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Abstract— Objective- This study aims to develop a
novel framework for high-density surface electromyo-
graphy (HD-sEMG) signal decomposition with superior
decomposition yield and accuracy, especially for low-
energy MUs. Methods- An iterative convolution kernel
compensation-peel off (ICKC-P) framework is proposed,
which consists of three steps: decomposition of the motor
units (MUs) with relatively large energy by using the itera-
tive convolution kernel compensation (ICKC) method and
extraction of low-energy MUs with a Post-Processor and
novel ‘peel-off’ strategy. Results- The performance of the
proposed framework was evaluated by both simulated
and experimental HD-sEMG signals. Our simulation results
demonstrated that, with 120 simulated MUs, the proposed
framework extracts more MUs compared to K-means con-
volutional kernel compensation (KmCKC) approach across
six noise levels. And the proposed ‘peel-off’ strategy esti-
mates more accurate MUAP waveforms at six noise levels
than the ‘peel-off’ strategy proposed in the progressive
FastICA peel-off (PFP) framework. For the experimental
sEMG signals recorded from biceps brachii, an average of
16.1 ±3.4 MUs were identified from each contraction, while
only 10.0 ± 2.8 MUs were acquired by the KmCKC method.
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Conclusion- The high yield and accuracy of MUs decom-
posed from simulated and experimental HD-sEMG signals
demonstrate the superiority of the proposed framework
in decomposing low-energy MUs compared to existing
methods for HD-sEMG signal decomposition. Significance-
The proposed framework enables us to construct a more
representative motor unit pool, consequently enhancing
our understanding pertaining to various neuropathological
conditions and providing invaluable information for the
diagnosis and treatment of neuromuscular disorders and
motor neuron diseases.

Index Terms— Convolution kernel compensation,
decomposition, electromyography, motor unit, peel-off.

I. INTRODUCTION

DURING the past decades, surface electromyography
(sEMG) has received growing attention due to its non-

invasive nature, high yield of motor units (MUs), and appli-
cation to high contraction levels. By taking advantage of
the significant advancements in sEMG signal collection and
processing, this technique plays a critical role in understanding
the neurophysiology of the neuromuscular system, as well as
in the diagnosis and treatment of motor neuron diseases and
neuromuscular disorders. The sEMG signal is the summa-
tion of motor unit action potentials (MUAPs) from a larger
number of active motor units (MUs) within the electrode
recording range. Decomposition, a technique that can break
down the composite sEMG signal into constituent pulse trains,
is indispensable for the study of MU firing rate and MUAP
morphology.

Tremendous efforts have been made by researchers and
various decomposition algorithms have been proposed. Previ-
ously, pattern recognition was one of the most adopted sEMG
decomposition techniques. By combining wavelet transform
and adaptive resonance theory network classification, Gazzoni
et al. proposed an automatic decomposition algorithm for
MUAP waveforms detection and recognition in 2004 [1].
Nawab et al. extended their knowledge-based artificial intel-
ligence framework [2], which was originally developed for
intramuscular EMG decomposition to sEMG but was only
limited to low contraction force [3]. Later, this approach was
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Fig. 1. The flowchart of the proposed sEMG decomposition framework. The proposed framework consists of three parts: ICKC, Post-Processor
(including a strategy for screening IPT with different energies and a strict ICKC method), and Peel-off.

refined by Nawab et al. in 2010 to make it applicable for high
contraction force levels [4]. Despite these efforts, the low-pass
filter effect caused by skin and subcutaneous fat separating the
muscle from the sEMG electrodes can lead to severe signal
superposition, MUAP duration increment, and shape difference
reduction. All these factors working together pose significant
technical challenges to the pattern-recognition type of sEMG
signal decomposition.

To tackle the aforementioned technical challenges, the
blind-source-separation type of sEMG signal decomposition
methods were developed [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31]. Holobar and Zazula
considered the sEMG signal as the convolution between an
unknown matrix with the motor unit pulse trains and used the
linear minimum mean square error approach to reconstruct
the MU pulse trains [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [30]. In the K-means convolutional
kernel compensation (KmCKC) method, Ning et al. firstly
employed the K-means clustering method to extract several
firing instants belonging to a single MU, constructed the
initial pulse train (IPT), and iteratively updated it by using
the linear minimum mean square error approach [20]. Chen
et al. developed a FastICA peel-off framework. Firstly, the
FastICA approach was applied to extract the MU firing instants
belonging to a MU, then the action potential of this MU
was removed from the measured sEMG signal to avoid the
local convergence of ICA [21], [22]. The main limitation of
the blind-source-separation type of methods lies in that MUs

with high MUAP energy are easily extracted, while deep and
small MUs with low MUAP energy are regarded as physio-
logical noise and cannot be extracted reliably [11], [12], [13],
[14], [15].

In this study, a novel framework for high-density sEMG
(HD-sEMG) decomposition was developed by combining the
iterative convolution kernel compensation (ICKC) method
with a post-processor and a new ‘peel-off’ strategy. This
approach allows for the extraction of MUs with small MUAP
energy thus achieving high yield and accurate HD-sEMG
decomposition results.

II. METHODS AND MATERIALS

As shown in Fig. 1, the proposed iterative decomposi-
tion algorithm consists of three parts: ICKC, Post-Processor
(including a strategy for screening IPT with different energies
and a strict ICKC method), and Peel-off. The ICKC was firstly
applied to the filtered sEMG data to acquire IPTs. Then a
screening strategy was adopted to divide the IPTs into high-
energy IPTs and low-energy IPTs by considering the pulse-
to-noise-ratio (PNR), coefficient of variation of inter-spike
intervals (COVI S I ), coefficient of variation of the amplitude
of spikes (COVA) and maximum cross-correlation coefficient
(ρ). For the high-energy IPTs, the firing instants of MUs
can be easily acquired by peak detection; while for the low-
energy IPTs, the strict iterative cycle CKC (SICKC) method
was applied to precisely extract the firing instants of the MU.
Finally, a new ‘peel-off’ strategy was adopted to subtract the
MUAPs of decomposed MUs from the filtered HD-sEMG
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data. This entire process will be iteratively performed until
no reliable spike trains can be extracted.

A. Data Model
The sEMG can be described as a multiple-input-multiple-

output system:

y(n) = Ht(n) + w(n), n = 0, 1, 2, . . . (1)

where y(n) is an observation, n is the discrete time, H is the
mixing matrix, which consists of all of the channel responses
hi j = [hi j (0), . . . , hi j (P − 1)] (the j th MU in surface EMG
signals appearing in the i th channel) of length P samples.
P is the duration of the action potentials. t(n) = [t1(n), t1(n−

1), . . . , t1(n − P + 1), . . .]T is an extended form of the active
MUs’ pulse trains t (n) = [t1(n), t2(n), . . .]T , and w(n) is a
noise vector. Then the global pulse train activity index γ (n)

reflecting the activity of all active MUs can be calculated by:

γ (n) = yT (n)Ĉyy
−1 y(n) (2)

where Ĉyy stands for the correlation matrix of extended obser-

vation y(n)=
[
y1 (n) , y1 (n − 1) , . . . , y1 (n − L) , . . .

]T . L is
the expansion factor and is used to increase the conditionality
of the mixing process by adding delayed versions of each
observation. This is done to increase the ratio between the
number of observations and sources, which can improve the
accuracy and quality of the mixing process. Empirically, L
was set to 10. Based on the linear minimum mean square error
(LMMSE) theory, the j th MU’s pulse train can be estimated
as [12] and [13]:

t̂ j (n) = ĈT
t j yĈyy

−1 y(n) (3)

where Ĉt j y can be estimated by:

Ĉt j y =
1

card(Ψ j )

card(Ψ j )∑
k=0

y(Ψ j (k)) (4)

where Ψ j denotes a set of firing times of j th MU, and
card(Ψ j ) denotes the cardinal number of Ψ j .

B. Iterative CKC Method
In this study, an iterative CKC (ICKC) Method was first

adopted to identify the initial IPTs. It includes two main
parts: rough iteration and precise iteration. For each rough
iteration, two time instants (adjacent or not) corresponding
to the two maximum values in the pulse train t̂ j (n) were
detected and added to the set Ψ j for the update of t̂ j (n)

based on equations (3) and (4). For each precise iteration,
two non-adjacent time instants (at least 30 sample points
apart) corresponding to the two peak values in the pulse train
t̂ j (n) were detected to update the t̂ j (n). Each extraction of
IPT requires h1 rough iterations and h2 precise iterations.
Empirically, for a 10s signal, h1 and h2 were set to 30-40
and 40-50, respectively.

C. Post-Processor
If only a cursory screening of initial IPTs is performed

based on PNR and COVI S I metrics (PNR > 36 dB and
COVI S I < 0.3) only high-energy MUs will be retained,
while low-energy MUs will usually be discarded. The primary
reason lies in that low-energy MUs have many common firing
instants with high-energy MUs [31]. During the decomposition
process, if too many common firing instants are added to the
time set of low-energy MUs, the subsequent decomposition
will ignore the firing instants of low-energy MUs and extract
only the high-energy MU instants. Consequently, the final IPT
obtained will be of extremely low quality and will then be
discarded. To solve this problem, this study proposes a Post-
Processor for specifically identifying the low-energy IPTs.
The basic steps of post-processing are as follows. In the first
step, the N IPTs obtained using the ICKC are first classified
into high-energy IPTs and low-energy IPTs. The classification
procedure is performed by considering the PNR, COVI S I ,
COVA, and maximum cross-correlation coefficient (ρ) of each
IPT. According to previous research result [22], the thresholds
for PNR, COVI S I , COVA, ρ are set as 36 dB (c1), 0.3 (c2),
0.15 (c3) and 0.3 (c4), respectively. In the second part, the
SICKC method is proposed to accurately extract the IPTs with
relatively low MUAP energy. Specifically, the SICKC method
consists of two parts, de-duplication, and precise iteration. For
the de-duplication part, we assume that M spike trains were
extracted from M high-energy IPTs by peak detection and
grouped them as Ψhj =

{
n j1, . . . , n jr

}
, j = 1, . . . , M ; while

G spike trains were extracted from G low-energy IPTs and
grouped them as Ψli = {ni1, . . . , nir } , i = 1, . . . , G. For any
low-energy IPTs ti (n), if the number of common time instants
between Ψhj and Ψli exceeds 30% of the cardinal number of
Ψli , the common time instants will be deleted from Ψli to
make the information pertaining to the low-energy MUs stand
out; otherwise, no further procedure is needed. Then the ICKC
is applied to refine the LIPTs. The 2nd part of the pseudocode
presented in Fig. 2 clearly shows the flowchart of the post-
processor algorithm.

D. New ‘Peel-off’ Strategy
To prevent FastICA from converging to local solutions,

Chen and Zhou [22], [23] peeled off the MUAP waveforms
constructed by the least squares method from the sEMG signal.
However, due to the estimation errors and alignment errors of
the MUAP, some noise might be introduced and accumulates
in the residual signal after each peeling-off. With the progress
of peeling off, the low-energy MUs’ information might be
submerged by noise, leading to significant difficulty in the
extraction of the low-energy MUs. Inspired by the previous
work [31], a new MUAP waveform construction strategy was
proposed based on the source deflation theory for the peel-
off purpose. We assume that k MUs are activated at the time
instant i , the set of indexes corresponding to the activated MU
is set to Si = si1, . . . , sik , then the t(n) at the time instant i
in Eq. (1) can be expressed as:

t(i) =

k∑
j=1

b j (i) (5)
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Fig. 2. The pseudo-code of the decomposition framework.The markers 1, 2 and 3 stand for ICKC, Post-Processor and Peel-Off Strategy,
respectively.

where b j (i) denotes the information of the si j
th MU firing at

the time instant i and it has the same dimension as t (i). For
example, if the si1

th MU is active at the time instant i , b1 (i) =[
0, . . . , 0, tsi1 (i) , tsi1 (i − 1) , . . . , tsi1 (i − P + 1) , 0, . . . , 0

]T .
We first optimize b j (i) in the source space by establishing
the corresponding objective function and constraints. Then,
by linking the source space and the signal space through
Eq. (3), we can subtly transform the objective function
and its constraints for optimizing b j (i) into the objective
function and its constraints for optimizing C j (i), where
C j (i) is the MUAP of the si j

th MU at the time instant i . By
considering the orthogonality and sparsity of the firing MUs,
b j (i) can be optimized by minimizing (6) and (7) with the
constraint of (8):

min
∥∥∥b j (i)T (t(i) − b j (i))

∥∥∥2

2
(6)

min
∥∥b j (i)

∥∥
1 (7)∥∥b j (i)
∥∥2

2 ≥ E j (i) (8)

where E j (i) denotes the proportion of the si j
th MU account

to the signal energy at the time instant i . The objective func-
tion (6) as well as the constraint (8) can be transformed from
the source space to the signal space based on equations (3)
and (5):

min
∥∥∥CT

j (i)C−1
yy (y(i) − C j (i))

∥∥∥2

2
(9)

CT
j (i)C−1

yy C j (i) ≥ E j (i) (10)

where Cyy stands for the correlation matrix of the observa-
tion y(n).The objective function (7) can be approximately
expressed as:

min
∥∥b j (i)

∥∥
1 = min(

k∑
l=1

∥∥b j (i) ∗ bl(i)
∥∥

1) (11)

where the symbol ∗ represents the Hadamard product and∥∥b j (i) ∗ bl(i)
∥∥

1 can be expressed as the inner product
of bl(i) and b j (i):∥∥b j (i) ∗ bl(i)

∥∥
1 =

∣∣∣bT
l (i)b j (i)

∣∣∣ =

∣∣∣CT
l (i)C−1

yy C j (i)
∣∣∣ (12)
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To further enhance the sparsity of the objective func-
tion (11), we remove the term

∥∥b j (i) ∗ b j (i)
∥∥

1 from∑k
l=1

∥∥b j (i) ∗ bl(i)
∥∥

1. Thus, the objective function (11) can
be approximated as:

min
k∑

l=1

∣∣∣CT
l (i)C−1

yy C j (i)
∣∣∣ , l ̸= j (13)

In a typical setup, the initial value of C j (i) is estimated using
the spike trigger averaging technique, where the value is set
to Ct j y , as calculated in Eq. (4) using the 9 j and y (n).
The E j (i) was set to 0.9 yT (i)C−1

yy Ct j y . It should be noted
that in Eq. (13), the MU used for optimizing C j (i) only
includes the MU activated at the time instant i except for
the si j

th MU. However, for actual optimization, all identified
MUs within the whole observed sEMG signal, excluding the
si j

th MU, can be utilized to enhance the accuracy of C j (i)’s
optimization. Users can select the MU utilized to optimize
C j (i) based on their desired balance between computational
efficiency and precision. Additionally, low-energy MUAP
waveforms, often considered physiological noise, can cause
an amplitude shift in the estimated MUAP waveform. There-
fore, amplitude alignment of the MUAP waveform is critical
(e.g. subtracting the mean value of the MUAP waveform from
the MUAP waveform). This study uses the default settings of
the fminimax() function in Matlab to perform the optimization
calculations.The 3rd part of the pseudocode presented in Fig. 2
clearly shows the flowchart of the New ‘Peel off’ Strategy.

E. Simulated EMG Signals
To obtain the simulated EMG signals, we assume that

the simulated muscle tissue comprised 120 normally dis-
tributed MUs with a diameter of 16 mm. Each MU contained
50-1000 fibers whose intracellular action potentials were mod-
eled by the 3-Gaussian model reported by Ning and Zhang
[32], [33]. All semi-fiber lengths were set to 50 mm, and the
endplate and tendon positions of the fibers were uniformly
distributed in the range of ±4 mm. To simplify the model,
MU conduction velocities were set to 4.0 m/s. The inter-spike
interval variability followed a Gaussian distribution with a
coefficient of variation of 20%. An 8 × 8 electrode array grid
with a 4 mm interelectrode distance in both directions was
generated and centered above the simulated MUs. A sampling
rate of 2,000 Hz was assumed. The maximum input excitation
level was set to 10% and the maximum number of recruited
motor units was 70. Gaussian zero-mean noises with signal-
to-noise (SNR) of 10, 15, 20, 25, and 30 dB were added to
the synthetic noise-free sEMG data to simulate the measured,
noise-contaminated sEMG data.

F. Experimental EMG Signals
The proposed framework’s performance was evaluated using

128-channel HD-sEMG signals collected from the biceps
brachii muscle (BBM) of 10 healthy subjects (4 male and
6 female) with ages ranging from 21 to 67 years and a mean
age of 34. The experiment was approved by the University of
Houston and the University of Texas Health Science Center-
Houston Institutional Review Board. Subjects were seated with

Fig. 3. The sEMG recording area used to measure static contraction.

the target arm secured firmly in two adjustable metal plates.
The skin overlaying the BBM was gently abraded and cleaned
with alcohol pads. As shown in Fig. 3, two 8 × 8 electrode
arrays (TMSi, Enschede, the Netherlands) with a diameter
of 4.5 mm and an inter-electrode distance of 8.5 mm were
placed over the muscle belly along the muscle fiber. The
reference electrode was placed on the lateral epicondyle of
the humerus, and a ground electrode was attached to the
wrist of the contralateral arm using a fully soaked Velcro
wrist band (TMSi, Enschede, the Netherlands). The subjects
were instructed to perform maximal voluntary contractions
(MVCs) three times and the highest force value observed
was used as the 100% MVC force. Then three 10-second
isometric contractions were performed at 10%, 30%, and 50%
MVC. A 2 min rest interval was given between trials to avoid
muscle fatigue. HD-sEMG signals were recorded via a Refa-
136 amplifier (TMSi, Enschede, the Netherlands) at a sampling
rate of 2,048 Hz with a 24-bit resolution.

G. Evaluation
For the synthetic sEMG data, the decomposition results

of the proposed framework were compared with those of
KmCKC in terms of the number of decomposed MUs and the
F1-score [21]. The rationale for using KmCKC for comparison
is that the first step of the proposed framework in this
study is a simplified version of KmCKC; while the other
two parts are the novelty of the proposed framework which
work together to make sure the accurate extraction of low-
energy MUs. Therefore, comparing to KmCKC can give us
the most intuitive comparison pertaining to the performance
of the proposed framework. To further verify the accuracy of
the new ‘peel-off’ strategy, we first compare the similarity
between the MUAP waveforms respectively constructed by
our approach and Chen’s peel-off strategy [22] concerning
the simulated MUAP waveform. The similarity between the
MUAP waveform of the j th MU calculated by the new ‘peel-
off’ strategy or Chen’s peel-off strategy and the simulated
MUAP waveform of the j th MU is calculated as follows:

Similari t y j

= 1 −
1

Cn

Cn∑
k=0

mean(|MU APk
s j (Ψ j ) − MU APk

cj (Ψ j )|)

max(|MU APk
cj (Ψ j )|)

(14)
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where MU APk
s j is the MUAP waveform train of the j th MU

in the simulated signal at the kth channel, and MU APk
cj stands

for the MUAP waveform train of the j th MU calculated by
the new ‘peel-off’ strategy or Chen’s peel-off strategy in the
kth channel. Cn represents the number of channels. | · | means
absolute value operation. mean(·) stands for mean operation.

We used the Shapiro-wilk test to check the normality
of the following data: the number of MUs decomposed by
KMCKC with the proposed method in the simulated signal,
as well as the corresponding F1-score, at six noise levels
in the simulated signal; the number of MUs decomposed by
KMCKC and the proposed method in the experimental data
across all subjects at three MVC levels; the similarity of the
MUAP waveforms obtained by the proposed new ‘peel-off’
strategy and Chen’s peel-off strategy to the simulated MUAP
waveforms at six noise levels, where the MU is obtained
by decomposing the initial simulated signal by ICKC and
Post-Processor. The test results showed that all of the above
data followed a normal distribution, except for the F1-score
obtained by KMCKC decomposition of the simulated signal
at six noise levels and the number of MUs decomposed by
KMCKC in the experimental data across all subjects at three
MVC levels. Therefore, we conducted statistical analysis using
different tests. Specifically, we used a paired samples t-test to
examine statistical differences between two groups of normally
distributed samples with identical sample sizes. We used a
one-sample t-test to examine statistical differences between
a group of normally distributed samples and a fixed value.
We used the Mann-Whitney U test to examine statistical
differences between two groups of samples, with at least one
group not conforming to a normal distribution. It should be
noted that due to the random selection of clustering centers,
the decomposition results of the KmCKC algorithm for the
same data have some variability. To ensure a more reliable
and stable outcome, the decomposition results of the KmCKC
algorithm are the average of 10 decompositions of the same
data.

III. RESULTS

A. Simulated Surface EMG
Fig. 4 shows the two representative decomposition results

of the proposed ICKC-P framework, with an SNR of 10 dB.
Fig. 4 (a1) shows a representative example of the LIPT, where
it is impossible for us to accurately extract the firing instants
of this MU due to the small and irregular amplitude of the
IPT. On the contrary, with the application of SICKC, we can
obtain an IPT as shown in Fig. 4 (a2). The firing instants of
the MU can be accurately detected from Fig. 4 (a2) with much
stronger and regular peaks in IPT, which highly demonstrates
the ability of SICKC to extract low-energy MUs. Fig. 4 (b1)
shows the representative IPT after the application of the ‘peel-
off’ strategy and ICKC. Fig. 4 (b2) shows the IPT generated
through equation (3) using the firing instants of the IPT in
Fig. 4 (b1) and the initial synthetic surface EMG. Despite the
use of accurate firing instants to estimate the IPT, the resulting
IPT remains irregular, making it challenging to extract the
correct firing instants for this low-energy MU during the
initial decomposition. This is because the high-energy MU

information in the initial synthesis signal masks the low-
energy MU information. However, as shown in Fig. 4 (b1),
the ‘peel-off’ strategy and ICKC enable us to obtain this
regular IPT after removing the high-energy MU information
from the initial synthesis signal. This suggests that the ‘peel-
off’ strategy can provide further guarantee for the extraction
of the low-energy MUs.

Fig. 5 (a) shows the comparison between originally syn-
thetic sEMG signals, summation of decomposed MUAPs and
the residual of a typical sEMG channel. The reconstructed
signal matched very well with the original signal and the resid-
ual is small. The average number of decomposed MUs and
the F1-scores achieved by the proposed ICKC-P framework
and KmCKC across ten simulation trials were presented in
Fig. 5 (b1) and (b2), respectively. The results show that as the
SNR decreases, the number of MUs and F1 scores obtained
by both decomposition techniques decrease, which is in line
with common sense. However, at each noise level, our frame-
work yields a higher number of MUs compared to KmCKC.
For instance, at an SNR of 30 dB, 11 and 18 MUs were
respectively decomposed by KmCKC and our framework; and
at an SNR of 10 dB, 7 and 16 MUs were decomposed,
respectively. Table I shows that the number of decomposed
MUs for the two methods was significantly different at each
noise level (p = 0.000 < 0.01 for all six noise levels) based
on one-sample t-tests. However, no significant difference in
F1-Score at each noise level was found between the two
methods after Mann-Whitney U tests (p > 0.05 for all six
noise levels). Nevertheless, all the pulse trains decomposed by
our framework present 93.04% accuracy, even at a low SNR
of 10 dB, which demonstrates the robustness of the proposed
framework in the presence of noise. Fig. 5 (b3) shows that
at all considered noise levels, compare to the MUAP recon-
structed by Chen’s peel-off strategy, the MUAP reconstructed
by our framework presents a relatively high similarity with the
simulated MUAP. As shown in Table I, after performing paired
samples t-tests, the two methods were significantly distinct
from each other in terms of their similarity to the simulated
MUAP waveform at each noise level (p = 0.000 < 0.01 for
all six noise levels). The above results highly demonstrate that
the proposed framework outperforms the KmCKC and Chen’s
peel-off strategy.

B. Experimental Surface EMG Signals
Table II displays the decomposition results yielded by

KmCKC and our framework on the experimental sEMG data,
respectively. Across ten subjects, 13.1 ± 1.6, 17.1 ± 2.6 and
17.7 ± 4.1 MUs were identified by the proposed framework
at 10%, 30% and 50% MVC, with COVI S I of 0.23 ± 0.01,
0.22 ± 0.02 and 0.22 ± 0.03; on average 7.9 ± 1.9, 10.0 ±

1.9 and 10.7 ± 2.2 MUs were identified by KmCKC with
COVI S I of 0.24 ± 0.02, 0.23 ± 0.03 and 0.23 ± 0.2.
Table III indicates a significant difference in the number of
decomposed MUs between the two methods at the three levels
of contraction after the Mann-Whitney U test (p = 0.000 <

0.01 for all three levels). Across all trials of all subjects,
an average of 16.1 ± 3.4 MUs were extracted from each
trial with a COVI S I of 0.22 ± 0.02; an average of 9.6 ± 2.3
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Fig. 4. A demonstration of reconstructing MUs using the proposed framework. The synthetic surface EMG was simulated in a condition of 10 dB
SNR. (a1) A representative example of LIPT. (a2) The precise IPT estimated in the last iteration in SICKC, which matches (a1). (b1) After the
‘peel-off’ strategy, the precise IPT estimated in the last iteration in ICKC. (b2) A representative IPT of low-energy MU estimated using all correct
firing instants and initial synthetic surface EMG, which matches (b1).

MUs were extracted by KmCKC with a COVI S I of 0.23 ±

0.04. The average energy of the residual signal was 33.1% ±

6.8% of the original signal, which was acquired by subtracting
the summation of the MUAP decomposed by the ICKC-P
framework from the original surface signal. Fig. 6 shows the
decomposition results of a representative subject (♯3) with a
contraction level of 30% MVC. Fig. 6 (a) shows the measured
sEMG signal, the summation of decomposed MUAPs, and
the residual of a typical channel. As in the simulation, the
summation of the decomposed MUAPs matched the measured
signal very well, indicated by a very small residual. Fig. 6 (b)
shows that for this specific trial, 16 MUs were extracted by
using the proposed ICKC-P framework, while only 12 MUs
were acquired by KmCKC.

IV. DISCUSSION

The firing pattern and MUAP morphology offered by the
EMG decomposition technique can not only enhance our
understanding pertaining to the neurophysiology of the neu-
romuscular system but also provide vital information for the
diagnosis and progress tracking of motor neural diseases and
neuromuscular disorders [34], [35], [36], [37]. Compared to
the intramuscular EMG, the low-pass filter effect caused by the
skin and transcutaneous fat separating the surface electrodes
from muscle post significant technical challenges to the sEMG
signal decomposition.

Currently, blind source separation methods are commonly
adopted, and their performance has been widely validated

under normal and neuropathological conditions [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33]. Despite the efforts made, these types of
approaches, including the classical CKC, GCKC, and KmCKC
present a bias toward the high-energy MUs [18], [21], [39]
and no special attention has been given to the low-energy
MUs which are critically important in motor unit number
estimation and botulinum neural toxin (BoNT) injection in
the clinical treatment of spasticity. So far, only the ‘peel-off’
strategy in the PFP framework [22] and the source deflation
procedure proposed by Negro [30] can decompose part of
the low-energy MUs. However, neither of the aforementioned
two approaches targeted the extraction of the low-energy
MUs. In this study, a novel ICKC-P framework targeting both
high and low-energy MUs was developed by combing the
iterative CKC, Post-Processor and the new ‘peel-off’ strategy.
The Post-Processor was employed to extract the low-energy
MUs that are not totally swamped by high-energy MUs and
noise by maintaining the sparsity of low-energy MU firing
instants. This is a significant improvement over the traditional
sEMG decomposition framework. Furtherly, the new ‘peel-off’
strategy, was dedicated to decomposing the low-energy MUs
that are masked by the high-energy MUs by optimizing the
MUAP waveform based on the orthogonality and sparsity of
the source signal.

To evaluate the performance of our proposed ICKC-P
Framework, both computer-simulated and experimental sEMG
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Fig. 5. (a)Top panel represents the original simulated surface EMG signal (black lines) in one typical channel with SNR = 10 dB, and the mid panel
represents the summation of the MUAP trains (red lines) decomposed by the proposed Framework, and the bottom panel represents the residual
acquired by subtracting the summation of the decomposed MUAPs from the original surface EMG signal. (b1) shows the number of reconstructed
IPTs and (b2) shows the F1-Score of the reconstructed IPTs achieved by the ICKC-P framework and KmCKC at different noise levels. (b3) shows
the similarity of the MUAP waveforms obtained with the New ‘peel-off’ strategy and Chen’s peel-off strategy to the simulated MUAP waveforms at
different noise levels. The results of KmCKC have averaged over ten simulation trials.N in the horizontal axis denotes conditions for which no noise
was added to the simulated signals.

TABLE I
STATISTICAL DIFFERENCES (P-VALUE) BETWEEN THE FOLLOWING SAMPLE GROUPS: NUMBER OF MUS DECOMPOSED BY KMCKC AND THE

PROPOSED METHOD, AND THE CORRESPONDING F1 SCORES, AT SIX NOISE LEVELS OF THE SIMULATED SIGNAL, AS WELL AS

SIMILARITY OF THE MUAP WAVEFORMS OBTAINED BY THE PROPOSED NEW ‘PEEL-OFF’ STRATEGY AND

CHEN’S PEEL-OFF STRATEGY TO THE SIMULATED MUAP WAVEFORMS

signals were adopted in this study. For the simulated sEMG,
the number of MUs decomposed by KmCKC and the ICKC-
P Framework gradually decreased with the decline of SNR.

Nevertheless, at the same SNR level, the ICKC-P Frame-
work can always decompose a larger number of MUs than
the KmCKC method. Concretely, with an SNR of 30 dB,
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Fig. 6. (a) The top panel shows the sEMG (black lines) recordings from BBM (Subject ♯3) in one typical channel. The mid panel shows the
summation of the MUAPs (red lines) extracted by the proposed framework, and the bottom panel shows the residual (blue lines) acquired by
subtracting the summation of the decomposed MUAPs from the original surface EMG signal. (b) The right panel shows MU firing patterns identified
by the KmCKC (red lines) and our framework (blue lines) with a contraction level of 30% MVC. Erroneous spikes and missed spikes are indicated
by “•”. The left panel shows the constructed MUAP waveform of each MU.

11 and 18 IPTs were respectively decomposed by KmCKC
and the ICKC-P framework; while with an SNR of 10 dB,
the ICKC-P framework totally outperformed the KmCKC with
9 more decomposed MUs. Therefore, the proposed framework

presents significant superiority especially in a noisy environ-
ment, due to the post-processor and the new ‘peel-off’ strategy.
The similarity between the MUAP waveform calculated by the
proposed new ‘peel-off’ strategy and the simulated MUAP
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TABLE II
DECOMPOSING RESULTS OF THE BBM SIGNALS AT 10%, 30% AND 50% MVC USING KMCKC AND ICKC-P FRAMEWORK

TABLE III
STATISTICAL DIFFERENCES (P-VALUE) BETWEEN THE NUMBER OF MUS DECOMPOSED BY KMCKC AND THE PROPOSED

METHOD IN EXPERIMENTAL DATA ACROSS ALL SUBJECTS AT THREE MVC LEVELS

waveform almost keeps constant as the SNR increases. At
the same SNR level, our newly proposed ‘peel-off’ strategy
can estimate the MUAP waveforms with higher accuracy
indicating higher similarity with the simulated MUAP. By
directly subtracting the optimized C j (9 j ) from the signal
corresponding to the moment in 9 j (Fig. 2), the proposed
‘peel-off’ strategy could avoid the alignment problem. For the
experimental data, by taking advantage of the Post-Processor
and the ‘peel-off’ procedure, low-energy MUs that cannot
be decomposed by KmCKC were successfully decomposed
by our ICKC-P framework with an average yield of 16.1 ±

3.4 MUs, COVI S I of 0.22 ± 0.02 and residual of 33.1% ±

6.8%; while for the KmCKC, only 9.6 ± 2.3 MUs were
extracted with an average COVI S I of 0.23 ± 0.04.

Although the proposed ICKC-P framework boasts supe-
rior performance compared to typical methods it has some
limitations:

1) Model defects. As with all other blind source sepa-
ration type of decomposition methods (including the
classical CKC [18], GCKC [38], KmCKC [21], the PFP
framework [22] and the framework proposed by Negro
et al. [30]), the ICKC-P framework is based on the
assumption that the sources are independent to each
other, i.e., only very limited number of MUs discharge
simultaneously at a specific time instant. However, under
some circumstances, this condition does not hold, such
as when the sampling frequency is too low or too many
MUs are activated at high contraction level. Though the
great effort was made in the Post-Processor to address
the superimposition issue, this problem cannot be fully
eliminated, but just alleviated.

2) MUAP shape alteration. In the ‘peel off’ strategy pro-
posed by Chen et al., they assumed that MUAPs from the
same motor unit remain stationary over a short period
of time (about 10s). Nonetheless different external envi-
ronments, including temperature [39] or muscle fatigue
[40], may cause the deformation of the MUAP morphol-
ogy, even during constant force isometric contraction.
In this paper, though the MUAP morphology alteration
was taken into consideration, it is still an approximate
estimation. An adaptive MUAP construction algorithm,

together with strategies to reduce interference from the
external environment remain our future efforts.

3) Time Consuming. In the ICKC-P framework, many
parameters need to be set and adjusted manually
and empirically, such as the h1 in ICKC and the ρ

in Post-Processor. Therefore, this algorithm is time
consuming and highly depends on the researcher’s
experience.

4) Performance validation. In this study, the perfor-
mance of the proposed decomposition framework
was compared with those acquired by KmCKC,
in terms of the number of identified MUs, C OVI S I
and the ratio between the residual signal and the
source signal. For experimental surface EMG data,
‘2-source’ validation is the most commonly accepted
method to quantify the decomposition performance [41].
However, the ‘2-source’ validation in the current study
was not carried out due to the lack of concurrent
intramuscular EMG recordings.

V. CONCLUSION

In this study, by combining ICKC, Post-Processor and a
new ‘peel-off’ strategy, a novel framework for HD-sEMG
decomposition was developed. The ICKC method was adopted
to extract the IPT of large-energy MUs, while the Post-
Processor and ‘peel-off’ strategy were specifically developed
to identify the small MUs with low-energy. Both simulation
and experimental results highly suggest the proposed ICKC-
P framework outperforms the KmCKC approach in terms
the number of identified MUs while remaining comparable
decomposition accuracy.
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