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A Calibration-Free Hybrid BCI Speller System
Based on High-Frequency SSVEP and sEMG
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Abstract— Hybrid brain-computer interface (hBCI)
systems that combine steady-state visual evoked potential
(SSVEP) and surface electromyography (sEMG) signals
have attracted attention of researchers due to the
advantage of exhibiting significantly improved system
performance. However, almost all existing studies adopt
low-frequency SSVEP to build hBCI. It produces much
more visual fatigue than high-frequency SSVEP. Therefore,
the current study attempts to build a hBCI based on
high-frequency SSVEP and sEMG. With these two signals,
this study designed and realized a 32-target hBCI speller
system. Thirty-two targets were separated from the
middle into two groups. Each side contained 16 sets
of targets with different high-frequency visual stimuli
(i.e., 31-34.75 Hz with an interval of 0.25 Hz). sEMG was
utilized to choose the group and SSVEP was adopted
to identify intra-group targets. The filter bank canonical
correlation analysis (FBCCA) and the root mean square
value (RMS) methods were used to identify signals.
Therefore, the proposed system allowed users to operate it
without system calibration. A total of 12 healthy subjects
participated in online experiment, with an average accuracy
of 93.52 ± 1.66% and the average information transfer
rate (ITR) reached 93.50 ± 3.10 bits/min. Furthermore,
12 participants perfectly completed the free-spelling tasks.
These results of the experiments indicated feasibility and
practicality of the proposed hybrid BCI speller system.

Index Terms— Brain–computer interface, steady-state
visual evoked potential, surface electromyography, filter
bank canonical correlation analysis.
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I. INTRODUCTION

BRAIN-COMPUTER interface (BCI) aims to establish a
direct communication mode between brain and external

environment [1], [2]. Two important roles of BCI in rehabili-
tation are to replace and restore lost neurological function [3],
[4]. When the BCI system acts as a replacement for lost neuro-
logic function, it can be utilized to assist people with language
or motor difficulties regain their ability to communicate and
control, such as typing characters, controlling wheelchairs,
operating household electrical appliances, etc. Alternatively,
BCI systems can also be used to restore lost neurologic
function. For example, controlling functional electrical stim-
ulation (FES) through BCI can promote neuroplasticity and
functional recovery by activating the body’s natural efferent
and afferent pathways, thereby promoting motor learning
and neural reorganization. According to the different ways
in which brain signals are collected, BCI systems can be
divided into two categories. That is, invasive BCI [5], [6]
and non-invasive BCI [7]. Invasive BCIs have a high signal
quality which is conducive to the realization of high-precision
brain signal decoding in the later stage. However, invasive
methods have obvious drawbacks, such as surgical risk [8]
and gradual degradation in the quality of recorded signals [9].
Currently, various methods such as electroencephalography
(EEG) [10], magnetoencephalography (MEG) [11], functional
magnetic resonance imaging (fMRI) [12], and near infrared
spectroscopy (NIRS) [13], have been reported to noninvasively
monitor the brain activity and build non-invasive BCIs [14].
Among them, EEG signals are widely used due to their
non-invasive, low-cost, and high temporal resolution [15],
[16]. In recent years, the experimental paradigms based on
EEG-BCIs are growing vigorously [15], [16], [17]. Further-
more, the performance of various BCI systems has getting
better. The highest information transfer rate (ITR) has reached
more than 300 bits/min, a significant increase from the initial
20 bits/min [18], [19]. However, there is still a need to further
improve the performance to approach natural human-computer
interaction [20].

Recently, studies have proposed that hybrid systems out-
perform single systems [21], [22]. In particular, hybrid BCI
(hBCI) systems that combine EEG and surface electromyog-
raphy (sEMG) signals exhibit significantly improved system
performance [23], [24], [25]. For example, Lin et al. used
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Fig. 1. System block diagram of the proposed system.

low-frequency (i.e., 6-11.6 Hz) steady-state visual evoked
potential (SSVEP) and sEMG signals to develop a 60-target
speller that achieved an ITR of 90.9 bits/min, significantly
higher than the ITR of a single system (sEMG: 30.7 bits/min,
SSVEP: 60.2 bits/min) [24]. In the study by Rezeika et al.,
a 30-target hBCI speller system was constructed based low-
frequency (i.e., 6.1-11.8 Hz) SSVEP and sEMG, the results
showed that the hybrid system is much faster than the single
system [26]. Chen et al. used low-frequency (i.e., 6 Hz,
8 Hz, 10 Hz and 15 Hz) SSVEP and sEMG to achieve a
non-invasive transhumerus prosthesis control method, using
SSVEP to increase the control of hand movement and enrich
the needs of daily life [27]. Davarinia and Maleki have
reported a combination of low-frequency (i.e., 5.88-11.11 Hz)
SSVEP and EMG signals to build a system to predict elbow
angle trajectory, the results showed that the introduction of
SSVEP signal can increase the robustness of the dual-modality
structure [28]. Although the above studies have confirmed
that building hybrid systems based on SSVEP and sEMG can
improve the performance of the system, the comfort of the
system needs to be improved. Most of the existing hybrid
BCIs built on sEMG and SSVEP adopt low-frequency SSVEPs
to build hybrid systems. Low-frequency visual stimulation
can cause stronger signal correspondence and thus facilitate
signal detection [29], but it can also cause visual fatigue
in subjects and reduce the comfort of the experiment [30].
Therefore, SSVEP-based systems need to be improved in
terms of comfort.

The previous studies have demonstrated that flashing at
a stimulus frequency above 30Hz can relieve visual fatigue
and improve visual comfort [30], [31], [32], [33]. Therefore,
in this study, we introduced high-frequency SSVEP to build a
hBCI system. By utilizing high-frequency SSVEP and sEMG
signals, this study designed and implemented a speller with
32 targets. Thirty-two targets were separated from the middle
into two groups. Each side contained 16 sets of targets with
different high-frequency visual stimuli (i.e., 31-34.75 Hz with
an interval of 0.25 Hz) [34]. sEMG was utilized to choose
the group and SSVEP was adopted to determine the target

stimulus within the group. The sEMG signal performs group
class identification by calculating its root mean square (RMS)
value. The filter bank canonical correlation analysis (FBCCA)
method was used to detect SSVEPs. Fig.1 shows the frame-
work diagram of the system. Therefore, the proposed system
allowed users to operate it without system calibration. In this
study, the feasibility of the system is verified by offline and
online experiments.

II. METHODS

A. Subjects
Nineteen healthy participants, including 5 males and

14 females, with normal visual or corrected vision and aged
22-30 years, participated in the trial. Among them, the number
of people participating in the offline experiment was 10, and
the number of people online was 12. There were 3 people
participating in both offline and online experiments. Several
participants terminated their involvement due to graduation
and were thus excluded from the continuation of the experi-
ment. During the experiment, the subjects sat in a comfortable
chair 70 cm in front of the computer screen. Each subject
signed an informed consent prior to the experiment and
received appropriate monetary compensation after the experi-
ment. This study is approved by the Institutional Review Board
of Tsinghua University.

B. System Design
The proposed hybrid BCI speller system included two

input signals, viz., SSVEP and sEMG signals. The stimula-
tion interface is shown in Fig. 2(A). The user interface of
the proposed system is presented on the computer monitor
(SAMSUNG C49HG90DMC, resolution: 3840 × 1080 pixels,
refresh rate: 120 Hz). The 4 × 8 stimulation matrix
is presented in the interface which includes 6 symbols
(i.e., backspace, enter, comma, exclamation mark, space, ques-
tion mark) and 26 English characters. Each square matrix
size is 173 × 129 pixels. The interval between matrices
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Fig. 2. Visual system design of the proposed system. (A) The user interface of the proposed system. (B) Stimulation frequencies corresponding to
all targets.

is 100 pixels. There is a dotted line in the center of the
interface that splits the 32 targets into left and right sides. Each
group encoded 16 targets by 16 different high-frequency visual
stimuli (i.e., 31-34.75 Hz with an interval of 0.25 Hz). The
stimulation frequency for each target is shown in Fig. 2(B).
Flicker at different stimulus frequencies is induced by sampled
sinusoidal stimulation methods [35]. The target on the left side
of the dotted line is encoded by the sEMG signal caused by
the flexion movement. Further the extension movement is used
to encode the target to the right of the dotted line. The sEMG
signals were utilized to choose the desired group. A schematic
diagram of the right-hand flexion and extension action is
shown in Fig. 3. The Psychophysics Toolbox Version 3 under
MATLAB was adopted to present visual stimuli.

C. Offline Expeimental Design
A total of 12 blocks were conducted in the offline experi-

ment. Each block traverses 32 targets, and each target appears
randomly, and the order in which the targets appear is deter-
mined by a random sequence generated by the program. Each
target will be prompted by a 1 s red square before appearing.
During the time indicated by the red square, subjects need to

Fig. 3. Schematic diagram of the flexion (A) / extension (B) movement
of the right hand.

switch their attention to that goal, while preparing their wrists
for flexion/extension movement (i.e., the flexion movement for
the left group and the extension movement for the right group).
After that, all the stimuli were made to flash simultaneously
on the monitor for 2 s, and the subject made corresponding
flexion/extension movements. After the flashing is over, there
was a 1 s rest period to wait for the next cue. In order to ensure
that they are not disturbed by eye movement artifacts during
the 2 s mission, subjects need to be as unblinking as possible
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during the task. In order to reduce the visual fatigue of the
subjects, a few minutes of rest will be carried out according
to the actual situation of the subjects during the experiment.

D. Online Expeimental Design
The online experiment was divided into two parts, i.e.,

cued-spelling task and free-spelling task. The subject first
did 9 blocks of cued-spelling tasks, followed by 3 blocks
of free-spelling tasks. In the cued-spelling task, the same
as in the offline experiment, requires traversing 32 targets,
and each target appears randomly. According to the offline
optimization results, the system performance was best when
the target stimulation time was 1.8 s. That is, each target
needed to consume 2.8 s, containing 1.8 s of stimulation time
and 1 s of attention switching time. During the scintillation
task, the subject needed to focus on the corresponding tar-
get and make corresponding flexion movement or extension
movement. The red square prompt and the stimulus flashing
task alternately, and when the stimulus task ends, the next
red square immediately appears, while the recognition result
of the previous target is feedback and if the recognition is
correct, it would make a short drip sound. The free-spelling
task required participants to spell out “HIGH SPEED BCI!”.
In the free spelling task, visual feedback replaces a short
drop (i.e., the identified target was displayed on the top of
the interface). Each trial also lasted for 2.8 s, i.e., 1.8 s for
stimulus presentation and 1 s for attention switching. Subjects
were allowed to delete misspelled letters using “backspace”.

E. Data Acquisition
The SSVEP data was collected through Neuroscan system

with a 64-conductor Ag/AgCl cap extended from the Inter-
national 10-20 system at a sampling frequency of 1000 Hz.
SSVEP data recorded data for only 9 channels in the occip-
ital region ((i.e., Oz, O1, O2, POz, PO5, PO3, PO4, PO6,
and Pz). The REF electrode between Cz and CPz is selected as
the reference electrode, and the ground electrode is the GND
electrode that in the middle of Fz and FPz. The electrode
impedances are less than 10 k�. The sEMG data is recorded
using a patch electrode connected to a differential amplifier of
NeuroScan’s Synamps2 system. The patch electrode collects
surface signals at the locations of the flexor carpal ulnar and
extensor carpi radialis longus of the arm, as shown in Fig. 4.
Prior to recording, alcohol is wiped on the subject’s arm to
reduce electrical impedance and make the electrodes fit better
with the skinthe.

F. Amplitude and SNR of SSVEP
Data lengths of two seconds from offline experiments

were extracted to analyze the amplitude spectrum and SNR
of SSVEP signals. The frequency spectrum of SSVEP data
was analyzed through fast Fourier transform (FFT). Since
the length of time selected by SSVEP signal data was 2s,
the frequency resolution was 0.5Hz when doing FFT trans-
formation, which did not match the stimulation frequency
interval of 0.25Hz. Therefore, the data length is extended to
4s by zero-filling method in the tail of the data, so that the

Fig. 4. Placement of the sEMG electrodes.

frequency resolution is consistent with the stimulus frequency
interval [36]. In the study of SSVEP, the SNR is an important
measurement index [37]. The SNR at frequency f is the ratio
of the amplitude of SSVEP at frequency f to the average
amplitude value of q surrounding frequencies:

SN R = 20 log10
y ( f )

1
q

∑ q
2
k=1

[
y ( f −0.25k) + y ( f +0.25k)

]
(1)

where y( f ) is the amplitude of FFT at frequency f . In this
study, q was set to 10.

G. Target Recognition of SSVEP

The FBCCA algorithm is an improvement over the canon-
ical correlation analysis (CCA) algorithm. It provides better
reading of harmonic information by introducing filter anal-
ysis [38]. The analysis process of the FBCCA algorithm is
as follows: EEG signals are divided into M subbands using
a bandpass filter bank, and the CCA algorithm is then used
on the M subbands by calculating the correlation coefficient
between each subband and signals of different stimulus fre-
quencies. Then the correlation coefficients of M subbands
are weighted sum and the maximum value is selected as the
recognition frequency of the target. The CCA algorithm can
calculate the value of the linear correlation coefficient between
two multidimensional variables, and its core problem is to
solve the optimization problem of equation (2). The X and
Y signals are linearly combined to find the best WX and WY
so that the correlation coefficient between the x = X T WX
and y = Y T WY transformations is maximum, as shown in
equation (2).

max
WX ,WY

ρ (x, y) =
E

[
W T

X XY T WY
]√

E
[
W T

X X X T WX
]

E
[
W T

Y Y Y T W Y
] (2)

where X represents multi-dimensional EEG data. The ref-
erence signal is represented as Y , which generally consists
of sine and cosine signals and its harmonics corresponding
to the stimulus frequency . . . fi (i = 1, 2, , 16). Here, Y fi is
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Fig. 5. The RMS of the two channels corresponding to the flex-
ion/extension movement. The error bar represents standard error.

defined as

Y fi =


sin (2π fi n)

cos (2π fi n)
...

sin (2π Mh fi n)

cos
(
2π Mh f i n

)

 , n =

[
1
fs

,
2
fs

, . . .
N
fs

]
(3)

where Mh represents the number of harmonics. After analysis,
the Mh was 2 as the most reasonable. N means the number
of sample points. The fs is the sampling rate. X and Y have
the same data length.

The basic process of FBCCA is as follows: the filter
is designed to extract corresponding subband components,
and the correlation coefficient between the component and
the reference signal at different stimulus frequencies is then
calculated separately on the subband. The typical correla-
tion coefficient between the mth subband and the reference
signal Y fi is:

ρm,i =

(
X T

SBm
WX

(
X SBm Y fi

)
, Y T WY

(
X SBm Y fi

))
(4)

The correlation coefficient weight of the mth subband is
defined as ωm , m ∈ [1M]. The typical correlation coefficient
between the multi-channel EEG data X and Y fi is then
computed as:

ρi =

M∑
m=1

ωm · ρm,i (5)

The ρi is used as the characteristic value for frequency
identification. Finally, the frequency value corresponding to
the maximum value ρi was selected as the frequency of the
SSVEP signal:

ftarget = max
fi

ρi , i = 1, 2, . . . , 16 (6)

Finally, the frequency recognition result of the SSVEP signal
ftarget is output.

H. Target Recognition of sEMG
Significant differences in sEMG signals were observed

between the extensor carpi radialis longus and flexor carpal
ulnar during flexion/extension. The RMS value reflects the
degree of muscle signal activity, as shown in Fig. 5, which

Fig. 6. Amplitude (A) and SNR (B) of SSVEP at stimulation frequency
of 33 Hz. The red circle indicates the fundamental frequency 33Hz and
the second harmonic 66Hz.

shows the sEMG data processing results of all the subjects.
The RMS value of the two channels is calculated respectively
to reflect the degree of muscle activity of the extensor carpi
radialis longus and flexor carpal ulnar. The RMS value of the
j th channel is:

RM S j =

√√√√ 1
N

N∑
i=1

x2
i , j = 1, 2 (7)

where N represents the number of sample points and xi rep-
resents the amplitude of signal in time domain.

By comparing the RMS of different channels, the movement
of the subject is evaluated. If RM S1 < RM S2 the movement
is judged as flexion, and the stimulus target is identified to the
left. Otherwise, the movement is identified as extension, and
the stimulation target is distributed on the right.

III. RESULTS

A. Amplitude and SNR of SSVEP
Calculate the total average amplitude spectrum and SNR of

the SSVEP signal recorded under the Oz electrode at 33 Hz,
and the results are shown in Fig. 6. As shown in Fig. 6,
both the amplitude spectrum and SNR have significant peaks
at 33 Hz (33 Hz: 0.30 µV, 6.39 dB) and 66 Hz (66 Hz:
0.13 µV, 4.37 dB). Fig. 7 shows the variation of the mean
amplitude spectrum and SNR with stimulation frequency and
response frequency. There are significant peaks at both the
fundamental frequency and the second harmonic. Further-
more, the peak at the second harmonic is significantly lower
than at the fundamental frequency. Therefore, the number of
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Fig. 7. Changes of average amplitude (A) and SNR (B) with stimulation
frequency and response frequency.

subbands M was 2. The signal at the fundamental frequency
and second harmonic was selected for analysis and processing.

B. Offline SSVEP Detection
The results of SNR analysis provided a reference for the

design of the filter frequency band. The starting frequency
of the filter subband is m×31 Hz. And the cut-off frequency
of the filter subband is 90 Hz. When designing the bandpass
filter, in order to ensure that the fundamental frequency is not
distorted, the bandwidth of 2 Hz is increased at the starting
frequency. The passband frequency of the first subband is
29∼90 Hz, and the passband frequency of the second subband
is 59∼90 Hz. In addition, the parameters of the system (the
weight vector of the subband components and the data length)
were optimized based on offline results to further improve
the performance of the system. And the optimal parameters
were determined by using ITR as the measurement index in
the optimization process. To simplify the process, parameter
optimization was identified by grid search method. The weight
coefficient [ω1 ω2] were respectively limited to the range
of 0∼1, and the interval was 0.1 and their sum was 1. The
data length was traversed 0.2 to 2 s, and ITR was calculated
every 0.2 s.

Fig. 8 shows the corresponding ITR for different data
lengths and weights based on SSVEP signals. According to
the grid search results, the weight coefficient ω1, ω2, and data
length t were set to 0.6, 0.4, and 1.8, respectively, for which
the proposed SSVEP-based BCI performance was optimal.
The maximum ITR is 65.83 ± 3.95 bits/min. The corre-
sponding classification accuracy and ITR under the optimal
weight coefficient (i.e., [ω1 ω2] = [0.6 0.4]) and different data
lengths was shown in Fig. 9.

Fig. 8. ITR for different data lengths and weights.

Fig. 9. Classification results (A) and ITR (B) based on different data
lengths under SSVEP single signal, sEMG signal and the entire hybrid
BCI system. The error bar represents standard error.

C. Offline sEMG Detection
This study analyzed the average classification accuracy of

sEMG under different data lengths (see Fig. 9). As shown in
Fig. 9, the classification accuracy rate first increases and then
stabilizes. In order to keep consistent with the optimized time
of SSVEP signal, sEMG signal was adopted for 1.8 s and the
classification accuracy reached 98.93 ± 0.41%.

D. Offline Performance of The Entire hBCI System
The performance of the entire hBCI depends on the detec-

tion performance of SSVEP and sEMG. As shown in Fig. 9,
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TABLE I
CLASSIFICATION ACCURACY AND ITR OF ONLINE EXPERIMENT

the hybrid system achieves optimal performance with a data
length of 1.8s. The highest ITR is 83.12 ± 4.66 bits/min.
The classification accuracy corresponding to the highest ITR
is 87.42 ± 2.87%. Since the accuracy of sEMG detection
is almost 100%, the performance of the entire hBCI relies
heavily on the classification performance of the SSVEP signal.
As shown in Fig. 9, the classification accuracy of the entire
hBCI system is similar to that of the SSVEP-based BCI
system.

In addition, one-way ANOVA was performed to study
the classification accuracy of sEMG under different stimulus
frequencies (F (15,144) = 0.71,P = 0.78) and SSVEP signals
under flexion and extension (F(1,18) = 0.42,P = 0.52). The
results showed that there was no significant influence between
sEMG and SSVEP signals. Finally, the correlation between
sEMG and SSVEP classification accuracy was analyzed
(ρ = 0.18), and the results also showed that there is no
correlation between them.

E. Online Performance of The Entire hBCI System
Obtain the optimal parameters through offline data analysis

and build an online system for verification. Online results
for all subjects are shown in Table I. The results in Table I
showed that the classification accuracy of the online system
has been achieved 93.52 ± 1.66% and an average ITR of
93.50 ± 3.10 bits/min. Table II showed the results for the free-
spelling tasks. The results showed that all subjects successfully
completed the spelling task.

IV. DISCUSSION

In this study, a 32-target hBCI speller system was realized
by combination of high-frequency SSVEP and sEMG. It was
the time that high-frequency stimulation has been introduced
into a hybrid BCI based on SSVEP and sEMG. And the ITR
reached 93.50 ± 3.10 bits/min, the highest level in the hybrid
BCI based on high-frequency SSVEP and sEMG. The results
of two online tasks (cued-spelling task and free-spelling task)
verify the effectiveness of the proposed system, which can be
used to communicate effectively with the outside world.

Currently, a majority of the existing hybrid BCIs based
on SSVEP and sEMG adopt low-frequency stimuli to elicit
SSVEPs. Although low-frequency can induce a stronger

TABLE II
RESULTS OF THE FREE-SPELLING TASKS

response [39], [40], it can cause visual fatigue in subjects.
In contrast, high-frequency can alleviate fatigue problems [41].
Although the classification accuracy and ITR of SSVEP
induced by high-frequency stimulation are lower than those
of low-frequency stimulation, the classification accuracy of
high-frequency stimulation system can reach more than 80%,
which meets the practical standard. In terms of SNR, low
frequency and high frequency stimuli produced almost the
same level of SNR. Therefore, in order to balance the per-
formance and comfort of the system, it is necessary to study
the high-frequency stimulation system. Hence, high-frequency
visual stimulation (i.e., 31-34.75 Hz) was used in this study to
induce SSVEPs. And FBCCA algorithm was used to identify
signals, which can effectively extract harmonic information.
Fig. 6 and Fig. 7 show that the SNR of SSVEP has an
obvious peak at the fundamental and harmonic frequencies,
which proves that it is feasible to extract harmonic information
by FBCCA for frequency recognition. Table I showed that
the hBCI system obtained an average accuracy of 93.52 ±

1.66%. In general, if the accuracy is higher than 80%, the
BCI system is considered feasible and can be considered to
have achieved effective communication [42]. In addition, the
system proved the effectiveness of FBCCA in the application
of high-frequency stimulation system. At present, there are few
studies on high-frequency SSVEPs and this study can provide
a useful fundation for high-frequency SSVEPs research.

Additionally, the sEMG detection is also very important
for hybrid BCIs. In the process of sEMG signal analysis,
Lin et al. [24] and Chai et al. [43] extracted the envelope of
sEMG signals and then analyzed them using the threshold
algorithm. In contrast with the abovementioned studies, the
current study directly uses the mean value of the signal
amplitude spectrum as the feature for identification, and the
algorithm is fairly simple. The sEMG classification accuracy
reaches 98.93% (see Fig. 9). High classification accuracy
results have confirmed that this method is feasible.

As far as we know, the performance of the hybrid system
proposed in this paper is the highest ITR (93.50 bits/min)
among the reported hybrid BCIs built on SSVEP and sEMG.
The reasons for the best ITR performance of our proposed
system are mainly in two aspects. On the one hand, sEMG
signals were added to construct a hBCI system extended the



ZHANG et al.: CALIBRATION-FREE HYBRID BCI SPELLER SYSTEM BASED ON HIGH-FREQUENCY SSVEP AND sEMG 3499

system’s target (from 16 to 32 targets); On the other hand,
FBCCA algorithm was used to identify the target. Compared
with CCA algorithm, the classification accuracy of the system
can be improved under the same data length [38], thus
shortening the target stimulation time, and further improving
the ITR of the system. It may be noted that in compari-
son, the target number of the system designed by Lin et
al. was 60, which is much higher than the system pro-
posed in this paper, but the recognition performance of CCA
algorithm for target recognition is far lower than that of
FBCCA algorithm [38]. Therefore, the ITR (90.9 bits/min)
is lower than the system proposed in this study. Similarly, in
Rezeika et al. [26], although the identification accuracy of
Minimum Energy Combination method (MEC) algorithm
reached 100%, the time required for each command was 3-8s,
which is much higher than the time required by our proposed
system, resulting in low ITR (37.37 bits/min) performance.
In Chai et al. [43], CCA algorithm was used to identify targets,
and the classification accuracy reached 100% when the data
length was 4s. However, the system only had 8 commands,
which is far lower than our system, so the ITR (45 bits/min) is
smaller than the system proposed in this research. In addition,
the ratio of fundamental frequency and second harmonic
weight coefficient of FBCCA will affect the classification
effect of the target. When the data length is constant, ITR
presents a trend of first rising and then decreasing with
the increase of the weight coefficient ω1 (Fig. 8), which is
related to the fact that SNR at the fundamental frequency
is the strongest, and SNR at the harmonic decreases with
the increase of the harmonic number. Therefore, we opti-
mized the weight coefficient and data length according to the
offline experimental data, and built the online system accord-
ing to the optimized results to achieve the optimal system
performance.

The present system used unsupervised FBCCA method to
identify SSVEP signals and sEMG signals were classified
according to their average amplitude. Therefore, the entire
system allowed users to operate it without the need of system
calibration. Although the performance of the proposed system
had been improved, the system needs to be further perfected
in order to apply the system to real life as soon as possible.
Firstly, more efficient frequency recognition algorithm can be
used to optimize parameters and shorten the stimulation time
of SSVEP signals to improve ITR. Secondly, due to individual
differences, the target recognition accuracy of each subject is
different, so the number of times that they need to select the
desired target in the process of completing the free-spelling
tasks is also different. In the future, the parameters can be
optimized according to the individual situation of subjects to
reach optimal system performance. Thirdly, the system was
only used by the subjects for a short period of time, and no
effect of muscle fatigue on system performance was found.
In the next work, we will further investigate whether muscle
fatigue caused by prolonged use of the system affects the
performance of the system. Finally, this study used healthy
subjects to test and validate the system. In future work, we will
attempt to use motor-impaired patients to further verify the
system.

V. CONCLUSION

The aim of this study is to use high-frequency SSVEP
to build a hybrid BCI system. We designed and realized a
32-target hybrid BCI speller system. Two predefined wrist
movements corresponded to two group. Each group consisted
of 16-target high-frequency SSVEP-based BCI. sEMG signal
was utilized to select the group with target stimulus. Fur-
ther, high-frequency SSVEPs were used to choose the target
stimulus within the group. sEMG and SSVEP signals were
identified by time domain analysis and FBCCA, respectively.
This allowed users to operate the proposed system without
system calibration. The system was tested in healthy subjects
with an average accuracy of 93.52 ± 1.66% and a mean ITR
of 93.50 ± 3.10 bits/min. It was the highest ITR in hBCI based
on SSVEP and sEMG, and we used high-frequency stimulation
to relieve participant fatigue. Both online and offline results
demonstrate the effectiveness of the proposed system and
lay a foundation for the research of hBCI based on sEMG
and SSVEP.
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