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Abstract— The target recognition performance of
steady-state visual evoked potential (SSVEP)-based brain-
computer interfaces can be significantly improved with a
training-based approach. However, the training procedure
is time consuming and often causes fatigue. Consequently,
the number of training data should be limited, which
may reduce the classification performance. Thus, how to
improve classification accuracy without increasing the
training time is crucial to SSVEP-based BCI system. This
study proposes a transfer-related component analysis
(TransRCA) method for addressing the above issue. In this
method, the SSVEP-related components are extracted from
a small number of training data of the current individual
and combined with those extracted from a large number of
existing training data of other individuals. The TransRCA
method maximizes not only the inter-trial covariances
between the source and target subjects, but also the
correlation between the reference signals and SSVEP
signals from the source and target subjects. The proposed
method was validated on the SSVEP public Benchmark
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and BETA datasets, and the classification accuracy and
information transmission rate of the ensemble version of
the proposed TransRCA method were compared with those
of the state-of-the-art eCCA, eTRCA, ttCCA, LSTeTRCA,
and eIISMC methods on both datasets. The comparison
results indicate that the proposed method provides a
superior performance compared with these state-of-the-art
methods, and thus has high potential for the development
of a SSVEP-based brain-computer interface system with
high classification performance that only uses a small
number of training data.

Index Terms— Brain–computer interface, steady-state
visual evoked potentials, transfer learning, spatial filter.

I. INTRODUCTION

ABRAIN-COMPUTER interface (BCI) is a communica-
tion channel that allows users to control external devices

based on brain signals without using conventional peripheral
nerve and muscle pathways [1]. BCIs are widely used to
help individuals with disabilities convey their intentions to
external devices in various applications, such as controlling a
wheelchair, manipulating a robot arm, moving a mouse cursor,
and typing characters with a speller [2]. Among them, spelling
alphanumeric characters is the most convenient, direct, and
informative way of communication for disabled people [3].

Most conventional non-invasive BCI spellers are based on
electroencephalogram (EEG) signals such as motor imagery,
the P300 component, and steady-state visual evoked poten-
tials (SSVEPs) [3]. SSVEPs are both time- and phase-locked
responses of the visual nervous system induced by visual
stimulation with stationary periodic oscillations [4]. In SSVEP
based spellers, each character flashes at a unique frequency
(SSVEP stimulation). Thus, a fixation on each target character
will induce a unique corresponding SSVEP. Through the iden-
tification of SSVEPs, the BCI system can recognize and output
the target character at which the user is gazing. SSVEP-based
BCIs have been attracting much attention because of their
multi-command output, high classification accuracy, and high
information transmission rate (ITR) [5].

The target recognition algorithm is the core technology in
SSVEP-based BCIs. According to whether the training (cali-
bration) data are available, these target recognition algorithms
can be divided into two principal categories, i.e., training-
free and training-based methods [6]. The training-free method
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can realize plug-and-play operation without the need for
training procedures in advance. In the training-free approach,
spatial filtering methods such as minimum energy combination
(MEC) [7], canonical correlation analysis (CCA) [8], and filter
bank CCA (FBCCA) [9] are used to filter out the noisy signals
to improve the signal-to-noise ratio of the SSVEPs. Basically,
such training-free methods use an artificial SSVEP model
composed of a series of sine and cosine signals to detect
SSVEPs.

Recent studies have shown that, compared with arti-
ficial SSVEP models, an individualized SSVEP model
obtained from a training procedure can better represent
individual-specific SSVEPs and are more robust to noise
or non-stationary signals, thereby significantly improving
classification performance [10], [11]. Some of the latest
training-based identification methods, such as extended CCA
(eCCA) [12], task-related component analysis (TRCA) [13]
and ensemble TRCA (eTRCA) [14], can achieve substantially
higher recognition performance than training-free methods.
By contrast, if the training data are insufficient, their per-
formance will deteriorate significantly [14]. Thus, a training-
based method needs a large number of training data obtained
in advance. In addition, this training procedure is susceptible
to changes in the environment and electrode placement, and
the data must be re-collected before each use, which is time
consuming and becomes an additional burden in practical use.
Therefore, for a practical SSVEP-based BCI, a more efficient
learning strategy based on a small number of training data
would be desirable [1].

Transfer learning is a powerful machine learning tech-
nique used to reduce the time of repetition in the training
procedure. It can transfer labeled data from distinct trials/
subjects/tasks/devices, referred to as the source domains, to the
current ones, referred to as the target domains [15]. According
to the original definition of SSVEPs, the amplitude and phase
of the oscillation components caused by visual stimulus remain
unchanged over a long duration [16]. Although the SSVEPs
of different subjects may differ, the spectral distribution char-
acteristics of the discrete frequency components induced by
the same SSVEP stimulus should be similar. If such general
and essential characteristics of the SSVEPs of source subjects
(a set of selected subjects whose data were used as training
data, hereafter abbreviated as SS) can be fully learned and
transferred to the target subject (the current subject whose data
will be identified, hereafter abbreviated as T S), the detector
can achieve high performance at a low training cost.

As a benchmark target recognition algorithm for SSVEPs,
CCA is a multi-variable statistical method used to analyze
the correlation relationship between two sets of variables. The
basic principle of CCA used to detect SSVEPs is as follows:
A pair of spatial filters are used to filter the multi-channel
SSVEP signals and reference signals (a series of sine-cosine
signals reflecting the fundamental and harmonic oscillation
characteristics of the SSVEPs) separately to obtain a pair
of linear combinations (canonical variables). The correlation
between these two canonical variables indicates the overall
relevance relationship between the original two sets of linear
combinations, thus extracting the frequency components of

the SSVEPs [17]. The CCA method optimizes the spatial
filter by maximizing the correlation between the pair of
canonical variables, i.e., the correlation between the SSVEP
signals and reference signals [6]. Some extensions of the
standard CCA have been proposed to improve performance,
such as the L1-regularized multi-way CCA (L1-MCCA) [18],
individual template-based CCA (IT-CCA) [19], multiset
CCA (MsetCCA) [20], filter bank CCA (FBCCA) [9], and
eCCA [12]. Although these extensions of the CCA method
optimize the sine-cosine references or subject-specific refer-
ences, the essence is still the optimization of the spatial filter
by maximizing the correlation between the SSVEP signals and
reference signals. However, in this optimization, only the aver-
age value of the sample not the entire sample distribution is
considered.

Another benchmark target recognition algorithm for
SSVEPs is the TRCA method, which learns the spatial filter
that reduces the background EEG interference by maximizing
the inter-trial covariance [13], [14]. In this approach, it is
assumed that the neuroimaging data obtained during the exe-
cution of a task is composed of some specific task-related
components (e.g., the hemodynamic responses of SSVEPs)
and task-unrelated components (interference signals such as
head motion artifacts) [21]. On the basis of this consid-
eration, TRCA presumes that the signals that consistently
and steadily appear in each task trial can be regarded as
the components related to the task [13]. By maximizing the
sum of the covariance between task trials, the consistent
activities across trials can be enhanced and extracted as the
task-related components [14]. Although some extensions of
TRCA methods, such as ensemble TRCA (eTRCA) [14] and
group TRCA (gTRCA) [22] have been proposed, the essence
of maximizing the sum of the covariance between task trials
remains unchanged, but the correlation between the SSVEP
signals and the reference signals is not considered. Moreover,
the optimization objective of TRCA is only allowed one spatial
filter, which restricts its usability among different types of data.

Recently, some cross-subject methods have been proposed
to use the knowledge from other subjects. Considering
that the SSVEP features of different subjects are similar,
Yuan et al. proposed the transfer template-based CCA (ttCCA)
method [23], in which the source templates are obtained
by averaging multiple trials from the existing SS and then
using CCA to calculate the correlation coefficient with the
test data of the current T S. Chiang et al. proposed the
LST-TRCA method, which uses least-squares transformation
(LST)-based transfer learning to transform the trials of the
SS so that they are more similar to those of the T S, and
combines them into a training set for TRCA training [24].
Wang et al. proposed the inter- and intra-subject correla-
tion (IISMC) method [25], in which the subject-specific
information and SSVEP task-related information are simulta-
neously obtained by maximizing the intra- and inter-subject
correlations. Although these methods transfer cross-subject
knowledge to improve the classification performance, they are
still based on CCA and TRCA, the transfer ability of these
methods is restricted by the limitations of the CCA and TRCA
methods.
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In response to the small number of training data available
in practical BCI applications, this study aimed to enhance
the detection of SSVEPs by combining the subject-specific
SSVEP characteristics and SSVEP characteristics transferred
from other subjects. Inspired by the CCA and TRCA methods,
the transfer-related component analysis (TransRCA) method is
proposed in this study, which maximizes the inter-trial covari-
ances between the SS and T S. TransRCA also maximizes
the correlation between the reference signals and SSVEP
signals from both the SS and T S. Based on this strategy,
the TransRCA method combines the advantages of both CCA
and TRCA, in which both the frequency components and the
task-related components can be extracted; thus, although it
only relies on a small number of training data, it can still
obtain fair recognition performance for BCI applications.

II. METHODS AND MATERIALS

This study was carried out in accordance with the Decla-
ration of Helsinki and approved by the ethics committee of
the Affiliated Zhongda Hospital of Southeast University (No.
2016ZDSYLL002-Y01).

A. SSVEP Dataset
To evaluate the TransRCA method, the classifica-

tion performance was tested on the SSVEP Benchmark
datasets [26], [27]. The details of these two datasets are
described as follows:

1) Benchmark Dataset: Wang et al. [26] published the
Benchmark dataset in 2017. This dataset was recorded from
35 healthy subjects (17 female and 18 male subjects with
an average age of 22 years) with normal or corrected-to-
normal vision. The SSVEP data were recorded based on
a 40-target BCI speller (consisting of five rows and eight
columns of characters, including 26 English letters, ten digits,
and four symbols). The 40 characters were coded using a
joint frequency and phase modulation method [28], where the
frequency ranges from 8 to 15.8 Hz in interval of 0.2 Hz, and
the phase ranges from 0 to 1.5π in intervals of 0.5π . For each
subject, the experiment consisted of six blocks, and each block
contained 40 trials corresponding to all 40 characters displayed
once in random order. Therefore, each character had six trials
(we define the number of trials for each target as Nt , where
Nt = 6) and thus 240 trials of data were recorded for each
subject’s data set. Each trial started with a 0.5-s visual cue,
prompting the users to shift their eyes to the target character
(i.e., the SSVEP target) as soon as possible. After the cue,
all SSVEP stimuli flicker simultaneously for a 5-s duration.
Then, the screen was blank for 0.5 s to enable the subject to
rest before the next trial.

The whole-head EEG data were recorded using a Synamps2
EEG system (Neuroscan, Inc.) at a sampling rate of 1000 Hz
with the bandwidth range of 0.15–200 Hz according to the
international extended 10-20 system, and the reference elec-
trode was placed at Cz. Electrode impedances were kept below
10 K� during recording. A notch filter of 50 Hz was applied
to remove the power-line noise during recording and all data
were downsampled to 250 Hz. In this study, nine-channel EEG

data over the occipital region (Pz, PO5, PO3, POz, PO4, PO6,
O1, Oz, and O2) and the data during [0.14 s, 0.14+d s] were
selected as the SSVEP signals, where d is the data length used
in the analysis. Adding a latency of 0.14 s in the SSVEP data
analysis was recommended by the dataset creators [26].

2) BETA Dataset: Liu et al. [27] published the BETA dataset
in 2020. This dataset was recorded from 70 healthy subjects
(28 female and 42 male subjects with an average age of
25.14 years). Like the Benchmark dataset, the BETA dataset
was also based on a 40-target BCI speller and was coded using
a joint frequency and phase modulation method as described in
the above Benchmark dataset. For each subject, the experiment
consisted of four blocks, and each block contained 40 trials
corresponding to all 40 characters displayed once in random
order. Therefore, each character had four trials (Nt = 4) and
thus 160 trials of data were recorded for each subject’s data
set. As for the Benchmark dataset, each trial started with a
0.5-s visual cue. After the cue, all SSVEP stimuli flickered
simultaneously for a 2-s duration for the first 15 subjects and
a 5-s duration for the remaining 55 subjects. After the flicking
duration, there was a 0.5 s duration so that the subject could
rest.

The EEG data acquisition for BETA dataset was exactly the
same as the Benchmark dataset that is described above. In this
study, the preprocessing used for the Benchmark dataset was
also used for the BETA dataset. A notch filter of 50 Hz was
applied to remove the power-line noise during recording and
all data were downsampled to 250 Hz. The same nine-channel
EEG data over the occipital region (Pz, PO5, PO3, POz, PO4,
PO6, O1, Oz, and O2) and the data of [0.13 s, 0.13+d s] as
for the above Benchmark dataset were selected as the SSVEP
signals. Adding a latency of 0.13 s in SSVEP data analysis
was recommended by the dataset creator [27].

B. CCA and eCCA
Standard CCA is a multi-variable statistical method that can

maximize the correlation between two sets of data. Recently,
it has been used as a benchmark training-free recognition
algorithm for SSVEP-based BCIs [6]. By finding a pair of
spatial filters wX and wYn , CCA can maximize the correlation
between x = X T wX and yn = Y T

n wYn using the following
formula:

max
wX ,wYn

ρn (x, yn) =
E

[
xT yn

]√
E

[
xT x

]
E

[
yT

n yn
]

=
E

[
wT

X XY T
n wYn

]√
E

[
wT

X X X T wX
]

E
[
wT

Yn
YnY T

n wYn

]
(1)

where X denotes the single trial multi-channel SSVEP signals
and Yn denotes the reference signals corresponding to the n-th
SSVEP stimulus, which is constructed of a series of sine and
cosine signals. The SSVEP target can be obtained by selecting
the maximal correlation coefficients as follows:

ft = max
n

ρn, n = 1, 2, . . . , N f (2)

where N f denotes the number of SSVEP targets.
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Chen et al. proposed the eCCA method [12], in which,
in addition to the canonical correlation between the test data
and the sine-cosine reference signals, the canonical correlation
between the test data and the individual training data were also
calculated. Thus, essentially, eCCA is a training-based method
developed from the training-free standard CCA method. The
eCCA method is considered to have a classification perfor-
mance that is superior to that of the standard CCA and the
other extensions of standard CCA methods [10].

C. TRCA
As a benchmark training-based method, TRCA was intro-

duced by Tanaka et al. to extract the task-related components
by maximizing the reproducibility of the data over task
trials [13]. The objective for the task-related component extrac-
tion can be achieved by maximizing the inter-trial covariance,
while the maximization of the sum of the covariance can be
simplified as the following Rayleigh–Ritz eigenvalue problem:

ŵ = argmax
w

wT Sw

wT Qw
(3)

where ŵ is the desired spatial filter for maximizing the
reproducibility of the SSVEP features. The symmetric matrix
S can be obtained as the sum of the covariance of all possible
combinations of different task trials. Moreover, the symmetric
matrix Q indicates the sum of the variances of each task trial.
According to the Rayleigh–Ritz theorem, ŵ can be obtained
as the eigenvectors of the matrix Q−1S. The eigenvalues λ

of Q−1S, when arranged in a descending order, indicate the
task consistency among task trials. If the signals contain no
task-related components but only random variation, then the
corresponding eigenvalues will be limited to small values [13].

In the application of SSVEP-based BCIs, TRCA is usually
used as a spatial filter to eliminate the background activity
embedded in the EEG data. Using the individual training data
Xn of the n-th SSVEP stimulus, the corresponding spatial filter
wn can be obtained through TRCA. Once the spatial filter wn
is obtained, both the single trial test data X and the averaged
training data for the n-th SSVEP stimulus χn are filtered with
wn . Then, the target detection score can be calculated using
Pearson’s correlation coefficients as

rn = ρ
(

X T wn, χn
T wn

)
(4)

where ρ() is the Pearson’s correlation calculation of two
signals. Based on the detection scores corresponding to
all SSVEP stimulus frequencies, the SSVEP target can be
obtained as

ft = max
n

rn, n = 1, 2, . . . , N f (5)

D. TransRCA
In this study, we propose the TransRCA method, which

combines the advantages of TRCA and CCA and maximizes
the mean of the covariance between the trials from the SS
and T S, as well as maximizing the mean of the covariance
between the reference signals and training data from the
SS trials and T S trials separately. Let the h-th trial of the

SSVEP data of the SS and T S be described as X SS,h , h =

1, 2, . . . , Ns and XT S,h , h = 1, 2, . . . , Nt . We define Chs,ht
as the covariance between the hs-th trial of the SS and the
ht-th trial of the T S. Then, Chs,hs and Cht,ht are the variances
of each single trial of the SS and T S, respectively, expressed
as

Chs,ht = COV
(
X SS,hs, XT S,ht

)
(6)

Chs,hs = COV
(
X SS,hs, X SS,hs

)
(7)

Cht,ht = COV
(
XT S,ht , XT S,ht

)
(8)

The mean of Chs,ht , Chs,hs , and Cht,ht under all possible
combinations of trials is obtained as follows:

SSS,T S = ST S,SS =
1

Ns Nt

Ns∑
hs=1

Nt∑
ht=1

Chs,ht

=
1

Ns Nt

Ns∑
hs=1

Nt∑
ht=1

COV
(
X SS,hs, XT S,ht

)
(9)

SSS =
1

Ns

Ns∑
hs1,hs2=1

Chs1,hs2

=
1

Ns

Ns∑
hs1,hs2=1

COV
(
X SS,hs1, X SS,hs2

)
(10)

ST S =
1
Nt

Nt∑
ht1,ht2=1

Cht1,ht2

=
1
Nt

Nt∑
ht1,ht2=1

COV
(
XT S,ht1, XT S,ht2

)
(11)

The desired pair of spatial filters ŵtar and ŵsrc of Tran-
sRCA can be constrained by solving the optimization problem
as follows:

(ŵtar , ŵsrc) = argmax
wtar ,wsrc

wT
tar ST S,SS wsrc√

wT
tar ST S wtar

√
wT

src SSS wsrc

(12)

The above equation can be treated as a generalized eigende-
composition problem. Hence, wtar and wsrc can be obtained
as the eigenvalues corresponding to the eigenvectors of
the matrices S−1

T S ST S,SS S−1
SS SSS,T S and S−1

SS SSS,T S S−1
T S ST S,SS ,

respectively.
Fig. 1 and Supplementary Fig. 1 presents the flowchart of

SSVEP target identification using the proposed TransRCA
method. For the n-th SSVEP stimulus, X denotes the test
data of single trial of T S; X tar,n denotes the target templates,
which can be obtained by averaging the training set X tar,n
from the T S; Xsrc, j,n denotes all the trials of the j-th subject
in the source domain; Xsrc,n is formed by concatenating all
the Xsrc, j,n of all subjects together in the trial dimension;
X src,n denotes the average template formed by averaging all
the Xsrc,n in the trial dimension; Yn denotes the sine-cosine
reference signals. We define wX and wY as the CCA-based
spatial filters obtained from X and Yn ; wtar_re f,n and wre f _tar,n
are the TransRCA-based spatial filters obtained from X tar,n
and Yn ; wsrc_re f,n and wre f _src,n are the TransRCA-based
spatial filters obtained from Xsrc,n and Yn ; and wtar_src,n and
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Fig. 1. Diagram of the proposed TransRCA method. wtar_ref and wref_tar are the TransRCA-based spatial filters obtained from target domain
and sine-cosine reference; wsrc_ref and wref_src are the TransRCA-based spatial filters obtained from source domain and sine-cosine reference;
wtar_src andwsrc_tar are the TransRCA-based spatial filters obtained from target domain and source domain; ρ and η represent Pearson’s correlation
calculation and correlation coefficient, respectively.

wsrc_tar,n are the TransRCA-based spatial filters obtained from
X tar,n and Xsrc,n . The whole procedure consists of training
and test stages: in the training stage, the TransRCA-based
spatial filters from i) Xsrc,n and Yn , ii) X tar,n and Yn , and
iii) Xsrc,n and X tar,n , are each calculated. In the test stage,
five correlation coefficients, i.e., i) the canonical correlation
of X and Yn , and four different types of Pearson’s correlation
coefficients between the projected signals of ii) X T wtar_re f,n

and X
T
tar,nwtar_re f,n , iii) X T wtar_re f,n and X

T
src,nwsrc_re f,n ,

iv) X T wtar_src,n and X
T
tar,nwtar_src,n , and v) X T wtar_src,n

and X
T
src,nwsrc_tar,n are each calculated as ηn . According to

previous studies, the classification features based on an ensem-
ble of multiple correlation coefficients perform better than
those based on a single correlation coefficient [25], [29], [30].
Thus, for the n-th SSVEP stimulus, the following ensemble
correlation vector ηn , which combines the five correlation
coefficients ηn obtained in the test stage, is used in this
study:

ηn = [ηn(1), ηn(2), ηn(3), ηn(4), ηn(5)]T

=



ρ
(
X T wX (X, Yn), YnwY (X, Yn)

)
ρ

(
X T wtar_re f,n, X

T
tar,nwtar_re f,n

)
ρ

(
X T wtar_re f,n, X

T
src,nwsrc_re f,n

)
ρ

(
X T wtar_src,n, X

T
tar,nwtar_src,n

)
ρ

(
X T wtar_src,n, X

T
src,nwsrc_tar,n

)


(13)

The correlation coefficients are fused to form the detection
scores corresponding to all SSVEP stimuli as follows:

η̃n =

5∑
i=1

ηn(i) (14)

Finally, the SSVEP target can be identified using

ft = max
n

η̃n, n = 1, 2, . . . , N f (15)

Because our proposed TransRCA method contains the
essence of both CCA and TRCA methods and has certain
similarities with the IISMC method, these three methods were
used as the control methods to evaluate the SSVEP decoding
performance using our proposed TransRCA method. In addi-
tion, ttCCA and LST-eTRCA were used as control methods
because they are advanced cross-subject transfer learning
methods. Moreover, because an ensemble method yields bet-
ter performance, ensemble versions of the above-mentioned
methods (if they exist) were used in this study. Thus, five
control methods, i.e., the eCCA, eTRCA, ttCCA, LST-eTRCA,
and eIISMC methods, were compared with the proposed
eTransRCA method.

E. Data Splitting and Filtering Schemes
The data splitting schemes used for the proposed TransRCA

method and the other cross-subject control methods (i.e.,
ttCCA, LST-eTRCA, and eIISMC) are the same, i.e., both
datasets were subdivided into T S and SS groups, where, for
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Fig. 2. Comparison of the classification accuracy and ITR results under different numbers of training data in the target domain and data lengths
for the (a) Benchmark dataset and (b) BETA dataset. Ntrial denotes the number of training trials in the target domain, the asterisk indicates that
the accuracy of the TransRCA method is significantly better than that of the control methods (one-way analysis of variance and Bonferroni multiple
comparisons test, where *, **, and *** indicate statistical significance at p < 0.05, p < 0.01, and p < 0.001, respectively), and the error bar
represents the standard error.

the Benchmark dataset, one subject is the T S and 34 subjects
are the SS, and for the BETA dataset, one subject is the
T S and 69 subjects are the SS. The data were divided
into training and test sets using a leave-p-out (LPO) cross
validation method [31]. In this LPO method, the training set
consists of two parts: i) the training set of T S, which is from
the Ntrain = 1, 2, . . . , Nt − 1 randomly selected trials of the
T S (Nt = 6 for the Benchmark dataset and Nt = 4 for the
BETA dataset); ii) the training set of the SS, which is com-
posed of Nss subjects randomly selected from the SS group.
The training and test time required for different Nss were
investigated (see Supplementary Fig. 2) and it was found that
the training and test time increase sharply after Nss = 10 for
both datasets. Because a practical model should find a good
tradeoff between computational cost and efficiency [25], [32],
Nss was set to 10 in this study. By contrast, the test set
consists of the Ntest = Nt − Ntrain trials of the T S. This
process was repeated 10 times and the averaged classification
results of these 10 times were calculated as the result for
one T S.

In this study, to extract the independent frequency informa-
tion embedded in the harmonic components, a five sub-band
filter bank [9] (i.e., 8*n—90 Hz, n ∈ [1, 5], type I Chebyshev
IIR digital filter with high pass on the passband/stopband =

[6/4, 14/10, 22/16, 30/24, 38/32 Hz], low pass on the pass-
band/stopband = [90/100 Hz], passband ripple = 1 dB,
stopband attenuation=20 dB, and peak-to-peak passband rip-
ple = 0.5 dB) was performed for all the target recognition
methods as data preprocessing.

F. ITR
The ITR is an important index for evaluating target recog-

nition methods [33]. The ITRs under different numbers of
training trials in the target domain corresponding to different
target recognition methods were calculated using the following

formula, proposed in [34] and [35]:

ITR =
log2 C + Plog2 P + (1 − P) log2(

1−P
C−1 )

T/60
(16)

where C is the number of targets for selection, P is the
classification accuracy, and T is the time required to output
a target selection in each trial. The calculation times of the
SSVEP target recognition methods used in this study are
all very short (<50 ms, calculated by a 3.5 GHz 8 core/16
threads, i9 11900k CPU with 64 GB RAM and MATLAB
2021a); hence, T can be approximated as the sum of the visual
cue period (including the gaze shifting time) and the SSVEP
observation duration.

III. RESULTS

During transfer learning, the number of training trials in the
target domain will affect the classification performance of the
target recognition method. In addition, the time required for
target identification will also affect the classification perfor-
mance. Thus, a comparison of the classification accuracy and
ITR under different numbers of training trials in the target
domain and different data length corresponding to different
target recognition methods for the Benchmark dataset and
BETA dataset are shown in Fig. 2, where the upper row
represents classification accuracy, and the lower row represents
ITR results. In addition, the asterisks in the figure indicate that
the classification accuracy and ITR of the TransRCA method
are significantly better than that of the control methods (one-
way analysis of variance and Bonferroni multiple comparisons
test, where *, **, and *** indicate statistical significance
at p < 0.05, p < 0.01, and p < 0.001, respectively).
According to Fig. 2, the classification accuracy increases with
increases in data length. The proposed TransRCA method
obtained a significantly higher accuracy than the other methods
under most conditions. In addition, the highest ITRs for most
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Fig. 3. Comparison of the classification accuracy results under different numbers of training trials in the target domain and data lengths for the
(a) Benchmark dataset and (b) BETA dataset. The asterisk indicates that the accuracy of the TransRCA method is significantly better than that of
the control methods (one-way analysis of variance and Bonferroni multiple comparisons test, where *, **, and *** indicate statistical significance at
p < 0.05, p < 0.01, and p < 0.001, respectively), and the error bar represents the standard error.

cases were obtained with medium data lengths. As it did
for accuracy, the proposed TransRCA method obtained ITRs
that were significantly higher than the other methods under
most conditions. In general, a data length of 0.6 s consistently
obtains the best or second best ITR values for the top three
training trial conditions (three, four, and five trials), outranking
the results of other methods when the aggregated ranks of all
three conditions are considered.

According to Fig. 2.a, it is obvious that the classification
accuracy increases as the number of training trials in the
target domain increases. However, under all five training trial
conditions and for all six target recognition methods, the
classification accuracy increases with increases in data length.
In addition, the accuracies of proposed TransRCA method sig-
nificantly outperformed the five other control methods under
most conditions for the Benchmark dataset. Similar trends
have also been found for the BETA database (Fig. 2.b), and it
was also found that the proposed TransRCA method obtained
the highest accuracy under most conditions.

Further statistical analysis was performed on the aver-
aged classification accuracy for different target recognition
methods under different numbers of training trials in the
target domain for the Benchmark and BETA datasets at
different data length. The results are shown in Fig. 3.
The asterisk indicates that the accuracy of the TransRCA
method is significantly better than that of control meth-
ods (one-way analysis of variance and Bonferroni multiple
comparisons test, where *, **, and *** indicate statistical
significance at p < 0.05, p < 0.01, and p < 0.001,
respectively). It was found that, in general, the classification
accuracy tends to decrease in the order of eTransRCA>LST-
eTRCA>eIISMC>eTRCA>eCCA>ttCCA for all data length
conditions. Our proposed eTransRCA has an averaged classifi-
cation accuracy that is higher than those of all other methods.
To compare the classification accuracy of various methods
in more detail, the classification accuracies under different

TABLE I
CLASSIFICATION ACCURACY UNDER DIFFERENT NUMBERS OF

TRAINING TRIALS WHEN THE DATA LENGTH IS 0.6 FOR THE

BENCHMARK DATASET

TABLE II
CLASSIFICATION ACCURACY UNDER DIFFERENT NUMBERS OF

TRAINING TRIALS WHEN THE DATA LENGTH IS 0.6 FOR

THE BETA DATASET

numbers of training trials when the data length is 0.6 s
for both the Benchmark and BETA datasets are shown in
Tables I and II, respectively.

Considering the limitation of the small number of training
data in BCI applications, the evaluation of the classification
performance given a small number of training data is more
important than when given an adequate number of data.
According to Figs. 2, and 3, the proposed eTransRCA clearly
has a better classification performance than the other methods,
especially when the number of training data is small (one or
two trials). It should be noted that, as the strongest competitor
of our method, eIISMC yields significantly poor performance
when given a small number of training data. It was also found
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Fig. 4. Comparison of the 2D t-SNE visualization of the 40-dimensional features obtained by different methods using a 0.6-s data length when
three target domain training trials were used for (a) all the subjects of the Benchmark dataset, where each point represents the data of one trial
out of a total of 40 targets × 3 test trials × 10 repetitions × 35 subjects = 42,000 trials, and each color corresponds to one of the 40 targets, and
(b) all the subjects of the BETA dataset, where each point represents the data of one trial out of a total of 40 targets × 1 test trials × 10 repetitions ×

70 subjects = 28,000 trials, and each color corresponds to one of the 40 targets.

Fig. 5. Comparison of the classification accuracy results under different numbers of source subjects and numbers of training trials in the target
domain for the (a) Benchmark dataset and (b) BETA dataset.

that eCCA performs significantly better than TRCA-based
methods under the single training trial condition. However, it is
still worse than eTransRCA, which combines the advantages of
CCA and TRCA. In general, our proposed eTransRCA method
has acceptable and stable performance, even when the number
of training data is small or the length of the data is short.

Fig. 4 presents the t-distributed stochastic neighbor embed-
ding (t-SNE) [36] projections of the feature vectors from
the eCCA, eTRCA, ttCCA, LST-eTRCA, eIISMC, and
eTransRCA methods using a 0.6-s data length when three tar-
get domain training trials were used for all subjects in both the
Benchmark dataset and BETA dataset. It is clear that the t-SNE
(Chebyshev distance) points obtained by the eTransRCA form
uniformly dispersed clusters and have minimal overlaps among
them. In this study, four commonly used internal measures for
the evaluation of clustering validity, i.e., the Calinski-Harabasz
index (CHI), silhouette coefficient (SC), Davies-Bouldin index
(DBI) [37], and separation (SP) [38] were calculated for
each of the six different target recognition methods (see
Tables III and IV). The results in Tables III and IV reveal
that the proposed eTransRCA method has a better clustering

capability than the other five control methods (for CHI, SC,
and SP, where higher values indicate better performance,
whereas for DBI, smaller values indicate better performance)
for both the Benchmark dataset and BETA dataset.

Fig. 5 shows a further comparison of the classification accu-
racy under different numbers of source subjects and numbers
of training trials in the target domain for the Benchmark
dataset and BETA dataset. When the training trials are small,
the classification accuracy will increase rapidly as the size of
these training trials is increased, but these increases gradually
slow as the training trials become much larger, which is in
line with the learning curve theory [39] (ttCCA does not use
training trials in the target domain). Moreover, it is obvious
that the classification accuracy is substantially reduced when
the number of training trials is small for eTRCA, LST-eTRCA,
and eIISMC, while such a trend is not obvious in our proposed
TransRCA method. By contrast, it is clear that the classi-
fication accuracy increases with increases in the number of
source subjects (eCCA and eTRCA do not use training trials
in the source domain). This trend is particularly obvious when
the number of source subjects is small, but with the further
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TABLE III
COMPARISON OF INTERNAL MEASURES BASED ON THE T-SNE 2D

REPRESENTATIONS FOR THE BENCHMARK DATASET

TABLE IV
COMPARISON OF INTERNAL MEASURES BASED ON THE T-SNE 2D

REPRESENTATIONS FOR THE BETA DATASET

increase of the number of source subjects, the improvement
in the accuracy is not significant. A more detailed diagram
of the classification accuracy of the proposed eTransRCA
method under different numbers of SS and numbers of training
trials in the target domain is presented in Supplementary
Fig. 3. According to this figure, the classification accuracy
increases with increases in the number of SS. This increase
is more pronounced when the number of SS is small, but
as the number of SS increases, this increase tends to flatten
out. In addition, the accuracy when the number of SS is
larger is significantly higher than when this number is small,
which shows that the SSVEP characteristics transferred from
other subjects contribute to the classification. It is noteworthy
that our proposed TransRCA method has relatively high and
stable classification performance under almost all conditions
with respect to the number of source subjects and number
of training trials in the target domain, which shows that our
method has excellent applicability and robustness.

IV. DISCUSSION
The number of trials required for the training procedure

increases with the number of SSVEP targets. For a practical
SSVEP-based BCI system, more than 40 SSVEP targets are
generally required. In addition, studies have shown that if the
training data are insufficient, the classification performance
will be significantly reduced [14], [40]. Therefore, a large
number of training trials during the training procedure is
inevitable, which is time consuming and places an additional
burden on the BCI user. How to expand the sample size
from the existing data of trials/subjects/devices to reduce the

training procedure has become a research trend and challenge
in SSVEP research [11]. Transfer learning has been proven to
be effective in solving the problem of insufficient sample size
in SSVEP identification [15].

Recently, several methods based on the cross-subject trans-
fer learning approach have been proposed. Among them,
ttCCA uses a CCA-based spatial filter to form the group’s
mean source template and reference signals, and then uses
them for the current T S [23]. However, the difference between
source template and the current T S may be large, and thus the
performance will deteriorate. The TransRCA proposed in this
paper maximizes the covariance between all trial combinations
of the source and target domains, it can bring the overall
distribution of the target and source domains in the feature
space closer together, and thus it can achieve better transfer
performance.

The LST-TRCA method [24] uses a least-squares transfor-
mation to transform the data in the SS so that it is more similar
to the template of the T S. It then trains a TRCA model with a
combination of the transformed source domain data and target
domain training data. When the source domain data quality is
poor or the data contain high levels of noise, these interference
components will be directly introduced into the training data
of the T S. In contrast to the sample-based transfer of the
LST-TRCA method, the proposed TransRCA method is based
on feature-based transfer and projects the target domain and
source domain into a subspace with high correlation, which
enables the model to learn more common features and thus
leads to better transfer performance.

The IISMC method combines both the intra- and
inter-subject covariance maximization, which can exploit both
the individual features of subjects in the target domain and
features in common with subjects in the source domain [25].
However, because of the lack of sine-cosine references, IISMC
cannot achieve the accuracy of the eCCA and ttCCA methods
if there are only few training trials. Moreover, the inter-subject
correlation maximization used in IISMC can only obtain one
common spatial filter between the source and target subject,
whereas the proposed TransRCA method can obtain pairs of
spatial filters between the target domains and source domains,
or between the target /source domains and the sine-cosine
reference signals, which will lead to higher performance
regardless of the number of training trials.

The TransRCA method proposed in this study synthetically
considers four different sources of feature information. First,
it considers transfer learning from SS; the TransRCA-based
spatial filters can be learned from the T S and SS by maxi-
mizing the mean of the covariance between each single trial of
the T S and SS. Second, the TransRCA-based spatial filter of
the target domain can be learned by maximizing the mean
of the covariance between each trial of T S and the reference
signals. Third, the TransRCA-based spatial filter of the source
domain can be learned by maximizing the mean of the
covariance between each trial of the SS and reference signals.
Last, the canonical correlation coefficient between the test
data and reference signals is calculated. As mentioned in the
Introduction, CCA and TRCA are the two benchmark methods
of training-free and training-based recognition algorithms for
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SSVEP identification, and they use different approaches to
recognize SSVEPs. CCA mainly examines the fundamental
and harmonic oscillation characteristics of SSVEPs, in which
the correlation between the EEG data and reference signals are
calculated. By contrast, TRCA emphasizes the reproducibility
of the task-related components across trials, in which the
sum of the covariance between trials is maximized. Both
the oscillation characteristics of the SSVEPs and task-related
components have been shown to be important features of
SSVEP classification [6], [17]. In this study, we believe that
the core concepts and advantages of the proposed TransRCA
method are as follows: i) the use of multiple filters to
filter the SSVEP signals, source and target templates, and
reference signals to extract potential task-related components
and frequency components as SSVEP features; ii) the use
of paired spatial filters for the projections of the source
and target domains, which has stronger transfer capability
and better universality for different source data. In addition,
it is a suitable approach for data with different dimensions,
thus making transfer across devices and data types possible;
iii) the construction of a strong classifier by combining cor-
relation coefficients to synthesize the above features, which
provides robust and accurate classification.

Recently, cross-stimulus transfer learning methods, e.g.,
multi-stimulus CCA (msCCA) [41] and subject transfer based
CCA (stCCA) [32], has been proposed for SSVEP target
recognition. In this approach, the SSVEP feature is learned
not only from the target stimulus frequency but also from
other stimulus frequencies. This cross-stimulus method has the
advantage of needing fewer training data. However, if the train-
ing data of the T S are poor of quality, cross-stimulus training
may not be satisfactory; in this situation, the cross-subject
transfer learning method can provide a reliable template data
and classifier that has good robustness. In this study, our
proposed method only focused on transfer learning across
subjects, and the accuracy obtained is slightly lower than that
of the cross-stimulus method. However, our proposed method
is not limited to cross-subject training, but can also be applied
to cross-stimulus training. An extended version of TransRCA
that combines cross-subject and cross-stimulus training is the
next task in future work and is expected to achieve higher
SSVEP recognition accuracy with fewer training data.

V. CONCLUSION

This study proposed the novel transfer-related component
analysis (TransRCA) method to transfer the SSVEP features
from other subjects, thus reducing the burden of the training
procedure of SSVEP-based BCIs. The ensemble version of
TransRCA obtained significant superior classification accuracy
and ITR than the eCCA, eTRCA, ttCCA, LST-eTRCA, and
eIISMC methods on both the Benchmark and BETA datasets.
This indicates that the proposed TransRCA method can sub-
stantially reduce the training effort while maintaining high
classification performance, which has high potential in BCI
applications.
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