single-channel
Chin EMG may represent information of two-channels Chin
EMG.

III. METHODS

A. Problem Formulation
Our model is designed in an end-to-end fashion, which

processes a sequence of sleep epochs and outputs a nar-
colepsy prediction with a sequence of predicted sleep stages.
We denote x ∈ Rn×C as a sleep epoch, where n is the number
of sampling points in a sleep epoch and C is the number of
channels. The input sequence of sleep epochs is defined as
X = {x1, x2, x3, . . . , xL}, where xi ∈ Rn×C denotes a sleep
epoch, L is length of the sequence and i ∈ [1, 2, 3, . . . , L].

For automatic sleep staging, we denote the number of
sleep stages as N , and N = 5 (Wake, N1, N2, N3, REM),
according to the AASM sleep standard [7]. We define Ŷ =

{ŷ1, ŷ2, ŷ3, . . . , ŷL} as the sequence of sleep stages corre-
sponding to X = {x1, x2, x3, . . . , xL}, where ŷi ∈ {0, 1}

N is
the one-hot encoding of ground-truth sleep stage of xi .
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Fig. 5. Our framework overview.

For automatic narcolepsy diagnosis, we denote the number
of narcolepsy diagnosis as M , and M = 2 (patient and
normal). ẑ ∈ {0, 1}

M is defined as an one-hot encoding of
ground-truth narcolepsy diagnosis. For a sequence of sleep
epochs X = {x1, x2, x3, . . . , xL}, ẑ ∈ {0, 1}

M is ground-truth
narcolepsy diagnosis.

Therefore, our sleep staging task is defined as learning a
mapping function F that maps a sequence of sleep epochs
X into the corresponding sequence of sleep stages Ŷ and a
narcolepsy diagnosis ẑ.

B. Overview
In order to diagnose narcolepsy from PSG recordings,

we design an end-to-end framework, which captures sequential
relationship within each epoch and between epochs, automat-
ically scores sleep stages and combines the scored stages
with PSG recordings for narcolepsy diagnosis. Specifically,
we adopt the idea of multi-task learning, and take the sleep
staging as our auxiliary task which contributes to the perfor-
mance improvement of our primary task: narcolepsy diagnosis.
In the auxiliary task, we automatically score the sleep stages
and simultaneously learn the sleep stage features that are
then combined with narcolepsy features extracted from PSG
recordings for the primary task.

Our deep learning model is illustrated in Fig. 5. The model
consists of seven modules: (1) Epoch Feature Extraction Mod-
ule, (2) Sequence Feature Extraction Module, (3) Sleep Stage
Feature Mapping Module, (4) Narcolepsy Feature Mapping
Module, (5) Task Feature Fusion Component, (6) Epoch-
level Sleep Stage Classifier, (7) Sequence-level Narcolepsy
Classifier. We first design Epoch Feature Extraction Module to
extract the local features within each epoch of raw signals from
PSG. Then, the epoch features are input to Sequence Feature
Extraction Module. Next, we design two task-guided feature
mapping modules, Sleep Stage Feature Mapping Module and
Narcolepsy Feature Mapping Module. Sleep Stage Feature
Mapping Module is used to map features for sleep staging
and Narcolepsy Feature Mapping Module is used to map
features for narcolepsy diagnosis. The sequence features are
fed into Sleep Stage Feature Mapping Module and Narcolepsy
Feature Mapping Module to obtain sleep stage features and
narcolepsy features, respectively. Then, sleep stage features
are fed into Epoch-level Sleep Stage classifier to predict sleep
stages and are also fed into Task Feature Fusion Component
with narcolepsy features to obtain fused narcolepsy features.
Finally, fused narcolepsy features are fed into Sequence-level
Narcolepsy Classifier to diagnose narcolepsy.

C. Feature Extraction Module
1) Epoch Feature Extraction Module: Local salient wave

features are critical in sleep staging for sleep experts [7]. For

automatic sleep staging, extracting features from local salient
waveforms within each epoch can help classify sleep staging in
epoch level. In addition, existing studies on sleep disorder [30],
[31] show that local salient wave features from each epoch
are also helpful for diseases diagnosis, such as narcolepsy.
Therefore, in our deep learning network, we design an Epoch
Feature Extraction Module to extract local feature within each
epoch. Epoch Feature Extraction Module consists of Convo-
lutional Neural Network (CNN), Batch Normalization [40],
and GELU [41] activation function. Existing studies on sleep
staging from PSG [8], [9], [10], [11] have proved that CNN
is able to capture the local features of significant waveforms.
Therefore, we utilize CNN to extract local features from salient
waveforms within each epoch.

We feed sleep sequence X = {x1, x2, x3, . . . , xL} into
Epoch Feature Extraction Module. The process is as
follows:

X j+1 = Max Pooling j (G(B N (Conv j (X j )))), j ∈[0, 1, 2, 3]

(1)

X epoch
= Avg Pooling(X4) (2)

where X j is the j-th features (X0 is X ), Conv j is the
j-th convolution layer of Epoch Feature Extraction Mod-
ule, B N is Batch Normalization, G is GELU activation
function, Max Pooling j is the j-th max pooling layer, and
Avg Pooling is an average pooling layer. Finally, Epoch Fea-
ture Extraction Module outputs the epoch features X epoch

=

{xepoch
1 , xepoch

2 , xepoch
3 , . . . , xepoch

L }, where xepoch
i ∈ Rd and d

is the feature dimention.
2) Sequence Feature Extraction Module: Transition patterns

of sleep stages between epochs play an critical role in sleep
staging [7]. Therefore, modeling the relationship between
sleep epochs in sequence is helpful for sleep staging. In addi-
tion, for narcolepsy diagnosis, extracting global context fea-
tures from the sequence of sleep epoch can avoid being limited
to the local characteristics of the waveform within an epoch.
In other words, modeling the sleep sequence can expand the
receptive field of model to learn global characteristics of the
waveform, which can improve the performance of narcolepsy
diagnosis. Due to effectiveness of modeling global relation-
ship, we propose a Sequence Feature Extraction Module to
extract context features between epochs in a sleep sequence.
In pervious work on automatic sleep staging [12], [13], [14],
Transformer or multi-head attention is used to model global
temporal context and achieves a high performance. Inspired by
these studies, we use a Transformer Encoder as a Sequence
Feature Extraction Module, which can encode global context
features through multi-head attention.

The Transformer layer, just like standard Transformer [42],
adopts scaled dot-product attention, which is defined as
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Fig. 6. Illustration of multi-task process (here only L = 4 for visual purposes). Here, FC is fully-connected layer, and + is element-wise addition.

follows:

Attention(Q, K , V ) = so f tmax(
QK T
√

dk
)V (3)

where matrices Q, K , and V consist of queries, keys, and
values, respectively, and dk is the dimension of keys. We feed
epoch features X epoch

= {xepoch
1 , xepoch

2 , xepoch
3 , . . . , xepoch

L }

into Sequence Feature Extraction Module. The process is as
follows:

X seq
= T rans f ormer(X epoch) (4)

where T rans f ormer is standard Transformer Encoder,
X seq

= {x seq
1 , x seq

2 , x seq
3 , . . . , x seq

L } is sequence context fea-
tures, and x seq

i ∈ Rd .

D. Narcolepsy Diagnosis With Sleep Staging Features
As Fig. 2 and Fig. 3 in Section II-B show, there are signifi-

cant differences in the proportion and transition of sleep stages
between patients and normals. Some existing studies [31], [33]
have proved that known sleep stage information can improve
the performance of narcolepsy diagnosis. Therefore, we try
to take advantages of sleep staging for narcolepsy diagnosis.
Here, we adopt the idea of multi-task learning, where we take
sleep staging as the auxiliary task to automatically extract
sleep stage features for narcolepsy diagnosis. For mapping
sequence context features into sleep stage features and nar-
colepsy features, we design two task-guided feature mapping
modules, which are Sleep Stage Feature Mapping Module
and Narcolepsy Feature Mapping Module. The two feature
mapping modules mainly consist of multilayer perceptrons.
The Sleep Stage Feature Mapping Module maps sequence
features into sleep stage features to predict sleep stages by the
Epoch-level Sleep Stage Classifier. The Narcolepsy Feature
Mapping Module maps sequence features into narcolepsy
features to diagnose narcolepsy. Then, to combine sleep stage
features and narcolepsy features for narcolepsy diagnosis,
we design a Task Feature Fusion Component to fuse them
together, so as to obtain fused narcolepsy features. Finally,
the fused narcolepsy features are fed into the Sequence-level
Narcolepsy Classifier to diagnose narcolepsy.

1) Auxiliary Task: Automatic Sleep Staging: We take the
automatic sleep staging as the auxiliary task of narcolepsy
diagnosis. Our sleep staging process is shown in Fig. 6. For
sequence context features X seq

= {x seq
1 , x seq

2 , x seq
3 , . . . , x seq

L },
the process of sleep stage feature mapping is as follows:

X stage
= M L P(X seq) (5)

where M L P is multilayer perceptrons consist of two fully-
connected layers, X stage

= {x stage
1 , x stage

2 , x stage
3 , . . . , x stage

L }

is sleep stage features, x stage
i ∈∈ Rd ′

and d ′ is task-guided
feature dimention.

After mapping sequence context features X seq into sleep
stage features X stage, we feed X stage into Epoch-level Sleep
Stage Classifier, which consists of fully-connected layer and
a softmax funtion, to obtain Y = {y1, y2, y3, . . . , yL}, where
yi ∈ RN is the predicted probability in N sleep stage classes
of the i-th epoch. We use the cross-entropy (CE) function as
sleep staging loss function:

LSleepStaging = −

L∑
i=1

N∑
j=1

ŷi, j log(yi, j ) (6)

where yi, j ∈ R, the j-th element of yi , denotes the probability
that the i-th epoch is predicted to the j-th sleep stage class, and
ŷi, j ∈ {0, 1}, the j-th element of ŷi , denotes the probability
that the i-th epoch actually belongs to the j-th class.

2) Primary Task: Narcolepsy Diagnosis: Our narcolepsy
diagnosis process is shown in Fig. 6. Considering that the
task of narcolepsy diagnosis is sequence-level, we calculate
the average feature of sequence context features X seq before
feeding it into MLP. The process of narcolepsy feature map-
ping is as follow:

xnarcolepsy
= M L P(

1
L

L∑
i=1

x seq
i ) (7)

where x seq
i is i-th feature of sequence context features X seq ,

M L P is multilayer perceptrons consisting of two fully-
connected layers, xnarcolepsy

∈ Rd ′

is narcolepsy feature.
For making sleep staging task as the auxiliary task of

narcolepsy diagnosis, we design a Task Feature Fusion Com-
ponent to fuse sleep stage feature and narcolepsy feature
together. The Task Feature Fusion Component is as follows:

x f usion
= xnarcolepsy

+
1
L

L∑
i=1

x stage
i (8)

where x stage
i is the i-th feature of sleep stage features X stage

and x f usion
∈ Rd ′

is the fused narcolepsy feature. Then we
feed x f usion into Sequence-level Narcolepsy Classifier, which
consists of fully-connected layer and a softmax function,
to obtain z ∈ RM . z is the predicted probability in M
Narcolepsy classes of the sleep sequence. We use the cross-
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TABLE III
THE DETAILS OF DATA SPLITTING OF SUBJECT-WISE

6-FOLD CROSS-VALIDATION

entropy (CE) function as narcolepsy diagnosis loss function:

LNarcolepsy Diagnosis = −

M∑
j=1

ẑ j log(z j ) (9)

where z j ∈ R, the j-th element of z, denotes the probability
that the sequence is predicted to the j-th narcolepsy diagnosis
class, and ẑ j ∈ {0, 1}, the j-th element of ẑ, denotes the
probability that the sequence actually belongs to the j-th
narcolepsy diagnosis class.

E. Joint Training
In the training procedure, sleep staging and narcolepsy

diagnosis are jointly trained together by the same one objective
function, which consists of two different parts, staging loss and
diagnosing loss, described in Equation 10:

L = λ × LSleepStaging + (1 − λ) × LNarcolepsy Diagnosis
(10)

where λ is the coefficient of two loss functions for sleep
staging and narcolepsy diagnosis.

IV. EXPERIMENT

A. Performance Measurement and Implementation
We use ACC (accuracy) and F1-score (F1) to measure

model performance. In particular, given that the task of sleep
staging is a multi-class classification problem, we replace
F1 score with Macro F1 score. In other word, we calculated
the F1 scores in a class-wise manner, and reported the mean
value to get Macro F1 score.

Inspired by most of existing methods on automatic sleep
staging, we adopted a subject-wise 6-fold cross-validation
policy by dividing the subjects in the dataset into 6 groups.
In each fold, five groups were used for training, and the
left one for testing, ensuring that the data from the same
one subject never appear in the training set and testing set
simultaneously. In addition, we ensured that each fold has the
same number of subjects and includes patients and normals.
The details of data splitting are shown in Tab. III.

We implemented our deep learning model based on the
PyTorch [43]. We evaluated EEG, EOG, ECG, EMG (includ-
ing chin EMG and Leg EMG) and Nasal Presure from PSG
recordings on our deep learning model. The model was
trained using the Adam optimizer with default settings and
the learning rate was set to 1e-4. The mini-batch size was set
to 32 and dropout [44] rate was set to 0.1. We adopted early
stopping [45] policy in the training process. If the model does
not achieve a better performance any more for ten consecutive

TABLE IV
PERFORMANCE COMPARISON WITH OTHER METHODS

USING SINGLE-CHANNEL EEG (F4-M1)

epochs, the training ends. The Transformer block of Sequence
Feature Extraction Module has 8 heads and 512 hidden states.
We set the length of sleep epoch sequence as L = 20, feature
dimension as d = 512, task-guided feature dimension as
d = 128 and the coefficient of two loss functions as λ = 0.5.
Before being fed into deep learning model, EEG, EOG, ECG,
EMG and Nasal Pressure signals were resampled to 100Hz.
We trained the model on the machine with Intel Core i9
10900K CPU and eight NVIDIA RTX 3080 GPUs.

B. Compared Methods
In our experiment, we compared our proposed method with

the following approaches on sleep staging and narcolepsy diag-
nosis. For fair comparison, all the approaches were evaluated
on the same dataset, and adopted subject-wise training policy:

SVM (Support Vector Machine) [46] uses a Gaussian kernel
function for automatic sleep staging and narcolepsy diagnosis.

RF (Random Forests) [47] is an ensemble learning method.
CNN (Convolutional Neural Network) is used as the feature

extractor of raw PSG recordings for automatic sleep staging
and narcolepsy diagnosis.

CNN + RNN, where CNN is used to extract local features
within each epoch and RNN is used to extract context features
from an epoch sequence.

Transformer is used as the feature extractor of PSG record-
ings for automatic sleep staging and narcolepsy diagnosis.

C. Overall Results
We first compared our model with other approaches for

sleep staging and narcolepsy diagnosis on single-channel
EEG (F4-M1). Previous studies have proved that using EEG
achieves good performance [8], [36]. Here, all the approaches
were evaluated using EEG signals for sleep staging and
narcolepsy diagnosis. As we can see from Tab. IV, our method
achieves the best performance. SVM and RF perform the
worst, about 16% lower in accuracy than our method (65.85%
v.s. 67.21% v.s. 81.24% on sleep staging and 61.66% v.s.
61.78% v.s. 78.94% on narcolepsy diagnosis). It indicates
the sequential relationship in EEG signals is important for
the diagnosis, which the traditional machine learning methods
cannot model yet. CNN performs worse than our method on
sleep staging (79.32% v.s. 81.24% in accuracy and 72.09% v.s.
74.85% in Macro-F1) and narcolepsy diagnosis (72.82% v.s.
78.94% in accuracy and 80.72% v.s. 85.45% in F1), indicating
fully CNN without context features extractor cannot well
model sequential relationship between epochs, which helps for
the disorder diagnosis. CNN+RNN, where CNN is used as
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TABLE V
ANALYSIS OF AUXILIARY TASK IN SINGLE-CHANNEL EEG (F4-M1)

epoch feature extractor and RNN is used as sequence feature
extractor, performs worse than our method on sleep staging
(79.91% v.s. 81.24% in accuracy and 71.87% v.s. 74.95% in
Macro-F1) and on narcolepsy diagnosis (74.81% v.s. 78.94%
in accuracy and 81.81% v.s. 85.45% in F1). Transformer,
using fully Transformer to capture local and global features
from EEG signals, performs worse about 1.7% accuracy and
1.9% F1 than our method on narcolepsy diagnosis (76.34%
v.s. 78.94% in accuracy and 83.59% v.s. 85.45% in F1). The
Transformer cannot well extract local features within each
epoch from EEG signals. Compared with other approaches,
our deep learning model, using CNN as epoch feature extrac-
tor and Transformer as sequence feature extractor, utilizing
sleep staging as the auxiliary task, can well model local and
global features from EEG signals and make full use of sleep
stage information to improve the performance of narcolepsy
diagnosis.

V. ANALYSIS AND DISCUSSION

A. Analysis of Sleep Staging Task
To investigate the effectiveness of the auxiliary task of sleep

staging, the Task Feature Fusion Component and the end-to-
end manner, we compared our model with the three following
methods:

Single-Task Method: We set single-task method as a baseline
method, where we ablate the Sleep Feature Mapping Module,
the Task Feature Fusion Component and the Epoch-level Sleep
Stage Classifier from our model.

No-Fusion Method: We set no-fusion method as another
baseline method, where we only ablate the Task Feature Fusion
Component. This model can be used to classify sleep stages
and narcolepsy, but the sleep stage features and narcolepsy
features are not fused together for narcolepsy diagnosis.

Two-Phase Method: In the two-phase method, the sleep
staging is automatically scored in the first phase, and the
narcolepsy is diagnosed in the second step. The two tasks are
trained separately.

For fair comparison, we set the same hyperparameters for
these models as our model. The results of ablation experiments
are shown in Tab. V. From Tab. V we can see that single-task
method performs the worst, 2.97% lower in accuracy and
2.76% lower in F1 than our model, on narcolepsy diagnosis
(75.97% v.s. 78.94% in accurasy and 82.69% v.s. 85.46%
in F1). It is reasonable that the single-task method without
sleep staging task can not well extract features and learn the
transition rules about sleep stages, which can help classify
narcolepsy. No-fusion method performs close to our model on
sleep staging (80.84% v.s. 81.24% in accuracy and 75.04% v.s.
74.85% in Macro-F1). Obviously, ablating Task Feature Fusion
Component has no significant impact on performance of sleep

TABLE VI
THE RESULTS OF USING SINGLE CHANNEL AND MULTIPLE CHANNELS

staging. However, on narcolepsy diagnosis, no-fusion method
performs 1.84% lower in accuracy and 0.9% lower in F1 than
our model (77.10% v.s. 78.94% in accuracy and 84.55% v.s.
85.45% in F1). It further indicates that the sleep stage features
can improve the performance of narcolepsy diagnosis. Two
phase method performs close to our model on sleep staging
(80.69% v.s. 81.24% in accuracy and 74.58% v.s. 74.85%
in Macro-F1). However, for narcolepsy diagnosis, it performs
1.83% lower in accuracy and 2.89% lower in F1 than our
model (77.11% v.s. 78.94% in accuracy and 82.56% v.s.
85.45% in F1). These indicate that two phase method works
well in sleep staging. However, the sleep stages scored in the
first phase contain incorrect labels which could not be well
optimized in the second phase, causing cumulative error and
leading the poor performance for the disorder diagnosis. All
the results prove the importance of setting sleep staging as the
auxiliary task for narcolepsy diagnosis.

B. Analysis of Highly Correlated Channels
As shown in Fig. 4, some channels are highly correlated,

such as the six EEG channels and the two chin EMG
channels. In EEG, F4-M1 and C4-M1 channels are highly
correlated. In EMG, the correlation coefficient between two
chin EMG is high. Channels that exhibit high correlation
with each other can lead to information redundancy. Among
them, we could choose only one channel to feed into our
deep learning model to achieve a high performance. Here,
we tested the model performance when using single channel
and using highly correlated channels, respectively. Specifically,
we evaluated our model on single channel (F4-M1, C4-M1,
F3-M2, C3-M2, O2-M1, O1-M1 in EEG and Chin1-Chin2,
Chin3-Chin2, LegL, LegR in EMG), two highly correlated
channels (F4-M1 + C4-M1 and Chin1-Chin2 + Chin3-Chin2),
all EEG channels and all EMG channels, shown in Tab. VI.

For EEG, when only using F4-M1, our model achieves the
best performance on narcolepsy diagnosis (78.94% in accuracy
and 85.45% in F1). Compared with F4-M1, our model using
C4-M1 performs a little worse on sleep staging (81.24% v.s.
80.45% in accuracy and 74.85% v.s. 74.31% in Macro-F1)
and narcolepsy diagnosis (78.94% v.s. 77.10% in accuracy
and 85.45% v.s. 83.48% in F1). In addition, our model using
other single-channel EEG performs much worse than F4-M1
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TABLE VII
THE RESULTS OF USING SINGLE MODALITIES AND MULTI MODALITIES

and C4-M1 on sleep staging and narcolepsy diagnosis. These
results indicate that the F4-M1 channel is the most powerful
on narcolepsy diagnosis.

Our model combining F4-M1 and C4-M1 channels performs
best on sleep staging (82.08% in accuracy and 76.85% in
Macro-F1), but performs worse than single F4-M1 channel
on narcolepsy diagnosis (76.59% v.s. 78.94% in accuracy and
82.89% v.s. 85.45% in F1). Furthermore, our model in all
EEG channels performs worse than single F4-M1 channel on
narcolepsy diagnosis (76.79% v.s. 78.94% in accuracy and
83.49% v.s. 85.45% in F1). The results suggest that combining
highly correlated channels or combining all the EEG channels
could not improve the performance of narcolepsy diagnosis.

For EMG, our model using single Chin1-Chin2 channel,
single Chin3-Chin2 channel, and the two channels achieves a
relatively close performance on narcolepsy diagnosis (69.98%
v.s. 70.88% v.s. 70.57% in accuracy and 78.37% v.s. 79.97%
v.s. 79.76% in F1). Similarly, combining highly correlated
EMG channels could not contribute to narcolepsy diagnosis.
Besides, our model using LegL and LegR performs worse
than Chin3-Chin2 on sleep staging (47.28% v.s. 46.98% v.s.
52.77% in accuracy and 28.86% v.s. 28.44% v.s. 42.18%
in Macro-F1) but performs better than Chin3-Chin2 on nar-
colepsy diagnosis (73.23% v.s. 73.60% v.s. 70.88% in accu-
racy and 80.15% v.s. 80.40% v.s. 79.97% in F1). In Tab. 4, the
values of Pearson correlation coefficient between Chin EMG
and Leg EMG are low. It indicates that Leg EMG contains
different information from Chin EMG, which performs worse
on sleep staging but performs better on narcolepsy diagnosis
than Chin EMG. It is worth noting that our model in all EMG
channels performs better than Chin3-Chin2 on narcolepsy
diagnosis (74.18% v.s. 70.88% in accuracy and 80.57% v.s.
79.97% in F1). It further indicates that Leg EMG can help
provide effective features for narcolepsy diagnosis.

C. Analysis of Multiple Modalities
In this experiment, we investigated the predictive abilities

of different modalities and their combination for narcolepsy
diagnosis, including EEG, EOG, EMG, ECG, Nasal Pressure,
EEG+EOG, EEG+EMG, EEG+ECG, and EEG+Nasal Pres-
sure. In single-modailty experiments, the EEG here refers to
the single-channel EEG of F4-M1 channel which achieves the
best performance in narcolepsy diagnosis.

Table VII shows the performance comparison. As we can
see from Tab. VII, when using single modality of EEG, our
method achieves the best performance (81.24% in accuracy

and 74.85% in Macro-F1) on sleep staging and the best
performance (78.94% in accurasy and 85.45% in F1) on nar-
colepsy diagnosis compared with other single-modality results,
indicating that EEG is the most predictive for sleep staging
and narcolepsy diagnosis in PSG recordings. Using EOG also
has a good performance. The sleep staging results are close
to EEG (81.11% v.s. 81.24% in accuracy, 74.28% v.s. 74.85%
in Macro-F1), but the narcolepsy diagnosis results are lower
than EEG (76.63% v.s. 78.94% in accuracy and 84.06% v.s.
85.46% in F1). According to AASM sleep standard [7], EOG
is also an important standard for experts to assign sleep stages.
In addition, EMG, ECG and Nasal pressure are not so helpful
for sleep staging for which all the accuracy are lower than
60%, but they are relatively useful for narcolepsy diagnosis
for which all the accuracy values are higher than 70%.

When using the combined modalities, on sleep staging,
our model using EEG+EOG performs the best, about 1.4%
higher than EEG (82.64% v.s. 81.24% in accuracy and 76.98%
v.s. 74.85% in Macro-F1), which indicates that there is addi-
tional information that can be used to identify sleep stages
in EOG compared with EEG. Other performance of our
model on multiple modalities(EEG+EMG, EEG+ECG and
EEG+Nasal Pressure) performs worse than EEG on sleep
staging (80.16% v.s. 76.95% v.s. 65.86% v.s. 81.24% in
accuracy and 74.08% v.s. 69.93% v.s. 56.76% v.s. 74.85%
in Macro-F1). Specifically, our model on EEG+ECG and
EEG+Nasal Pressure performs quite poor on sleep staging
compared with EEG+EMG. It may be because that ECG and
Nasal Pressure may bring about too much irrelevant infor-
mation for sleep staging and cause significant performance
decline. For narcolepsy diagnosis, obviously, our model using
the multiple modalities of EEG+EOG achieves the best perfor-
mance, about 0.8% higher than EEG in accuracy (79.71% v.s.
78.94%), which combining EEG and EOG could bring about
useful features for narcolepsy diagnosis. Our model using mul-
tiple modalities (EEG+EMG, EEG+ECG and EEG+Nasal
Pressure) performs worse than EEG on narcolepsy diagnosis
(75.23% v.s. 72.31% v.s. 71.95% v.s. 78.94% in accuracy and
83.49% v.s. 81.95% v.s. 79.57% v.s. 85.45% in F1). Similarly,
combining EMG, ECG or Nasal Pressure with EEG may bring
about additional noise for narcolepsy diagnosis.

D. Subject-Level Case Study
In order to give a better understanding of the narcolepsy

diagnosis, we selected one patient from our dataset to illustrate
her/his hypnogram through the whole night. Here, we present
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Fig. 7. Case study on one patient. In (c), “Yes” denotes that this sequence is predicted as narcolepsy. “No” denotes that this sequence is not
predicted as narcolepsy.

the groundtruth hypnogram and the hypnogram automatically
scored by our model of the patient, respectively, shown in
Fig. 7(a) and (b). Meanwhile, we present the narcolepsy
diagnosis results obtained by our model, shown in Fig. 7(c).
It can be seen from Fig. 7(a) and (b), the sleep stages of
most epochs of this patient are correctly scored by our model,
and only a few epochs are misclassified. It is difficult to
correctly score the sleep stages with rapid sleep transitions.
The sequential relationship among such sleep fragments is
hard to model. As we can see from Fig. 7(c), we can correctly
diagnose the narcolepsy for most sequences by our model.
In our model, when input a sequence of 20 epochs, it will
output a diagnosis result. In this way, for each subject, there
are multiple diagnosis results. Therefore, we could determine
the diagnosis result in subject-level. Specifically, for each
subject, we take all of her/his diagnosis results into account,
and if more than 50% of the results determine the subject with
narcolepsy, we determine that she/he is with narcolepsy. In this
way, our model achieves a 100% in accuracy in subject-level
narcolepsy diagnosis. It suggests that we could improve the
robustness of our model by taking more diagnosis results in
sequence-level.

E. Limitations
We must acknowledge the limitations of the dataset used

in this work. First, due to the difficulty in recruiting a large
number of patients, the total number of subjects in our dataset
was relatively small, 77 in total. All the subjects in our
dataset are from China, and the conclusions we obtained
were mainly for a Chinese population. Second, types of sleep
disorders in our dataset were limited to narcolepsy. There were
many other sleeping disorders, such as insomnia, restless legs
syndrome, and sleep apnea, that were endangering people’s
health. We cannot research on these sleep disorder in our
dataset. Finally, there are many challenges on classifying

narcolepsy into fine-grained categories, including type 1 nar-
colepsy, type 2 narcolepsy, and unspecified narcolepsy. The
labels provided for narcolepsy were limited to nacolepsy and
normal, without fine-grained categories. In the future, we will
continue to study sleep disorders and try to address these
challenges.

VI. CONCLUSION

In clinic, it is difficult for doctors correctly and objectively
to diagnose narcolepsy. In this paper, we address the problem
of diagnosing narcolepsy automatically and objectively using
PSG signals. We collected a dataset of PSG recordings from
77 participants. We propose a novel end-to-end framework for
narcolepsy diagnosis, which embeds the sequential relation-
ship within each epoch and between epochs in PSG signals,
automatically scores the sleep staging, and combines the sleep
stage related features with narcolepsy features together for
narcolepsy diagnosis. In particular, we adopt the idea of multi-
task learning, where we take the sleep staging as the auxiliary
task, and take the narcolepsy diagnosis as the primary task.
The framework was evaluated on the collected dataset, and the
results show that both of the sleep stage features and the end-
to-end fashion help diagnose narcolepsy. Moreover, we do a
comprehensive analysis on the PSG recordings, including the
importance of sleep staging for the diagnosis, highly correlated
channels, and the predictive ability of different modality (e.g.,
EEG, EOG, EMG, and ECG).
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