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Abstract— Electroencephalogram (EEG) recordings
often contain artifacts that would lower signal quality.
Many efforts have been made to eliminate or at least
minimize the artifacts, and most of them rely on visual
inspection and manual operations, which is time/labor-
consuming, subjective, and incompatible to filter massive
EEG data in real-time. In this paper, we proposed a deep
learning framework named Artifact Removal Wasserstein
Generative Adversarial Network (AR-WGAN), where the
well-trained model can decompose input EEG, detect
and delete artifacts, and then reconstruct denoised
signals within a short time. The proposed approach was
systematically compared with commonly used denoising
methods including Denoised AutoEncoder, Wiener Filter,
and Empirical Mode Decomposition, with both public and
self-collected datasets. The experimental results proved
the promising performance of AR-WGAN on automatic
artifact removal for massive data across subjects, with
correlation coefficient up to 0.726±0.033, and temporal
and spatial relative root-mean-square error as low as
0.176±0.046 and 0.761±0.046, respectively. This work
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may demonstrate the proposed AR-WGAN as a high-
performance end-to-end method for EEG denoising, with
many on-line applications in clinical EEG monitoring and
brain-computer interfaces.

Index Terms— Electroencephalogram, generative adver-
sarial network, denoising, artifacts removal, BCI.

I. INTRODUCTION

ELECTROENCEPHALOGRAPHY (EEG) can directly
reflect brain activities by recording scalp potential

changes, and thus it is widely used in cognitive psychology,
neurology, psychiatry, and brain-computer interface (BCI) as
well [1], [2], [3]. In clinical applications, the recorded EEG
contains not only useful information of brain activities but
also unexpected artifacts like eye blinks (ocular artifacts), head
muscle signals (myogenic artifacts), heartbeat signals, etc.,
which usually contaminate EEG in different ways and generate
high energy in multiple frequency bands, e.g., myogenic and
ocular artifacts can bring EEG with large amplitude spikes
and significant drifts, respectively [4]. These interferences
strongly lower the quality of EEG recordings and therefore
denoising is very critical for EEG processing and analysis [5],
[6], [7]. Traditionally, these artifacts were removed by manual
operations and visual inspection [8], which is time/labor-
consuming and inappropriate for online and real-time EEG
data processing [9].

Several conventional machine-learning (ML) approaches,
including regression-based methods, adaptive filter-based
methods, blind source separation (BSS) methods, etc., have
been developed to remove artifacts in raw EEG data. The
regression-based methods firstly estimate and then subtract
artifacts from raw data to gain pure EEG, but these meth-
ods are sensitive to outliers which may yield misleading
results [10]. The adaptive filter-based methods dynamically
estimate filter parameters based on EEG input and then remove
artifacts, while they are linear least-squared estimators for
stochastic processes, searching for different schemes to do the
estimation, which is relatively slow to reach convergence and
computationally expensive [11]. The BSS methods, especially
the independent-component-analysis (ICA), decompose EEG
into different components corresponding to brain activities
and artifacts, respectively, and thereafter the components of
brain activities are manually selected and combined to recon-
struct pure EEG. Therefore, the BSS method cannot identify
artifact-related components automatically, and a pre-trained
classifier [12], [13], [14], [15] or manual selection is needed

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9485-010X
https://orcid.org/0000-0001-7936-8446
https://orcid.org/0000-0003-1232-6182
https://orcid.org/0000-0001-9016-2617
https://orcid.org/0000-0002-9070-9069


DONG et al.: APPROACH FOR EEG DENOISING BASED ON WGAN 3525

to identify and reject artefactual components. Moreover, the
ICA-based methods cannot cope with single-channel data
and need auxiliary channels. In addition, they are commonly
less effective in processing non-biological artifacts such as
sudden impedance changes caused by headset movements [9].
Some studies investigated the artifact subspace reconstruction
(ASR) [16], [17] for EEG denoising, which is similar to
the principal-component-analysis (PCA) that large-variance
components are rejected, and purified data are reconstructed
by the remained components. Similarly, the ASR also needs
auxiliary channels and has relatively high time complexity
since it contains eigenvalue decomposition of the sample
covariance. To address these issues, a fully automated and
efficient artifact-removal algorithm that can process large
amounts of data in real time is needed.

The deep learning (DL) methods [18] boomed with the com-
ing out of Alexnet in 2015 [19] and have made a huge success
in multiple fields, especially for computer vision and natural
language processing, and also gained much attention in neural
engineering [20], [21], [22]. Considering the boosting data size
and advancing hardware support, more and more researchers
preferred to apply the DL methods for EEG applications,
including motor imagery classification [23], [24], [25], emo-
tion recognition [26], [27], [28], data augmentation [29], [30],
etc. Recently, the use of DL methods in EEG artifact removal
was introduced, which gained more favorable performance
compared with the conventional ML-based methods. Zhang
et al. [31] provided a publicly available structured dataset and
tested four deep neural networks as benchmarks, including a
fully-connected neural network, a simple convolution neural
network (CNN), a complex CNN, and a recurrent neural
network (RNN). Sun et al. [32] proposed a one-dimensional
residual CNN (1D-ResCNN) to remove various susceptible
physiological signals from EEG. Inspired by the U-Net archi-
tecture in image segmentation, Chuang et al. [33] developed a
novel model to remove pervasive EEG artifacts and reconstruct
brain signals, which implemented the ensembled loss function
to model complex signal fluctuations in EEG recordings. Leite
et al. [34] presented a 2D deep convolutional autoencoder to
filter noises of eye blinking and jaw clenching. These DL
methods avoid the time-consuming preprocessing and feature
extraction on raw EEG data to directly learn meaningful
information, which can capture underlying and high-level
features. However, they are vulnerable to adversarial samples,
where real-world EEG data are prone to be corrupted by small
perturbations [35], [36]. These perturbations may mislead the
model and lead to dramatic degradation in the denoising
performance.

Adversarial training [37] can solve this problem by enhanc-
ing the robustness of the model intrinsically, and Generative
Adversarial Network (GAN) is one of the most represen-
tative works. GAN is a novel technology for unsupervised
learning, which was first used in the area of computer
vision to implement multiple tasks like generating non-existed
images, transferring styles of images, and improving the
resolution of images. The initial GAN was proposed in
2014 by Goodfellow et al. [38], who synthesized real-like
images by implicitly modeling data into high-dimensional

spaces. Usually, a GAN contains two opposite components,
i.e., a generator and a discriminator, and both are trained in
the learning stage and compete with each other. The generator
tries to generate real-like data with random input to fool
the discriminator, whereas the discriminator receives both
generated and realistic data and aims to judge reality. After
multiple rounds of competition, the generator can synthesize
real-like data that the discriminator cannot tell apart, reaching a
so-called Nash equilibrium. As a simple analogy, the generator
is a counterfeiter making fake bank note without detection
and the discriminator is a policeman trying to distinguish
between fake and real money. Different types of GAN have
been proposed in the past few years. The Deep Convolutional
GAN (DCGAN) replaces the multi-perceptrons with convo-
lutional layers [39]; the Conditional GAN (CGAN) provides
additional information which helps the discriminator in finding
conditional probability instead of joint probability [40]; the
CycleGAN provides a way for image-to-image translations,
like translating horse images into zebra images [41]; the
Wasserstein GAN (WGAN) minimizes the approximation of
Wasserstein distance rather than the Jensen-Shannon diver-
gence as in the original GAN formulation, which provides
more stability in training and could avoid mode collapse [42].

Many applications of GAN have been proposed and real-
ized. Some studies kept tracking GAN-based works and tried
to implement GANs for sequence and time-series data genera-
tion, imputation, and augmentation [43]; Some other employed
GANs in EEG data augmentation to solve the problem of
data scarcity and imbalance, improving accuracies in various
classification tasks [29], [30]; A few works have implemented
GANs in EEG denoising, e.g., Brophy et al. [44] used GAN
to denoise real-world EEG signals by mapping noisy signals
to clean signals according to the nature of respective artifacts.
An et al. [45] proposed a GAN-based denoising method to
automatically filter multichannel EEG signals and defined a
new loss function to ensure that the filtered signals could
preserve effective original information and energy as much
as possible. Nevertheless, most current GAN-based models
only remove EMG and EOG individually from EEG but did
not remove the combined artifacts. Although some pioneering
studies, e.g., Sumiya et al. [46], have proposed a GAN-based
noise-reduction model to remove the combined artifacts in
EEG, more solid evidence of the improvements in filtered data
should be explored and provided.

To address these issues, we presented an EEG denoising
approach based on the Wasserstein GAN (WGAN), named
Artifact Removal WGAN (AR-WGAN), and evaluated its
performance by using a public dataset and a self-collected
dataset. This study systematically overviews the WGAN model
and demonstrates the algorithm of AR-WGAN. The proposed
model was compared with some commonly used filtering
algorithms, including Denoised AutoEncoder, Wiener Filter,
and Empirical Mode Decomposition, in both time and time-
frequency domains, with evaluation metrics such as power
ratios, relative root mean squared error (RRMSE), and cor-
relation coefficient (CC). The robustness and generalization
capacity in real implementations of this work was discussed
and some outlook was provided. The main contribution of this
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study is that we provided an end-to-end denoising model based
on WGAN, which can filter massive raw EEG data within a
short time. The approach can embody enough robustness and
cope with real-world EEG data with inevitable perturbations,
and the fast denoising demonstrates the AR-WGAN as an
automatic and online-capable artifact removal approach.

II. DATASET AND METHODS

A. Methods
1) Generative Adversarial Network: In a basic GAN, the dis-

criminator can be approximately characterized as a function to
map the data into a probability (0 to 1) where the input belongs
to the real data. The generator is fixed when the discriminator
is being trained to classify the real data (output close to 1)
and fake data (output close to 0) from the generator. Similarly,
the discriminator will be frozen when it is optimized, and the
generator continues to learn the real data distribution to lower
the accuracy of the discriminator.

The critical point of GANs is the probability density or
probability mass function of observation data. GANs are
trained by implicit computing and maximizing the similarity
of probability distribution between the real data and gener-
ated data from the candidate model. The training of GANs
contains the optimization of discriminator parameters that can
maximize the classification accuracy, and also the finding of
generator parameters that can maximally generate fake data
to confuse the discriminator. The cost of training can be
formularized as

min
θg

max
θd

V (G, D) = Exr∼pr

[
log (D (xr ))

]
+ Exg∼pg

[
log

(
1− D

(
xg

))]
, (1)

where θd, θg, xr, and xg are the discriminator parameters, gen-
erator parameters, real data, and synthetic data, respectively,
D(x) returns the probability (0 to 1) of x belonging to the real
data (pr ) or generated data (pg) distributions. Specifically, the
input data to the generator are random noises, which can be
stated as

xg = G(z), (2)

where variables G and D denote the generator and discrimi-
nator, respectively.

In the training procedure, the parameters in one model are
updated, whereas the parameters of the other model are fixed.
Goodfellow et al. [28] demonstrated that for a fixed generator,
the optimal discriminator is D(x) = pdata(x)/(pdata(x) +

pg(x)). They also proved that the generator is optimal when
pdata(x) = pg(x), which is equivalent to the situation that the
probability for any sample predicted by an optimal discrimina-
tor is 0.5. In other words, the desired state is that the generator
can maximally fool the discriminator to prevent any accurate
distinguishing between the real and fake samples.

Initially, the fully connected layers were used in GAN
architectures for both generator and discriminator, and were
applied to three simple image data sets of MNIST, CIFAR-
10, and Toronto Face Data Set [38]. Arjovsky et al. [42]
proposed the WGAN with an alternative cost function which
is an approximation of the Wasserstein distance (also known

as the Earth-Mover distance). Considering its stability and fast
convergence in training, the WGAN was implemented as the
basic model in this study.

The adversarial training of conventional GANs can be
formularized by minimizing the Jensen-Shannon divergence
between the probability of real and generated data. However,
the discontinuity of the Jensen-Shannon divergence makes it
hard to provide useful gradients to the generator for opti-
mally updated parameters, which is one of the main reasons
for the instability of GANs. To solve this problem, the
Jensen-Shannon divergence is replaced with the Wasserstein
distance in WGAN as

W (Pr , Pg) = inf
γ∼5(Pr ,Pg)

E(Pr ,Pg)∼γ [||xr − xg||], (3)

where 5(Pr , Pg) denotes all the possible joint distributions
of real distribution Pr and generated data distribution Pg .
The Wasserstein distance is continuous and differentiable
almost everywhere, and thus can provide useful reasoning
gradients to optimize generator. Since it is difficult to imple-
ment (3), the early studies on WGAN normally provided the
Kantorovich-Rubinstein duality to measure the Wasserstein
distance as

W (Pr , Pg)=
1
K

sup
|| f ||L≤K

Ex∼pr [ f (xr )]−Ex∼pg [ f (xg)], (4)

where f denotes the set of 1-Lipschitz function. In real imple-
mentations, f is replaced by discriminator D and || f ||L ≤ K
is replaced by ||D||L ≤ 1, and the final loss function can be
formularized as

min
θG

max
DG

L(Pr , Pg) = Exr∼Pr [D(xr )]−Exg∼Pg [D(xg)]. (5)

In GAN applications, given the fact that the convolutional
layers are powerful to extract features and with relatively
less computational burden compared with the fully connected
layers, many EEG-relevant works concentrate more on CNNs.
Generally, most studies utilized 2D convolutional layers in
GAN-based models to extract EEG features. Some of them
treated 64 EEG channels like a map of 8 × 8, however,
the whole model could not contain too many convolutional
layers and failed to extract deep latent features in EEG. Some
other studies directly reshaped the EEG time series into a
format of image, but this inappropriate operation may cause
irreversible damage to local features. Considering that the 1D
convolutional layer is extremely well suited for EEG time
series, in this work, the 1D convolutional and transposed
convolutional layers were implemented in the generator, and
the 1D convolutional layers were used in the discriminator.
The basic blocks and architecture for both the generator
and discriminator are illustrated in Fig. 1, and the detailed
input/output data are shown in TABLEs I and II. The training
process can be seen in Fig. 2, where the contaminated EEG
data y is input to the generator, and then decomposed and
reconstructed by the generator, with output of the generated
data G(y). Thereafter, the generated G(y) and the real data
together are input into the discriminator, which gives the
probability of the input belonging to real data that ranges
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Fig. 1. (a) The basic blocks and (b) architecture for both the generator
and discriminator. The BN in ConvBlocks denotes the batch normaliza-
tion and FC in Discriminator denotes the fully connected layers.

TABLE I
PARAMETERS FOR THE GENERATOR

from 0 to 1. The discriminator can be seen as a binary clas-
sifier, and training of the discriminator strengthens its ability
to distinguish contaminated signals, enforcing the generator
to remove artifacts and generate filtered data as perfectly as
possible. It is worth noting that the output G(y) from the
generator is the input to the discriminator, and the outputs
of the denoised data y and contaminated data n from the
discriminator are D(G(y)) and D(n). Algorithm 1 summarizes
the procedure and default parameters for AR-WGAN.

2) Denoised AutoEncoder: The Autoencoder (AE) is one
of the generative and unsupervised learning models in the
deep learning field with encoder-decoder architecture and
is commonly used for the task of representation learning.
Deep AEs can learn high-order statistical information from

TABLE II
PARAMETERS FOR THE DISCRIMINATOR

Fig. 2. The training process of AR-WGAN for denoising, where the
generator received contaminated data and output the denoised data,
and the discriminator received both initial and denoised data. After
multiple rounds of adversarial training, the generator could remove
artifacts in the contaminated data quite well.

the input data and are usually built symmetrically concern-
ing their dimensionality. Normal AEs mainly contain three
parts, i.e., encoder, bottleneck, and decoder. The encoder is
a set of blocks to compress input data to the bottleneck.
The responsibility for the bottleneck is restricting the flow
of information from encoder to decoder, allowing the most
important information to pass through. The bottleneck can
also be seen as a compressed representation of the input data
in higher dimensional space. Finally, the decoder serves as a
decompressor to reconstruct the bottleneck’s output.

Inspired by the work of Leite et al. [34], we designed a
Denoised AutoEncoder (DAE) to remove artifacts from EEG
data and compared the results with the cleaned EEG achieved
by the AR-WGAN. We implemented 1D convolutional lay-
ers with 1D max-pooling layers in the encoder, and 1D
convolutional layers followed by 1D upsampling layers in
the decoder. The 1D max-pooling layers concentrate neurons
and use the maximum value to represent these concentrated
neurons, reducing the dimensionality after each convolutional
operation. The 1D upsampling layers in the decoder restore the
dimensionality to compensate for the effect caused by the 1D
max-pooling. To prevent possible overfit of the discriminator,
we implemented dropout regularization in every convolutional
block.

3) Wiener Filter: The Wiener filter (WF) is a noise removal
algorithm based on statistical approaches, which also served
as a comparison for the method proposed by this work. The
main idea of WF is to minimize the overall mean square error
or the average squared error between the denoised and original
signals, which means the difference between the pure and
filtered signals should be minimized [47]. The wiener filter
produces an estimate d̂ of the filtered signal, i.e., d̂ = W T Y .
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The final optimization goal can be represented by a minimum
mean squared error (MMSE) as

min
W

E{||d −WT y||2}. (6)

4) Empirical Mode Decomposition: The Empirical Mode
Decomposition (EMD) method is a data-driven and adaptive
method, which breaks down signals into several components
without leaving the time domain. Unlike the Fourier transform,
the EMD method does not require signals to be stationary
over time. The main idea of EMD method is to decompose
the nonstationary and nonlinear signals x(t) into intrinsic
mode functions (IMFs). Each IMF is assumed to capture a
meaningful local frequency and different IMFs do not exhibit
the same frequency at the same time [48]. Considering the
frequency characteristics of EEG and the aim of artifact
removal, in practical applications, high-frequency IMFs would
be deleted, and the rest of IMFs and the residue are summed
to reconstruct denoised EEG data. In this paper, we adopted
the EMD method proposed by Bono et al. [49] to filter EEG
and compared its performance with our proposed method.

B. Datasets
In this paper, we used a public dataset (EEGdenoiseNet

Benchmark Dataset) and a self-collected dataset to evaluate
the performance of proposed approach. The EEGdenoiseNet
is a semi-synthetic EEG dataset released by Zhang et al
[8], which contains 4514 clean EEG segments, 3400 ocular
artifact segments, and 5598 muscular artifact segments. In the
EEGdenoiseNet, the EEG, EOG, and EMG data are acquired
from several public and open-access datasets, and then pre-
processed including segmentation, filtering, and resampling
with the frequency of 256 Hz. For the self-collected dataset,
totally four healthy subjects were recruited, where 64-channel
raw EEG data were acquired from three of them (Neuroscan
EEG Acquisition System, USA), and EMG (Acquisition System
of Neuromuscular Electrophysiological Signals, NES-64B01,
SIAT, CAS, China) and EOG (Neuroscan EEG Acquisition
System, USA) artifacts were from the rest one. Before the
superimposition of artifacts into EEG, the self-collected raw
EEG data were filtered, and their initial artifacts were manually
removed. Health examination before experiments showed that
all subjects were in a good mental state and qualified to
participate in the whole experimental procedure. The experi-
mental protocol of this study was approved by the Institutional
Review Board of Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences (IRB Number: SIAT-IRB-
190315-H0325). All subjects agreed to participate in the study
and signed informed consent permission for the publication of
data for scientific and educational purposes.

The contaminated EEG can be seen as a linear combination
of pure EEG and bio-signal artifacts, which can be written as

y = n + λ · d, (7)

where y denotes the contaminated EEG, n denotes the pure
EEG, d denotes the ocular or myogenic artifacts, and λ is the
parameter to control signal-to-noise ratio (SNR) in the mixed

signal y. The SNR can be written as

SN R = 10× log
RM S(n)

RM S(λ · d)
, (8)

where RMS is the root mean square defined as

RM S(d) =

√√√√ 1
N

N∑
i=1

d2
i , (9)

where N denotes the number of data segments and di denotes
the i th data segments.

C. Preprocessing
Considering the public dataset has different data lengths

for EEG, EMG, and EOG, we set the shortest length of
3400 among the three signals as the data length for processing.
The self-collected data were resampled with a frequency
of 256 Hz, which was the same as the frequency of the public
data, and the data length was segmented as 3400, as well.

For the self-collected datasets, the EEG from three amputees
was randomly mixed to evaluate the cross-subject performance
of our proposed model, and the data size was kept consistent as
that of public dataset, which was 512× 3400 for all the EEG,
EMG, and EOG. Besides, all the public and self-collected
data were normalized to avoid possible gradient exploding
and vanishing during training, and EMG and EOG artifacts
were artificially added to pure EEG according to (7). Then,
448 and 64 samples were set as the training and testing data,
respectively, to evaluate the generalization and robustness per-
formances of the models. To better simulate the real situation,
the original and artificial data with the sample amplitude were
mixed, i.e., the amplitudes of the added EOG (AEOG) and
EMG (AEMG) artifacts were the same as that of EEG (AEEG).
If only one type of artifact was superimposed, the amplitude
(AEOG or AEMG) was doubled to ensure the total amplitude
(Atotal) equals to three times of AEEG.

D. Evaluation Metrics
To quantitatively assess the performance of models, some

metrics commonly used in the benchmark evaluation methods
were also adopted in this work, including the power ratios,
relative root mean squared error in temporal (RRMSEt) and
spectral (RRMSEs) domains, and temporal CC, which are
expressed as

R RM SEt =
RM S(g(y)− n)

RM S(n)
, (10)

R RM SEs =
RM S(P SD(g(y))− P SD(n))

RM S(P SD(n))
, (11)

and CC =
Cov(g(y), n)

√
var(g(y)var(n))

, (12)

where y is the contaminated data, n is the Initial data, g(y)

denotes the denoised data passed through the model, RMS is
the root mean square defined as (9), PSD is the power spectral
density of the input data, and var and cov denote the variance
and covariance, respectively.
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Fig. 3. Denoising performance of different methods on the public dataset in the time domain.

Algorithm 1 AR-WGAN. We Use Default Values of ndisc = 1,
α = 0.001, β1 = 0.5, β2 = 0.999, c = 0.01
Require: The number of discriminator iterations per generator

iteration ndisc, the batch size= 5, Adam hyper-parameters
α, β1, β2, the clipping parameter c.

Require: Initial discriminator parameters w0, initial generator
parameters θ0.

Input: Initial data n to the discriminator, contaminated data y to the
generator.

1: while θ has not converged do
2: for t = 1, . . . , ndisc do
3: sample {x(i)}mi=1 ∼ Pn a batch from initial data.
4: sample {x(i)}mi=1 ∼ p(z) a batch of prior samples.
5: L(i)

← ∇w[
1
m

∑m
i=1 dw(x(i))− 1

m
∑m

i=1 dw(gθ (z(i)))]

6: w← Adam(w, L(i), α, β1, β2)
7: w← clip(w,−c, c)
8: end for
9: sample a batch of latent variables {z(i)

}
m
i=1 ∼ p(z).

10: θ ← Adam(∇θ
1
m

∑m
i=1−Dw(Gθ (z)), θ, α, β1, β2)

11: end while

III. RESULTS

Figs. 3 and 4 illustrate a comparison of denoising per-
formance among different methods on the public and
self-collected datasets in the time domain, respectively, where
“initial” denotes the original data from either the public
database or the self-collected signals, “contaminated” means
the data that were firstly denoised and then manually superim-
posed with EMG and EOG artifacts, and “denoised” represents
the final data after denoising. It should be noted that for
clearer visualization, the offsets were artificially introduced

into the denoised data, and thus the amplitudes are changed
and do not reflect true values. As can be seen, the proposed
AR-WGAN shows better denoising performance for both
public and self-collected data than other three methods, which
may properly remove the artifacts, and therefore the output
can perfectly match the initial data. Even though the other
three methods can also filter the artifacts, some important and
detailed time domain features are not preserved. For instance,
some spikes contained in the initial data are abandoned and
the denoised data are quite smooth. In special, DAE fails to
preserve most features and the output is almost untrustworthy,
even as reported its loss curve shows that the model is con-
verged; WF just smoothens the contaminated data and some
obvious artifact spikes still exist; although EMD performs a
little bit better than DAE and WF, some obvious artifacts are
still contained in the denoised data.

Figs. 5 and 6 show the time-frequency analysis of denoising
performance for different methods on the public and self-
collected datasets, respectively, which could reflect energy
changes after the removal of artifacts. By adding the artifacts
artificially, the energy of contaminated data is much higher
than that of initial data. As shown in the figures, AR- WGAN
can effectively eliminate the artifacts and reduce the energy in
high-frequency bands that contain most artifacts; the DAE and
WF processed data lose much information in both time and
frequency domains and could not be used in the following
analysis; the data processed by EMD are much better in
the time domain compared with those by DAE and WF,
however, they are still noisier in contrast with the output by
AR-WGAN.
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TABLE III
THE POWER RATIOS IN DIFFERENT EEG FREQUENCY BANDS OF DIFFERENT METHODS ON THE PUBLIC DATASET

TABLE IV
THE POWER RATIOS IN DIFFERENT EEG FREQUENCY BANDS OF DIFFERENT METHODS ON THE SELF-COLLECTED DATASET

Figs. 7 and 8 summarize the calculated temporal RRMSE,
spectral RRMSE, and temporal CC to visualize the perfor-
mance of different methods on the public and self-collected
datasets, respectively. In general, AR-WGAN exhibits the best
performance across all the methods. For the public dataset,
AR-WGAN has the lowest temporal and spectral RRMSE
and highest CC with limited standard deviation. For the self-
collected dataset, AR-WGAN still owns the lowest temporal
and spectral RRMSE. Although it shows similar CC as DAE
and EMD, its standard deviation is less.

TABLEs III and IV summarize the power ratios in different
EEG frequency bands of different methods on the public and
self-collected datasets, respectively, where EEG signals are
divided into five frequency bands, i.e., delta (1-4 Hz), theta
(4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-
80 Hz). The mean SNRs across all the contaminated data from
the public and self-collected datasets were calculated as −4
and −5 dB, respectively, and power ratios are used to eval-
uate the signal reconstruction quality under these computed
mean SNRs. As can be observed from the tables, generally,
the signals denoised by AR-WGAN in different frequency
bands have power rations relatively closer to the initial data,
especially in the frequency bands of delta and theta which
we are normally interested in. This result means the proposed
method can reconstruct signal powers very well, while other
methods cannot properly filter the contaminated data and alter
the power ratios of processed data.

IV. DISCUSSION

EEG provides a non-invasive way to reflect brain waves
and activities with high fidelity, which can be used in BCI
for real-time control of external devices and interaction with

environments. However, EEG signals recorded on the scalp
are inevitably contaminated by some other bio-signals such
as EMG and EOG, and most of the existing filtering meth-
ods are usually time- and labor-consuming. Many traditional
ML-based denoising methods have been studied and imple-
mented, like the Wiener Filter, EMD-based methods, and
ICA-based methods. These approaches need to set pre-defined
parameters, and visual inspection and manual operations
are required, which is time-consuming, laborious, subjective,
and inappropriate for online and real-time implementations.
Besides, the experiments in this work showed that transient,
large-amplitude artifacts cannot be fully removed by these tra-
ditional methods. Many works tried to fix these problems with
DL-based models, while these models are not robust enough
when encountering small perturbations. Thus, an automatic,
fast, and robust filtering algorithm that can support massive
data processing is always needed. In this work, we proposed an
artifact removal method called AR-WGAN, which can effec-
tively remove artifacts and extract useful EEG features, and its
denoising performance has been evaluated with comparisons to
some commonly used methods including DAE, WF, and EMD.
We used a dataset from the public databank and a dataset
from our lab, to confirm the performance of proposed model.
In addition, to simulate the most realistic scenarios, both EMG
and EOG artifacts were mixed into EEG for signal denoising.

It is focused on how much information of initial data could
be retained in the denoised signal, and hence in this work
we analyzed the data in both time and frequency domains
and calculated RRMSE and CC to evaluate the performance
of different denoising methods, where RRMSE is used to
measure the degree of information retention of initial data and
CC reflects the similarity between the denoised and initial
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Fig. 4. Denoising performance of different methods on the self-collected dataset in the time domain.

Fig. 5. Time-frequency analysis of denoising performance for different methods on the public dataset.

data. The results on both public and self-collected datasets
suggest that our proposed AR-WGAN has superiority over
the reference methods in removing artifacts while preserving
EEG features as much as possible, which may serve as a

multipurpose and universal tool for extracting EEG from
mixed signals.

The well-trained generator in AR-WGAN behaves like a
non-linear function that can implement the decomposition
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Fig. 6. Time-frequency analysis of denoising performance for different methods on the self-collected dataset.

Fig. 7. The calculated temporal RRMSE, spectral RRMSE, and CC for different methods on the public dataset.

and the following reconstruction of contaminated signals.
The 1D convolutional operations capture the latent features
that contain artifactual components, and the 1D transposed
convolutional operations reconstruct these components super-
vised by the discriminator, trying to minimize the difference
between the original and reconstructed data. Considering that
the deep convolutional layers were adopted by the model and
some important features might deteriorate in the data flow,
we implemented residual connections to ensure that the data
quality would not be damaged before and after convolutions.
We tried to go deeper with the transposed convolutional layers
in both generator and discriminator, but the performance was

not significantly improved, which proves that the existing
convolutional blocks are good enough to extract EEG features.
Besides, we found that adding 1D max pooling layers could
significantly improve the performance of generated data. The
intuitive interpretation of max pooling is that the network
concentrates on some particular features of initial EEG and
the network parameters are decreased, and thus the computa-
tional load and probability of overfitting are reduced and the
performance is improved.

Theoretically, DAE contains an encoder and decoder to
decompose data, extract features, and reconstruct data, which
coincidences with the generator of AR-WGAN. However,
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Fig. 8. The calculated temporal RRMSE, spectral RRMSE, and CC for different methods on the self-collected dataset.

DAE cannot learn to efficiently generalize the model and
extract features without adversarial training, and the upsam-
pling operation may not accurately reconstruct data, with
low-quality output. WF aims to minimize the mean squared
error between the expected and initial signals, which can
preserve overall trends and smoothen signals in the time
domain, but important features are usually lost and large
artifact drifts are not removed. EMD can decompose data into
several IMFs and a residual component, but it is also sensitive
to noise and problematic in mode mixing.

Compared with other commonly used artifact removal algo-
rithms which rely on prior knowledge and manual artifactual
component removal, AR-WGAN can obtain better achieve-
ments with arbitrary EMG and EOG artifacts. Once the model
is well-trained, the processing speed is fast and the model can
filter massive data automatically. Besides, the quality of data
filtered by AR-WGAN can be observed by the discriminator,
which informs the generator whether the filtered data are still
noisy. The training process would be terminated when the
filtered data are good enough. By comparison, other DL-based
filtering methods simply remove artifacts and the filtering
model cannot be judged directly. Moreover, the results from
the self-collected dataset show that AR-WGAN can cope
with the data from different subjects and perform pretty well,
meaning that the model may have a certain cross-subject
ability and cope with EEG data that the model never sees.
Most importantly, the EEG data in real applications are
much more complicated, containing some perturbations and
large-amplitude artifacts caused by headset motions, which are
approximately insolvable by simple DL models but capable of
AR-WGAN.

Even though the AR-WGAN shows great effectiveness
in removing large-amplitude artifacts and handling with
inevitable perturbations, it is worth noting that there exist
several improvements for the proposed AR-WGAN method.
The model tends to excessively lower the energy in the low-
frequency band, despite it has strong capability to remove
EMG and EOG artifacts that are mostly in high- and low-
frequency bands, respectively. However, the initial EEG data
still contain some energy in the band of 0-20 Hz, and it is

challenging for the current model to accurately remove extra
noise without changing the original energy, which is a common
issue as reported in other work [34]. Besides, this work only
focuses on the information in time and frequency domains,
while the spatial information between EEG channels should be
considered in future work. Additionally, the proposed method
still needs some manually-processed data to train the model.
In applications, it needs to implement some classical methods
like independent component analysis (ICA) to process EEG
data in advance, and then input purified and raw data to the
discriminator and generator, respectively, to train the model.
Therefore, it is suggested to design an unsupervised filtering
network that can improve itself during training without anno-
tated data.

V. CONCLUSION

In this work, we proposed a denoising network called
Artifact Removal Wasserstein Generative Adversarial Network
(AR-WGAN) and compared its performance with some other
commonly used denoising methods based on two datasets. The
experimental results demonstrated that the proposed method
has superiority over the conference methods on EEG denois-
ing. Additionally, this framework can extract EEG features
from raw data of any number of channels and also be extended
to other signal-filtering tasks.
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