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Pattern Matching for Real-Time Extraction
of Fast and Slow Spectral Components

From sEMG Signals
Alvaro Costa-Garcia , Akihiko Murai , and Shingo Shimoda , Member, IEEE

Abstract— Previous studies have demonstrated the
potential of surface electromyography (sEMG) spectral
decomposition in evaluating muscle performance, motor
learning, and early diagnosis of muscle conditions. How-
ever, decomposition techniques require large data sets
and are computationally demanding, making their imple-
mentation in real-life scenarios challenging. Based on the
hypothesis that spectral components will present low inter-
subject variability, the present paper proposes the foun-
dational principles for developing a real-time system for
their extraction by utilizing a pre-defined library of com-
ponents derived from an extensive data set to match new
measurements. The model library was tailored to fulfill
specific requirements for real-time system application and
the challenges encountered during implementation are dis-
cussed in the paper. For system validation, four distinct
data sets comprising isotonic and isometric muscle activa-
tions were utilized. The extracted during validation showed
low inter-subject variability, suggesting that a wide range
of physiological variations can be described with them.
The adoption of the proposed system for muscle analysis
could provide a deeper understanding of the underlying
mechanisms governing different motor conditions and neu-
romuscular disorders, as it allows for the measurement of
these components in various daily-life scenarios.

Index Terms— Electromyography, spectral component,
motor control, muscle activity, muscle fatigue, real-time
systems.

I. INTRODUCTION

SURFACE Electromyography (sEMG) records electrical
signals on the skin that represent the summation of electri-

cal potentials produced by active muscle fibers contributing to
muscle contraction. The spectral properties of these potentials
are affected by various neural, physiological, and experimental
factors, such as the firing rate of motor neurons [1], [2],
the number and size of recruited motor units, the physical
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and metabolic properties of active muscle fibers [3], [4], the
volume conduction properties of muscle, fat, bone, and skin
layers [5], and the arrangement of recording electrodes [6].

Researchers have proposed evaluating the spectral properties
of sEMG signals to infer internal muscle properties, such as
motor unit size and muscle fiber type distributions [7], [8],
throughout history. However, this remains a highly debated
topic due to the numerous reported parameters associated with
changes in sEMG signal frequency domains. An interesting
summary of this debate can be found in the point and coun-
terpoint discussion between Farina [9].

In 2004, Wakeling and Rozitis found that the spectrum of
raw sEMG signals recorded during short isometric contrac-
tions over the leg extensor muscle could be largely described
by two principal components in the spectral domain [10].
In 2006, Tscharner and Goepfert extracted very similar com-
ponents from the gastrocnemius and tibialis anterior muscles
on isotonic sEMG data recorded during running [11]. In both
works, the terms “fast” and “slow” were used to describe
the significant differences in the median frequency of each
of the extracted components. The authors hypothesized that
these components might represent families of motor unit action
potentials (MUAPs) with significantly different properties,
as the spectral distribution of both components corresponded
to that reported from these potentials [12].

In 2022, to further test the nature of these components,
Costa-García et al. found that multi-channel sEMG data
recorded from the biceps muscle during long and high-force
fatiguing isometric contractions can also be described by a
fast and slow spectral component with a >80% reconstruction
rate [13]. Both component showed inter-subject and inter-
electrode stability. Moreover, the analysis performed in this
paper showed that both components exhibit a specific behavior
during fatigue; the fast component dominated the beginning of
the contraction, but its contribution decreased with fatigue,
while it was progressively replaced by the slow frequency
component. The same behavior was reported for nine healthy
subjects, demonstrating the potential benefits of this compo-
nent analysis for the quantification of muscle fatigue.

In the previous studies the extraction of these components
(see Figure 1 for the conceptual decomposition flow) has
mostly been performed offline, requiring large data sets to
cover the diversity of scenarios encountered in daily life.
Moreover, the computational demands of analyzing these
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Fig. 1. sEMG signal decomposition. Conceptual decomposition of the envelope of the spectrum of an sEMG signal into fast and slow spectral
components.

data sets difficult their online computation. Reducing these
obstacles will enable the measurement of such components
in meaningful situations like the monitoring the age-related
decay of muscle mass known as sarcopenia [14] and other
progressive motor conditions [15], [16], [17] which early
diagnosis is critical for their treatment [18], [19], [20].

In this paper, we aim to develop an online system capa-
ble of extracting these components in real-time, using a
pre-defined library of patterns obtained from a large data
set. Our hypothesis is that, given the inter-subject and inter-
electrode component stability infered by the comparison of
previous work results, a comprehensive library of patterns can
be generated to cover most scenarios encountered in daily life,
and new measurements can be matched to the closest pattern
in the library, thus allowing the real-time extraction of compo-
nent contributions. By developing such system, our research
aims to bridge the gap between theoretical understanding
and practical applications. The online extraction of the fast
and slow components could offer several significant benefits,
including real-time estimation of biological states such as
muscle fatigue and motion intentions. These factors are crucial
for monitoring appropriate training levels for rehabilitation
from motion paralysis and supporting movement with robots.
We further suggest that such a system could provide valuable
insight into the origin of these components and their phys-
iological significance, as it would enable their measurement
in a variety of daily-life scenarios, potentially leading to a
better understanding of the mechanisms underlying different
neuromuscular disorders.

The next section will detail the materials and methods
employed to define and validate the proposed real-time system.
Initially, a straightforward conceptual design will be presented
(Figure 2), followed by the identification and resolution of
challenges that arose during implementation. Subsequently, the
solutions used to address each challenge will be validated by
analyzing four distinct data sets that include sEMG signals
recorded from isometric and isotonic contractions.

II. MATERIALS AND METHODS

A. Basic Design of the Real-Time System
Figure 2 depicts the overall workflow of the real-time

system designed for the purpose of this study. The system
assumes that any set of sEMG spectra can be decomposed
into a linear combination of two normalized spectral com-
ponents. Once these components are identified, they can be
utilized as a model to extract the weights that modulate a

Fig. 2. Real-Time System Design. The system is designed to extract the
relative contribution of slow and fast frequencies from an sEMG signal
by fitting a pre-defined model composed of two spectral components
into the envelope of the signal’s spectrum using multivariable linear
regression.

new incoming sEMG spectrum. However, the methodology
for component extraction developed in previous works [10],
[11], [13] was highly task-specific, and its generalization in
the form described in Figure 2 is challenging. Throughout
this paper, the authors will elaborate on and address all these
challenges in defining a functional system. Three groups of
subjects were recorded with sEMG signals from biceps and
gastrocnemius muscles, including both isometric and isotonic
contractions. This data was then organized into four data sets
used to validate each stage in the definition of the proposed
system.

B. Data Sets, Participants and Experiments
1) Isometric Data: For the isometric data, an elastic

medium-density electrode band was utilized to record sEMG
signals around the forearm (as shown in figure 3A). The band,
developed by Oisaka electronic equipment ltd [21], consisted
of 25 dry active electrodes arranged in five arrays with an
inter-array distance of 3.75 cm. The band was grounded via
a wristband. EMG signals were acquired as the differential
signal between each pair of vertically consecutive elec-
trodes, with an inter-electrode distance of 2 cm, resulting in
a 5 × 4 matrix of spatially distributed signals. Only the 3 mid-
dle arrays (electrodes 5-16) were selected for recording as they
include the bipolar channels withing the motor point area of
the bicep-brachii muscle according to the guidelines of the
Surface Electromyography for the Non-Invasive Assessment of
Muscles (SENIAM) project [22]. The signals were digitized at
a sampling rate of 2000 Hz and transmitted to a PC through a
USB connector. The electronic components were powered by
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Fig. 3. Experiment Setups. a) Isometric contractions of the biceps
muscle were recorded using a 3 × 4 matrix of bipolar electrodes.
Participants stood against a wall with their elbow flexed at 90◦ and
pulled on a string attached to a dynamometer. b) Isotonic data from the
gastrocnemius muscle was recorded using a bipolar electrode during
walking on a treadmill at 2 km/h.

a small battery and did not include hardware filters. The use
this channel distribution comes from a previous study where
the effects of spatial distribution on the spectral patterns was
tested [13]. Participants were instructed to sustain an isometric
contraction of their biceps at 70% of their maximum force
(previously measured) for 30 seconds while receiving real-time
feedback from a dynamometer located between the subject
and the floor. Each participant completed this task four times,
resulting in data set 1. The experiment included nine healthy,
right-handed individuals: 4 women and 5 men aged 27 to
45 years (34.88 ± 6.71).

2) Isotonic Data: For the isotonic data, sEMG record-
ings were obtained from a single bipolar electrode placed
on the surface of the lateral gastrocnemius muscle follow-
ing the guidelines of the Surface Electromyography for the
Non-Invasive Assessment of Muscles (SENIAM) project [22].
Participants were asked to walk on a treadmill at 2 km/h
for 10 minutes, and each participant completed 4 trials. Two
groups of subjects participated in the experiment.

The first group consisted of seven healthy individuals
(4 women and 3 men) with ages ranging from 29 to 48 years
(39.29 ± 7.57). Each participant completed a session of the
experiment on four different days, divided into two groups.
Two sessions used a thin elastic band to reinforce the electrode
to the leg (as shown in figure 3B) to reduce motion-induced
vibration of the electrode (data set 3), while the other two
sessions were done without the use of the band (data set 2).
This was done to evaluate the possible appearance of motion
artifacts on the sEMG data.

The second group consisted of nine healthy individuals
(5 women and 4 men) with ages ranging from 28 to 48 years
(38.67 ± 7.91). Each participant completed a single session
of the experiment using the elastic band to reinforce the
electrodes, resulting in data set 4.

The number of participants in each data set was chosen
to align with those utilized in the aforementioned studies for
spectral component extraction [11], [13]. In total, nine subjects
participated in the isometric recording, and sixteen subjects
were involved in the isotonic experiments, with only four
individuals taking part in both types of experiments. Selection
criteria required all participants to have not known motor

conditions and healthy life-styles that involve at least two
hours of weekly exercise. Prior to participation, all subjects
were provided with comprehensive information regarding the
experimental procedures, and they provided informed con-
sent following the guidelines outlined in the Declaration of
Helsinki.

3) Data Sets Usage: Data sets 1 and 2 will be utilized
to assess the differences in the targeted spectral distribution
of sEMG signals under different conditions: data set 1 cor-
responds to isometric data with a low artifact environment,
while data set 2 represents isotonic data without the use
of a reinforcement band, where artifacts may influence the
recorded data. Based on this analysis, signal filtering for
data sets 3 and 4 (isotonic with reinforcement band) will be
determined. Subsequently, data set 3 will serve as the training
data for generating the model library, while data set 4 will be
used for validation purposes.

C. System Comparison
1) System From Previous Work: Figure 4A shows the con-

ceptual design of the system developed in Costa-García et al.
[13] which will be used as reference for current work. During
isometric contractions, a set of sEMG segments was recorded
and subjected to a Non-negative Matrix Factorization, which
resulted in the extraction of fast and slow spectral components.
This factorization enabled the decomposition of n spectral
sources En( f ) using the formula:

En( f ) = wn1 · H1( f ) + wn2 · H2( f ) (1)

where H1( f ) and H2( f ) are the normalized components, and
wn1 and wn2 are the weight indicating the degree to which
each component contributed to the spectrum En( f ).

2) Real-Time System: According to the real-time system
described in Figure 2, modulation weights are extracted from
an sEMG spectrum using multivariable linear regression after
fixing a set of normalized components, H1( f ) and H2( f ).
In this paper, the term “model” refers to this set of two
components. Figure 4B illustrates the conceptual design of
the system proposed in this study, which is divided into three
stages. The first stage involves the use of a large amount of
data from different subjects to extract a model library com-
posed of a set of normalized spectral components, H1(x, f )

and H2(x, f ). This library of x models assumes that the shape
of both components will show certain inter-subject variability.
In the second stage, a reduced set of sEMG segments is used as
training data for system calibration, which involves selecting
the single model from the library that best represents the new
data. Finally, in the third stage, the selected model is applied
to new incoming data to obtain the weights, wn1 and wn2,
by performing multivariable linear regression [23].

3) Implementation Challenges: In order to transition from
the system presented in Costa et al. (Figure 4A) to the pro-
posed system (Figure 4B), several modifications are necessary.

The first challenge is to generalize the data under analysis
and account for the differences between isometric and iso-
tonic contractions. The proposed system requires sEMG data
recorded from active muscles. In the work of Costa et al.,
the data under analysis consisted of isometric contractions,
where the muscles are continuously contracted. However,
isotonic motions involve periods of active and inactive muscle
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Fig. 4. Comparison of systems. a) System introduced in [13] involves extracting epochs from sEMG data recorded during a single session.
These epochs then undergo a Non-negative Matrix Factorization algorithm in order to extract both slow and fast spectral components. b) New
system allows for real-time extraction of component contribution. In the first stage, a model library is defined based on a large data set by applying
Non-negative Matrix Factorization to different groups of segments within the data. In the second stage, a reduced set of training data is used to
extract the components that best represent the new data from the model library. Finally, the extracted model is used for real-time classification of
sEMG using Multi-variable Linear Regression.
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contraction. Therefore, before extracting a model, a smart
segmentation approach is required to select the data epochs
that best represent the periods of muscle activity. Moreover,
data acquired during periodic isotonic contractions may be
affected by motion-induced artifacts that were not present
in isometric data, where muscle contraction did not produce
significant motion.

The second challenge is to define a model library. According
to the results obtained by Costa et al., the normalized com-
ponents H1( f ) and H2( f ) (recorded from the same muscle)
did not show significant variability between subjects, which
allows for the definition of a reduced library of models that
can be applied to any subject. To create efficient models, it is
necessary to strike a balance between their stability and how
effectively they can reconstruct the original data.

The last challenge is to define a protocol to select the model
from the library that best represents the new data that needs
to be analyzed. As mentioned before, variations in the model
between subjects, even small, still exist. This variability is
manifested as different instances of the components contained
in the model library. Therefore, by knowing the ranges of
this variability, it will be possible to obtain from the library
the instance of the model that best fits the new data. The
methodology used to address each of these challenges is
described in the following three sections.

D. First Challenge: Isometric VS Isotonic Data
1) Segmentation: The segmentation process differed

depending on the type of data being analyzed. For sEMG
signals recorded during isometric contractions (data set 1),
1-second epochs with 0.5 seconds of overlap between
segments were used (30-second trials, see II-B). Each of the
12 channels was divided into 60 epochs, resulting in a total
of 12 × 60 = 720 epochs per trial.

For isotonic sEMG signals (data sets 2-4), individual
muscle activations were segmented using the methodology
for smart periodic sEMG data segmentation introduced by
Costa-García et al. in [24]. Although walking time and speed
were fixed for this experiment, the total number of epochs
varied between subjects (456 ± 34 epochs for each 10-minute
walking trial, see II-B).

2) Noise Evaluation: Prior to extracting the sEMG spec-
tral components H1( f ) and H2( f ), it was necessary to
filter motion-induced artifacts coupled to the signal spectrum.
To evaluate the spectral ranges affected by these artifacts,
data sets 1, 2, and 3 were compared. Data set 1 consisted
of epochs extracted from bicep isometric contractions where
the electrodes did not experience significant movement. Data
sets 2 and 3 contained epochs recorded from the lateral gas-
trocnemius during gait, with the difference that Data set 3 was
recorded while subjects were using an extra elastic band
to reinforce electrode attachment and reduce motion-induced
noise (see Figure 3B). The absolute value of the Fast Fourier
Transform was computed for all epochs in each data set,
and their average values were compared to determine the
frequencies affected by motion-induced artifacts.

Based on this information, the filter design GUI from
MATLAB was used to define an Infinite Impulse Response
(IIR) Butterworth band-pass filter for removing motion noise
during the pre-processing stage.

E. Second Challenge: Definition of the Model Library
The spectral components H1( f ) and H2( f ) that form our

model were extracted from the decomposition of the spectral
shape of a set of segments into two sources by applying a
Non-Negative Matrix Factorization [25].

1) Non-Negative Matrix Factorization: Prior to source sepa-
ration, a moving average filter was applied to each spectrum to
emphasize the contributions of the sources contained in their
envelope. Subsequently, the spectrum of sEMG signals was
described as:

E = W · H (2)
E = m × f ; W = m × s; H = s × t (3)

where E is an m × f matrix of sEMG spectral data (with m
the number of segments and f the frequencies under analysis),
W is an m × s matrix containing the weights associated
with each component used to reduce the m segments to an
s-dimensional space, and H is an s × f matrix containing
the spectral patterns (H1( f ) and H2( f ) in the case of this
work). Matrices W and H can be calculated from E through
the Non-negative Matrix Factorization (NMF) algorithm by
fixing the s-dimensionality (s = 2, number of components).
The NMF algorithm extracts the spectral components of H by
minimizing the correlation between them [26].

2) Number of Segments: Once the number of components
is decided (s = 2), the other parameter that needs to be fixed is
the minimum number of segments needed for the extraction of
valid spectral components (m number of segments according
to equations 2-3). In this work, the validity of the spectral
components H1( f ) and H2( f ) was evaluated by two factors.
The first one was the Value Account For (VAF), which
represents with a number from 0 to 100 how accurately H1( f )

and H2( f ) can be used to reconstruct the original data.
As can be expected, the reconstruction rate will be higher
for a reduced number of segments, and its value will drop for
higher numbers. Values of VAF over 80% after the application
of Non-Negative Matrix Factorization are generally accepted
as high reconstruction rate [27]. The second parameter was
the cross-correlation between the spectral patterns H1( f ) and
H2( f ) extracted from different groups of segments. This
parameter provides a number between −1 and 1. Value over
0.9 are associated to significantly similar signals [28] and will
be used to represent the stability of the model. In this case, it is
expected that the stability will be smaller for a small number
of segments and larger for a higher m value. The balancing
between the reconstruction accuracy and the stability of the
model was used to choose the number of segments for the
computation of the model.

sEMG signals from data set 3 were used to find
the optimal number of segments following the process
described in Figure 5. Temporal data was filtered to remove
motion-induced noise using the information obtained from the
noise evaluation (See II-D.2 and III-A). After that, individual
muscle activations were segmented, and their spectra were
computed as the envelope of the absolute value of the Fast-
Fourier Transform.

Data set 3 was divided into groups of different m-number of
segments, and different sets of spectral components H1m( f )

and H2m( f ) were computed from each group. The total
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Fig. 5. Number of segments for Model Library definition. The total number of sEMG segments is divided into groups, ranging from 1 to
1000 segments per group. For each group, the Non-negative Matrix Factorization algorithm is applied to extract the model associated with the
segments under evaluation. Finally, the Variance Accounted For (VAF) and the correlation coefficient extracted from each group are computed as
indices representing the reconstruction accuracy and stability of the models obtained from each number of segments.

VAF associated with an m number of segments was com-
puted as the average of the VAFs of each group. The
stability of the model for the same number of segments
was computed as the average of the cross-correlation coef-
ficients obtained between each set of spectral components
H1m( f ) and H2m( f ). Both values were computed for m =

[5, 10, 20, 50, 100, 200, 300, 500, 700, 1000] and graphically
represented.

3) Model Library: Once the minimum number m of segments
was fixed, the data from data set 3 was divided into x groups
of m segments (as shown in Figure 6A), where x = T/m,
T being the total number of segments, and m being the
chosen number of segments for model extraction. After this,
the NMF algorithm was used to extract a set of H1( f ) and
H2( f ) spectral components, i.e., a model from each group
(model library). The variations observed between models are a
consequence of the natural physiological variabilities between
humans, namely muscle fiber type distribution rates, volume
conduction on skin and fat layers, inter-subject motor strategy
changes, etc. The accurate characterization of all these sources
is complex and time-consuming for a real-time system that
aims for short and feasible training times. Therefore, the
current work opted for defining a library of models whose
variations are expected to be within a wide physiological
range.

4) Validation of Model Library: To validate this library, a
7-fold cross-validation was conducted on both components
(Figure 6B). Since the greatest variations between components
are expected across data from different subjects, each fold
was obtained by separating the H y( f ) components from one
subject from the H z( f ) components of the remaining subjects,
where y + z = x and x represents the total number of models
contained in the library (seven folds for seven subjects). Each
H y( f ) component was compared with all H z( f ) components,
and the maximum VAF was chosen to represent how well
H y( f ) can be reconstructed by components extracted from
other subjects. The average and standard deviation of the
VAF values (VAFy) were calculated as an index showing the

Fig. 6. Model Library and Validation. (a) Computation of the Model
Library. The data segments were divided into x groups of m segments,
and a Non-negative Matrix Factorization algorithm was used to extract a
model from each group. The group of x models extracted constitutes
the Model Library. (b) Validation of the Model Library. The Variance
Accounted For (VAF) was used to evaluate how well the models
extracted from each subject can be reconstructed by models from the
rest of the subjects. A cross-fold validation using the same number of
folds as the number of subjects included in the original data was used to
compute the average and standard deviation of the reconstruction index.

reconstruction potential for each fold. The average of these
indexes was then computed from the seven folds for both
spectral components. Figure 6B illustrates an example of this
process applied to the low-frequency component H1( f ). This
process was applied using only folds extracted from data set 3
(the set used to define the model library). The goal was to
test the internal coherence between the spectral components
extracted from different subjects.

F. Third Challenge: Selecting the Best Fit Model
1) Selection Algorithm: Figure 7a illustrates the process

used to select the best fit model from the library. First, a new
segment of validation data (from data set 4) undergoes the
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Fig. 7. Fit Model Algorithm and Validation. a) Algorithm. The H1 and H2 components included in the Model Library are k-clustered and averaged.
Each averaged cluster is used to reconstruct a set of new data using Non-negative Matrix Factorization. The averaged cluster providing the highest
VAF is selected as the best fit model. b) Algorithm Validation. The algorithm is used to extract a model from different numbers of sEMG data
segments in a process similar to the one used to select the number of segments for the Model Library. Finally, the reconstruction accuracy and
stability are evaluated using VAF and correlation coefficient.

same pre-processing as the data used to obtain the model
library (data set 3), which includes noise removal bandpass
filtering, spectral computation using the absolute value of
the Fast-Fourier Transform, and envelope extraction by a
moving average filter. Next, the H1(x, f ) and H2(x, f )

components contained in the library are divided into 10 dif-
ferent groups based on their similarity. To accomplish this, a

k-means clustering algorithm with k = 5 is used to divide
the matrix of H1(x, f ) spectral components into 5 clusters
(with their respective counterparts of H2(x, f )). The same
process is repeated using H2(x, f ) components as reference
for the clustering algorithm, obtaining another 5 clusters. The
average values of the 10 clusters are considered as candidate
models for the new incoming data. Then, a multivariable linear
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regression is applied to fit the new data to Equation 1, where
E( f ) represents each reconstructed segment of process data,
and H1( f ) and H2( f ) are each averaged cluster. Finally,
the reconstruction rate (VAF) is computed by comparing the
original and reconstructed data. The set of H1( f ) and H2( f )

providing the highest VAF is selected as the best fit model.
Depending on the amount of data contained in the library and
the observed variability of H1( f ) and H2( f ) components,
the number of clusters k can be modified for a more accurate
extraction of the model. After the model is obtained from the
new data, it can be used to evaluate the new incoming data
from the same muscle over a range of motor tasks.

2) Algorithm Validation: Section II-E.2 defined a methodol-
ogy to choose the minimum number of segments m required
for the computation of the models forming the model library so
that they fit certain reconstruction accuracy and stability con-
straints. Using that library, the method described in Figure 7a
allows the extraction of a model from any ns number of
segments from a set of new data. For this method to be a
useful tool for the definition of a model from a reduced data
set, the number of segments of the new data (ns) must be
smaller than the number of segments used for the definition
of the library models (m) without significantly affecting the
reconstruction accuracy and stability of the model.

Data set 4 was used as validation data using the method-
ology described in Figure 7b. sEMG segments were divided
into different numbers of groups of ns segments. For each
group, the extraction of the model was done using the pro-
cess described in Figure 7a. Model reconstruction accuracy
was computed as the VAF by comparing the original data
and the data reconstructed from the best fit model after
applying a multivariable linear regression, and model stabil-
ity was obtained from the average cross-correlation between
the models obtained from different groups of ns segments.
This process was repeated for different ns < m numbers
of segments to show how much the number ns can be
reduced without compromising stability and reconstruction
accuracy.

III. RESULTS

A. Noise Removal
Figure 8a shows the average spectrum computed from data

sets 1-3. Signals recorded during bicep isometric contraction
(data set 1) presented significantly higher amplitude than those
recorded on gastrocnemius muscle during gait (data sets 2-3).
This was due to the inherent differences in the force require-
ments of each type of motion. Therefore, for proper visual-
ization of the frequency bands affected by noise, the averaged
spectra from each set were normalized based on their activity
at 50 Hz, which represented the most active frequency during
isometric contraction. According to Figure 8a, motion-induced
noise strongly affects frequencies under 35 Hz, with this
effect being lower in data set 3, where the sEMG electrode
position was reinforced by an elastic band (Figure 3b). High
frequencies also showed an increased activation on gait data
after 70 Hz. However, this activity does not present significant
differences between data sets 2 and 3, implying that the rein-
forcement of electrodes does not contribute to the reduction
of the noise in this band. Based on these results, an Infi-
nite Impulse Response (IIR) Butterworth bandpass filter was
designed to maintain the sEMG frequencies between 35 Hz

Fig. 8. Noise Filtering. (a) Average sEMG spectrum from raw data
extracted from data sets 1 (black dotted), 2 (orange) and 3 (green).
(b) Bandpass filter between 35 and 70 Hz designed to remove the
spectral range with higher motion noise contributions. (c) Average sEMG
spectra from data sets 1 (black dotted) and 3 (green) after the application
of the noise removal filter.

and 70 Hz. Figure 8b shows a representation of its magnitude
response in decibels (dB). Figure 8c shows the comparison
between the artifact-free isometric data (data set 1, black-
dotted line) with the result of applying the designed filter
to data set 3 (green line). In order to reduce the effect of
artifacts and a consistent relation between data sets, both data
set 3 (used to define the model library) and data set (used for
validation) underwent the same filtering stage.

B. Number of Segments for Model Library
Figure 9 shows the averaged values of the correlation coef-

ficient and VAF extracted from groups of spectral components
H1( f ) and H2( f ) computed from different number of data
segments (from data set 3). Both the model reconstruction
accuracy (given by VAF) and its stability (given by the cross-
correlation coefficient) present exponential changes for small
number of segments. This behavior becomes almost linear
after 100 segments. Therefore, m = 300 was selected for
the definition of the model library as it was contained within
the range of linear variation of the parameters evaluated and
also presented acceptable balance between the reconstructions
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Fig. 9. Model Performance. Estimation of model stability and recon-
struction accuracy quantified by correlation coefficient (blue line) and
the VAF (orange line) for a different number of segments. The vertical
back-dotted lines represent the number of segments chosen for model
extraction.

accuracy (83.71%) [27] and stability (0.96) [28] of the model
extracted from the NMF algorithm. Moreover, based on this
m = 300 number, the ns > m number of segments introduced
in II-F.2 for the validation of the best fit model was tested
within the range ns = [10, 20, 50, 100, 200, 300].

C. Model Library Validation
Before testing the accuracy of the model to classify the

validation data from data set 4. The model library obtained
from data set 3 from groups of m = 300 segments was further
tested by the cross-fold validation described in Figure 6B.
Results show that components extracted from a single subjects
could be described by the components extracted from the rest
of them with reconstruction rates of 95.56 ± 0.34% in the
case of H1( f ) and 95.42±1.87% in the case of H2( f ). This
results strengthen inter-subject consistency between the fast
and slow spectral components.

D. Number of Segments for Choosing Best Fit Model
Figure 10 shows the reconstruction rate (VAF, Right

Y-axis) and component stability (cross-correlation coefficient,
Left Y-axis) from the spectral components extracted from
the validation data (data set 4). X-axis shows the number
of segments used for component extraction. Dotted lines
represent the results of component extraction based on the
direct application of the NMF to data set 4, while straight
lines show the results of component extraction based on the
model library defined from data set 3 (also applied to data
set 4). This results show that the use of the library allows
the extraction of spectral components from a reduce set of
new data (any number between 20 and 300 segments) with
higher stability and reconstruction rate, than the one obtained
by the only use of the NMF algorithm. This can be expected
when applying the NMF to a reduce number of segments as
the redundancy between them might be not high enough for
the methodology to extract common sources. In our results,
this redundancy was already comprised from data set 3 into
the model library and therefore, the extraction of components
from the model library results in higher reconstruction rates
and stability.

Fig. 10. Assessment of Model Fitting. Comparison between stability
(blue lines) and reconstruction accuracy (orange line) of the model
extracted using both the Non-negative Matrix Factorization (dotted lines)
and the model extracted using the pre-computed Model Library and the
selection algorithm presented in Figure 7 (straight lines).

IV. DISCUSSION

This study demonstrated the possibility of extracting fast
and slow components from sEMG signals without requiring
a direct application of source separation techniques. Source
separation was only utilized once for defining the model
library; subsequently, components can be extracted from the
library using a simple multivariable linear regression.

The inherent differences between isotonic and isometric
muscle contractions required motion-specific preprocessing
stages for the proper extraction of components. The goal of this
preprocessing was to ensure that the data under analysis con-
tained the maximum possible information about active muscle
fibers. In the temporal domain, this means segmenting epochs
containing full periods of muscle contraction. In the spectral
domain, the removal of motion-induced artifacts observed
under 35 Hz and over 70 Hz (Figure 8A) was necessary on
isotonic data to ensure that the spectral components extracted
by the NMF algorithm fall within the spectral range dominated
by active muscle fibers (Figure 8C) [29].

The model library was carefully designed to fulfill a set of
requirements for its real-time system application. The models
contained in the library were extracted from sets of 300 data
segments that showed a balanced performance between sEMG
reconstruction accuracy and component stability (Figure 9).
In addition, the model components showed low inter-subject
variability, suggesting that data from a reduced number of
subjects can describe a wide range of physiological varia-
tions within the extracted components. Finally, the use of
a previously defined model library allows for the extraction
of spectral components from a reduced set of new data
without compromising the model’s stability and reconstruction
rate (Figure 10).

The results presented in this paper provide a robust frame-
work for the real-time extraction of the contribution of fast and
slow spectral components to sEMG signals. The development
of a model library and the implementation of motion-specific
preprocessing stages are key factors to ensure accurate and
stable model extraction. The use of a reduced set data for
model extraction, made possible by the use of the model
library, does not compromise the performance of the model
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in terms of stability and reconstruction rate. In addition, the
results suggest that spectral components can be extracted from
only 20 muscle activations, enabling the application of this
framework to a wide range of daily motions. Once component
are extracted, they can be used for real-time classification
with the application of a simple preprocessing stage and a
multivariable linear regression.

Only data from the isotonic contraction of the gastrocnemius
muscle during walking was used for the testing stage of the
described methodology. To further validate the system, it will
be necessary to expand the scope of data to include other mus-
cles and contractions. Additionally, considering that wavelets
have demonstrated better physiological description of sEMG
signals [30], the system’s performance should be re-tested after
replacing Fast-Fourier Transformation with Wavelet analysis in
the spectral computation stage. In future studies, this system
will be utilized for measuring muscle fatigue in various
daily situations. Furthermore, the authors are planning to
employ this real-time approach for daily monitoring of muscle
conditions in patients with sarcopenia. In sarcopenia, the
progressive decrease of muscle mass has been linked to the
decline of fast-twitch muscle fibers, a phenomenon similar
to that observed during fatiguing contractions. Consequently,
we expect to identify comparable long-term changes in the
spectral components of sarcopenia patients, allowing for early
diagnosis of this disease.

Our research strives to narrow the gap between theoretical
comprehension and practical implementation by developing an
online system that allows for real-time extraction of both fast
and slow components from sEMG signals. The direct benefits
of the presented system are twofold: firstly, it enables the
continuous monitoring of muscle fatigue and motion intentions
in real-world scenarios, allowing for timely adjustments in
training levels and potentially enhancing rehabilitation strate-
gies for motion paralysis. Secondly, it provides a valuable tool
for investigating the origin and physiological significance of
the fast and slow components, paving the way for advance-
ments in the diagnosis and treatment of various neuromuscular
disorders.
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