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sEMG-Based Adaptive Cooperative Multi-Mode
Control of a Soft Elbow Exoskeleton Using

Neural Network Compensation
Qingcong Wu , Member, IEEE, Zhijie Wang, and Ying Chen

Abstract— Soft rehabilitation exoskeletons have gained
much attention in recent years, striving to assist the par-
alyzed individuals restore motor functions. However, it is
a challenge to promote human-robot interaction property
and satisfy personalized training requirements. This article
proposes a soft elbow rehabilitation exoskeleton for the
multi-mode training of disabled patients. An adaptive coop-
erative admittance backstepping control strategy combined
with surface electromyography (sEMG)-based joint torque
estimation and neural network compensation is developed,
which can induce the active participation of patients and
guarantee the accomplishment and safety of training. The
proposed control scheme can be transformed into four
rehabilitation training modes to optimize the cooperative
training performance. Experimental studies involving four
healthy subjects and four paralyzed subjects are carried
out. The average root mean square error and peak error
in trajectory tracking test are 3.18◦ and 5.68◦. The active
cooperation level can be adjusted via admittance model,
ranging from 4.51 ◦/Nm to 10.99 ◦/Nm. In cooperative train-
ing test, the average training mode value and effort score
of healthy subjects (i.e., 1.58 and 1.50) are lower than
those of paralyzed subjects (i.e., 2.42 and 3.38), while the
average smoothness score and stability score of healthy
subjects (i.e., 3.25 and 3.42) are higher than those of
paralyzed subjects (i.e., 1.67 and 1.71). The experimental
results verify the superiority of proposed control strategy in
improving position control performance and satisfying the
training requirements of the patients with different hemiple-
gia degrees and training objectives.

Manuscript received 5 February 2023; revised 12 July 2023
and 3 August 2023; accepted 12 August 2023. Date of publication
17 August 2023; date of current version 25 August 2023. This work was
supported in part by the National Natural Science Foundation of China
under Grant 52175014, in part by the Natural Science Foundation of
Jiangsu Province under Grant BK20211183, in part by the Fundamental
Research Funds for the Central Universities under Grant NS2023024,
and in part by the Postgraduate Research and Practice Innovation
Program of Nanjing University of Aeronautics and Astronautics (NUAA)
under Grant xcxjh20220505. (Corresponding author: Qingcong Wu.)

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted by
the Institutional Review Board of Nanjing University of Aeronautics and
Astronautics under Application No. IRB [2022]-178.

Qingcong Wu and Zhijie Wang are with the College of Mechanical
and Electrical Engineering, Nanjing University of Aeronautics and Astro-
nautics, Nanjing, Jiangsu 210016, China (e-mail: wuqc@nuaa.edu.cn;
wangzj_nuaa@126.com).

Ying Chen is with the College of Continuing Education, Nanjing
University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016,
China (e-mail: chenying_nuaa@nuaa.edu.cn).

Digital Object Identifier 10.1109/TNSRE.2023.3306201

Index Terms— Soft elbow exoskeleton, adaptive cooper-
ative multi-mode control, sEMG, neural network compensa-
tion, active participation.

I. INTRODUCTION

THE statistics from the World Health Organization indicate
that about 15 million people worldwide suffer from stroke

every year [1]. More than 80% of the stroke survivors have to
experience motor dysfunction, and they require a large number
of rehabilitation training to regain motor abilities. In traditional
clinical movement therapy, recovery training has been manu-
ally assisted by physiotherapists. However, there are several
disadvantages in manual one-to one training, such as the large
consumption of labor and time, the high cost of treatment,
the limited hospital human resources, and the dependence on
the ability of physiotherapist [2]. In recent years, the robotic
devices for rehabilitation training has attracted the attention of
researchers due to its advantages of sparse labor, high training
intensity, good repeatability, and task orientation [3].

Exoskeleton has emerged as one of the effective solutions
in robotic-assisted rehabilitation training [4]. It can be worn
on the affected limb of patient to provide required motion
assistance. Currently, the majority of existing rehabilitation
exoskeletons have rigid mechanical structures [5], [6], [7].
They can work in parallel with human limbs, apply driving
torques to human joints, support compressive forces, and trans-
mit forces to ground [8], [9], [10]. However, rigid exoskeletons
suffer from inherent heavy weight, bulky size, high power
consumption, restricted freedom and misalignment between
robot and human joints, leading to unsafety and discomfort
for patients [11].

Due to the drawbacks with rigid structures, soft exoskele-
tons made from lightweight and soft materials become a
promising alternative [12], [13], [14]. They used garment-like
functional textiles and compliant actuators to interface
with human body and improve interaction compatibil-
ity. Tan et al. [15] designed a cable-driven soft exoskele-
ton to reduce metabolic cost during human walking.
Martin et al. [16] developed a myoelectric control strategy
for a soft hand rehabilitation exoskeleton using kinemat-
ics synergies. Proietti et al. [17] presented a wearable soft
shoulder-elbow rehabilitation exoskeleton driven by textile
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pneumatic actuator. Hosseini et al. [18] designed a soft exo-
suit with twisted string actuators to execute elbow assis-
tive tasks. Compared to rigid structures, soft exoskeletons
can improve comfort, flexibility, coordination and safety for
wearers.

The quality of robot-assisted rehabilitation therapy is
directly affected by the applied controller. State-of-the-art
rehabilitation exoskeleton control strategies can be divided
into two types based on patient’s participation degree:
patient-passive control and patient-cooperative control. The
patient-passive control is applicable for severely impaired
hemiplegic subjects without any motor ability, preventing
muscle atrophy and joint spasm deformation. In this case,
exoskeleton is demanded to drive the affected limb to pas-
sively and repeatedly follow a predefined motion trajectory.
Many trajectory-tracking control strategies for passive training
have been developed, such as proportional-integral-derivative
control (PID) [19], backstepping control [20], time-delay con-
trol [21], terminal sliding mode control [22], computed torque
control [23], and so on.

Clinical rehabilitation research shows that the active par-
ticipation is fundamental in inducing neural plasticity and
optimizing neuromuscular recovery [24], [25]. Thus, for
the hemiplegic subjects who have regained partial motor
capacity, the patient-cooperative control should be applied
to modulate robotic assistance based on the intention and
need of patients, intervening minimally so as to pro-
mote involvement. Chen et al. [26] designed an adaptive
impedance patient-cooperative controller for a lower limb
exoskeleton. The interaction torques between are estimated
via neural network. Hamed et al. [27] came up with an
assist-as-needed controller defined in velocity domain to
modulate the impedance of exoskeleton and provide appropri-
ated support during robot-aided training. Pehlivan et al. [28]
designed a minimal assist-as-needed control scheme for
arm rehabilitation exoskeleton, using model-based sensorless
force estimation to determine patient capability. Similarly,
a minimal-intervention-based control strategy was presented
in [29]. Aliasgar et al. [30] came up with a stability-
guaranteed assistance regulation admittance controller to facil-
itate robot-assisted training task and encourage user effort.

Nevertheless, many of the current cooperative controllers
are developed for rigid exoskeletons. Compared with the
control of rigid exoskeletons, the researches on the robust
cooperative control of soft exoskeletons are more challenging
due to the inherent nonlinear compliance property of soft
structures. The cooperative control of rigid exoskeleton can
be designed based on the human-robot dynamics to improve
control accuracy [27], [29], [30]. However, for soft exoskele-
ton, it is difficult to obtain the completed dynamics model
involving biological force, soft tissue and flexible deforma-
tion [31]. Thus, the cooperative control of soft exoskeleton is
generally not based on dynamics [18], [32], and the training
mode is single and cannot meet the requirements of different
patients. Chen et al. [33] developed a PID-based modeless
optimization control strategy for a soft hip-assistive exosuit.
Similarly, Ismail et al. [34] came up with a proportional-
integral (PI) controller for a soft exoskeleton to assist elbow

rehabilitation training. Siviy et al. [35] developed a low-level
velocity controller without entire dynamics model for a soft
exoskeleton to augment ankle power.

Based on the above discussion, a new adaptive admittance
backstepping sliding mode control strategy is developed in our
work for a soft elbow exoskeleton, assisting disabled patients
conduct multi-mode cooperative rehabilitation training. The
dynamic modeling errors and disturbances of robot system
are compensated via a neural network observer. A position-
error-based adaptive admittance model is proposed to adjust
human-robot interaction features and encourage active partic-
ipation. The control scheme can be switched to four training
modes to meet the needs of patients in different training
conditions, i.e., passive-training mode, active-training mode,
assist-as-needed training mode, and safety mode. The stability
of the closed-loop controller is analyzed via the Lyapunov
theory. Verification experiments are conducted on four healthy
subjects and four stroke patients, and the results were dis-
cussed and analyzed.

Compared with the previous works, the contributions of this
paper are as follows:

1) A newly adaptive cooperative admittance backstepping
sliding mode control scheme is proposed to real-
ize multi-mode soft exoskeleton-assisted rehabilitation
training, satisfying the training requirements of patients
with different hemiplegia degrees. As far as we know,
this has never been reported in the existing literature.

2) The human-soft exoskeleton coupling dynamic model is
established. The human elbow joint torque is obtained
based on the Kalman filter and the surface electromyo-
graphy signals (sEMG) from biceps and triceps. The
lumped effects of dynamics modeling errors and external
disturbances are estimated through a Gaussian radial
basis function network.

This paper is organized as follows. Section II introduces
the development of soft exoskeleton and adaptive cooperative
admittance backstepping control scheme. Section III describes
the proposed experimental protocol. The results and discussion
are given in Section IV. A conclusion is drawn in Section V.

II. METHODOLOGY

A. Soft Elbow Exoskeleton Description
Fig. 1 shows the structure and major components of the

proposed wearable soft elbow exoskeleton system, which was
designed to assist the disabled patient perform multi-mode
rehabilitation training. The patient can be equipped with the
exoskeleton via the wearable soft suit composing of base
layer, adjustable soft wraps and auxiliary Velcro straps. The
device utilized compliant tendon-sheath actuator mounted on
the backside of wearer to deliver remote driving torque
to the upper limb in the direction of elbow flexion and
extension, as shown in Fig. 1(a) and Fig. 1(b). The com-
pliant tendon-sheath actuator was developed based on the
Hill-type muscle model and made up of flexible tendon sheath
units, tension/compression springs and servo motors (SGM7G,
YASKAWA Inc.) [36]. Several sheath supports, guidance
mechanisms and anchor points were mounted on the upside,
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Fig. 1. Overview of the developed soft elbow exoskeleton. (a) CAD
model of the soft elbow exoskeleton (1-Soft wrap; 2-Guidance mecha-
nism; 3-Actuator unit; 4-Servo motor; 5-Wearer; 6-Outer sheath; 7-Base
layer; 8-Sheath support; 9-Inertial measurement unit (IMU); 10-sEMG
sensor; 11-Inner tendon; 12-Force sensor; 13-Anchor point); (b) The
compliant tendon-sheath actuator; (c) The soft wearable exoskeleton
suit worn on a subject.

Fig. 2. The hardware architecture of real-time control system.

backside and underside of soft wrap respectively, in order
to transmit the pulling force from outer sheathes and inner
tendons to elbow joint. The transmission path of tendon-sheath
units were optimized to pass through the center of rotation of
shoulder. It contributes to eliminating the additional torque
acting on undesirable joint and improving wear comfort. The
flexibility property of the wearable soft suit allows it to mold
to the body shape of the patient with a height ranging from
1.5 m to 2 m, as shown in Fig. 1(c). To guarantee training
safety, the actuator was integrated with mechanical end stops
to avoid excessive flexion and extension.

The soft exoskeleton was controlled via a MATLAB/RTW-
based real-time control system (2016a, Mathworks Inc.) with
a closed-loop dual-machine hierarchical architecture, as shown
in Fig. 2. A laptop computer (ISK, Lenovo Inc.) with a
graphical user interface was used to conduct the high-level
host controller and generate Simulink-based control programs.
Meanwhile, an industrial personal computer (610H, Advantech
Inc.) was used as the low-level follower controller to execute

TABLE I
LIST OF ABBREVIATIONS

embedded control commands and modulate the operation of
exoskeleton [37]. The arm configuration detection was realized
by four inertial measurement units (MPU9250, TELESKY
Inc.) mounted at the upper arm and forearm of wearer. Besides,
two miniature force sensors (JLBS-MD, KINGNO Inc.) were
attached between the terminal of inner tendon and the anchor
point to obtain the driving force acting on human elbow. The
sEMG signals from the biceps and triceps of wearer were
measured via a portable sEMG sensing system (Myoware,
SparkFun Inc.) [38]. A 32-bit microcontroller (STM32F407,
Microchip Inc.) was adopted to read the feedback signals
from inertial measurement units and transmit them to follower
controller through RS-232 serial port. The analog force signals
and sEMG signals were acquired via two analog-to-digital
converters (PCL-818H, Advantech Inc.) in follower computer.
A digital-to-analog converter (PCL-726, Advantech Inc.) was
used to convert the control instructions into corresponding ana-
log voltage signals and communicate with motor drivers. The
sampling frequency of the control loop was set to 1000 Hz.

B. Control Strategy Development
In this section, a new adaptive cooperative admittance

backstepping sliding mode control strategy combined with
neural network compensation (ABSMCNN) is developed for
the above soft exoskeleton. It can assist the disabled patients
with different degrees of hemiplegia carry out multi-mode
rehabilitation training, including the passive-training mode
training, the active-training mode training, the assist-as-needed
training mode training, and the safety mode training. The
overall block diagram of the proposed control scheme is
elaborated in Fig. 3. All abbreviations used in this paper,
including the abbreviations above, are given in Table I.

According to the dynamics analysis method of
Lagrangian [39], the overall dynamic equation of the
human-exoskeleton coupling system can be expressed in joint
space as follow:

τ(t) + τh(t) = M θ̈ (t) + V θ̇ (t) + G(t) + τ f (t) + Du(t) (1)

where τ(t) denotes the driving torque generated by the servo
motor; τh(t) represents the elbow joint torque of wearer;
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Fig. 3. Overall block diagram of the proposed neural network-based adaptive cooperative admittance backstepping control strategy.

θ(t), θ̇ (t) and θ̈ (t) denote joint position, velocity and accel-
eration of elbow, respectively; M and V are the inertia and
viscous damping coefficient of human-exoskeleton system; the
gravitational torque is denoted as G(t); the frictional torque
is represented as τ f (t), which mainly comes from the motor
reducer and the tendon-sheath transmission component [40];
Du(t) represents the lumped effects of dynamics modeling
errors and external disturbances.

From (1), since the inertia coefficient is positive, the accel-
eration of elbow can be given as follow:

θ̈ (t) = M−1 [
τ(t) + τh(t) − V θ̇ (t) − G(t) − τ f (t) − Du(t)

]
(2)

The elbow joint torque of human can be estimated in real
time based on the sEMG signals from biceps and triceps [41].
Firstly, the raw sEMG signals were collected with a sampling
frequency of 1 kHz. Next, a Butterworth filter with a passband
of 10-500 Hz and a 50 Hz notch filter were adopted to
remove undesirable noise. After that, a full wave rectifier
and a 1 Hz low-pass Butterworth filter were utilized to
generate the envelopes of sEMG signals. Then, the nonlinearly
normalized sEMG signals EMGN can be computed via the
linearly normalized envelopes EMGL as follow:

E MG N = 100
e(−E MGLρ)

− 1
e(−100ρ−1)

(3)

Here, ρ is a constant defining exponential curvature.
Then, the human elbow joint torque can be estimated based

on the Kalman filter. The state functions were defined as:

τh(t) = τh(t − 1) + δ (4)
E MG N (t) = τh(t) + ς (5)

where τh(t-1) denotes the elbow joint torque at time before
t ; the covariance of process noise and measurement noise are
represented as δ and ς . The prediction and update algorithms

Fig. 4. Geometric diagram of the tendons routing on human elbow and
soft wearable suit.

of the Kalman filter are defined as [42]:

τ̂h(t |t − 1) = τ̂h(t − 1|t − 1) (6)

τ̂h(t |t) = τ̂h(t |t − 1) +
E(t |t − 1)

E(t |t − 1) + ς[
E MG N (t) − τ̂h(t |t − 1)

]
(7)

where τ̂h(t − 1|t − 1), τ̂h(t |t − 1) and τ̂h(t |t) are the previous,
priori and posterior values of estimated joint torque; E(t |t−1)
is the priori error covariance. The estimated joint torque can
be mapped into the actual joint torque via calibration tests.

The geometric diagram describing the relationships between
the tendons routing on human elbow and soft wearable suit is
depicted in Fig. 4. The flexion tendon and extension tendon
are located on the front side and back side of elbow joint in
agonist-antagonist configuration. They are pulled in different
directions simultaneously to generate elbow driving torque.
The pulling forces of flexion tendon and extension tendon are
denoted as F1 and F2, respectively. The locations of the sheath
supports mounted on the upside of soft wrap are denoted
as point A and point C . Meanwhile, the locations of the
anchor points mounted on the underside of soft wrap are
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represented as point Cand point D. The radius of wearer’s
elbow is represented as R. The width of the upper arm and
forearm is assumed to be the same and denoted as m. The
distance between the soft wrap and the elbow joint center is
represented as n.

According to the geometric relationships shown in Fig. 3,
the interaction torque acting on the elbow joint of wearer
(i.e.,τelbow) can be calculated as follow:

τelbow(t) = F1(t) sin
[
θ(t)

2
+ arctan(

m
2n

)

]
√

n2 +
m2

4
− F2(t)R (8)

Then, the frictional torque from motor reducer and
tendon-sheath transmission can be obtained via the motor
driving torque and the interaction torque as follow:

τ f (t) = Krτ(t) − τelbow(t) (9)

where Kr denotes the reduction ratio of motor reducer.
In order to adjust the human-robot interaction characteristics

in different training modes and encourage patient’s active
participation, the desired admittance property between the soft
elbow exoskeleton and human elbow can be given as follow:

1θ(t) = τh(t) · δF (10)

where

δF =
1

Mds2 + Bds + Kd
γ (11)

Here,1θ(t) is the desired joint angle adjustment value cor-
responding to the elbow joint torque generated by wearer;
δF denotes the admittance model; the inertial gain, damping
gain, and stiffness gain of admittance model are defined as
Md , Bd , and Kd , respectively. γ is an adaptive factor defined
to modulate the interaction compliance during rehabilitation
training.

The actual joint angle error of soft elbow exoskeleton can
be obtained as follow:

e(t) = θd(t) − θ(t) (12)

whereθd(t) denotes the predefined desired trajectory of elbow
joint;e(t)is the actual joint angle error.

The value of adaptive factor is determined according to the
selected training mode and the absolute value of joint angle
error, i.e., |e|. It can be divided into the following four cases:

1) Passive training mode (PTM). The adaptive factor is set
to γ =0. The control purpose of this training mode is to
assist the disabled patient passively follow a predefined
training trajectory with high tracking accuracy, and the
active motion intention of patient is ignored.

2) Active training mode (ATM). The joint angle error is
within the range of |e| ≤ Ra , and the adaptive factor is
set to γ = γmax. Ra is the boundary of active training
region. γmax is the predefined maximum adaptive factor
which can achieve maximum interaction compliance.
The control purpose of this training mode is to allow
the patient to actively dominate the cooperative training
trajectory by adjusting interaction torque τelbow.

3) Assist-as-needed training mode (AANTM). The joint
angle error is within the range of Ra < |e| ≤ Rn ,
the adaptive factor is set to γ = γmax[|e|(P-1)+Ra-
PRn]·[P(Ra-Rn)]−1. Here, Rn is the boundary of assist-
as-needed training region. P is a positive constant that
determines the variation rate of interaction compliance.
In this training mode, the rehabilitation robot judges
that the patient has difficulty in actively and indepen-
dently following the desired training trajectory. Thus,
the interaction compliance level decreases linearly with
the increase of actual joint angle error, ensuring that the
affected limb can complete the training task with enough
robot assistance.

4) Safety training mode (STM). In this case, the actual
joint angle error satisfies the condition that Rn < |e|,
and the adaptive factor is set to γ = γmax · exp[(Rn-
|e|)L−1]· P−1. In this training mode, the robot judges
that the patient has come into an abnormal training state.
The interaction torque increases exponentially with the
increase of actual joint angle error, pulling the affected
limb back to the desired training trajectory and avoid-
ing collapse problem. Here, L is a predefined positive
constant used to adjust the increase rate of interaction
torque.

Furthermore, from (10) and (12), the admittance errorξ1(t) can
be described as follow:

ξ1(t) = e(t) − 1θ(t) = θd(t) − θ(t) − 1θ(t) (13)

From (13), the time derivative of admittance error ξ̇1(t) is
given by

ξ̇1(t) = θ̇d(t) − θ̇ (t) − 1θ̇(t) (14)

Then, the stabilizing function is defined and expressed as:

α1(t) = Cξ1(t) (15)

where α1(t) is the stable coefficient; C is a positive constant.
The virtual control term can be given as:

ξ2(t) = ξ̇1(t) + α1(t) = θ̇d(t) − θ̇ (t) − 1θ̇(t) + α1(t) (16)

From (16), the time derivative of virtual control term ξ̇2(t) is

ξ̇2(t) = θ̈d(t) − θ̈ (t) − 1θ̈(t) + α̇1(t)

= θ̈d(t) − 1θ̈(t) + α̇1(t)

− M−1 [
τ(t) + τh(t) − V θ̇ (t) − G(t) − τ f (t) − Du(t)

]
(17)

Consider the first positive-definite Lyapunov function candi-
date as follow:

V1 =
1
2
ξ2

1 (t) (18)

Then, according to (14) and (16), the time derivative of V1
can be expressed as

V̇1 = ξ1(t)ξ̇1(t)

= ξ1(t)
[
θ̇d(t) − θ̇ (t) − 1θ̇(t)

]
= ξ1(t) [ξ2(t) − α1(t)]

= ξ1(t)ξ2(t) − Cξ2
1 (t) (19)
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The switching function of sliding mode control can be
designed as follow:

S(t) = λξ1(t) + ξ2(t) (20)

where S(t) denotes the sliding valuable; λ represents a positive
proportional gain.

Differentiating S(t) with respect to time and combining
(17), we can obtain

Ṡ(t) = λξ̇1(t) + ξ̇2(t)

= λξ̇1(t) + θ̈d(t) − 1θ̈(t) + α̇1(t)

− M−1 [
τ(t) + τh(t) − V θ̇ (t) − G(t) − τ f (t) − Du(t)

]
= (λ + C)ξ̇1(t) + θ̈d(t) − 1θ̈(t)

− M−1 [
τ(t) + τh(t) − V θ̇ (t) − G(t) − τ f (t) − Du(t)

]
(21)

The preliminary control law U is designed as follow:

U = M
[
(λ + C)ξ̇1(t) + ξ1(t) + θ̈d(t) + K sign(S) − 1θ̈(t)

]
− τh(t) + V θ̇ (t) + G(t) + τ f (t) (22)

where K is a positive constant; sign (·) is a sign function.

sign(S) =


1 i f S(t) > 0
0 i f S(t) = 0
−1 i f S(t) < 0

(23)

Then, consider the second positive-definite Lyapunov function
candidate as follow:

V2 = V1 +
1
2

S2(t) (24)

From (19), (21), (22), the time derivative of V2 can be given:

V̇2

= V̇1 + S(t)Ṡ(t)

= ξ1(t)ξ2(t) − Cξ2
1 (t) + S(t)Ṡ(t)

= ξ1(t)ξ2(t) − Cξ2
1 (t)

+ S(t)
{

(λ + C)ξ̇1(t) + θ̈d(t) − 1θ̈(t)
−M−1 [

τ(t)+τh(t)−V θ̇ (t)−G(t)−τ f (t)−Du(t)
] }

=ξ1(t) [ξ2(t) − S(t)]−Cξ2
1 (t)−S(t)

[
K sign(S)−M−1 Du(t)

]
= −(λ + C)ξ2

1 (t) − S(t)
[

K sign(S) − M−1 Du(t)
]

(25)

Next, to estimate the lumped effects of dynamics modeling
errors and external disturbances, a neural network observer is
proposed based on a three-layer Gaussian radial basis function
network. For simplification, we define

β = M−1 Du(t) (26)

The input vector of neural network 0 is selected as

0 =
[
θ(t) θ̇(t) ξ1(t) ξ̇1 (t)

]
(27)

The weighted sum method is utilized to obtain the output of
neural network as follows:

β̂(W) = Wφ =

N∑
i=1

Wiφi i = 1, 2, · · · , N (28)

φi = exp

[
−

(0 − mi )
T (0 − mi )

2b2
i

]
(29)

where β̂(W) is the neural network output; N is the number of
hidden nodes; Wi is the connective weight of the ith hidden
layer and output layer; φi is the i th Gaussian function; mi
is the center vector of the i th neurons; bi is the i th standard
deviation.

Define the minimum approximation error εm as follow:

εm = β − β̂(W∗) (30)

where W∗ denotes an optimal connective weight vector
achieving minimum approximation error.

Next, a neural network-based disturbance compensation
control term is designed as follow:

Udis = M
[
ε̂m + β̂(W)

]
(31)

where ε̂m denotes the estimated value of εm .
Then, the final ABSMCNN control law can be obtained by

combining (22) and (31), and we can get

U = M
[
(λ+ C)ξ̇1(t)+ ξ1(t)+ θ̈d(t) + K sign(S) − 1θ̈(t)

]
− τh(t) + V θ̇ (t) + G(t) + τ f (t) + M

[
ε̂m + β̂(W)

]
(32)

Consider the third positive-definite Lyapunov function candi-
date as follow:

V3 = V2 +
1

2η1
(εm − ε̂m)2

+
1

2η2
(W∗

− W)F−1(W∗
− W)T

(33)

Here, η1 and η2 represent two positive constants; F denotes
a positive definite diagonal matrix.

According to (25), (32) and (33), the time derivative of V3
can be given by

V̇3 = V̇2 −
1
η1

(εm − ε̂m) ˙̂εm −
1
η2

(W∗
− W)F−1Ẇ

T

= −(λ + C)ξ2
1 (t)

− S(t)
[

K sign(S) − M−1 Du(t) + ε̂m + β̂(W)
]

−
1
η1

(εm − ε̂m) ˙̂εm −
1
η2

(W∗
− W)F−1Ẇ

T

= −(λ + C)ξ2
1 (t)

− S(t)K sign(S) + S(t)
[

M−1 Du(t) − ε̂m − β̂(W)
]

−
1
η1

(εm − ε̂m) ˙̂εm −
1
η2

(W∗
− W)F−1Ẇ

T

= −(λ + C)ξ2
1 (t) − S(t)K sign(S)

+ S(t)
[
β − β̂(W∗) − ε̂m

]
+ S(t)

[
β̂(W∗) − β̂(W)

]
−

1
η1

(εm − ε̂m) ˙̂εm

−
1
η2

(W∗
− W)F−1Ẇ

T
(34)
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TABLE II
CHARACTERISTICS OF THE SUBJECT CONDUCTING EXPERIMENTS

Then, design the adaption laws for ˙̂εm and Ẇ as follows:

˙̂εm = η1S(t) (35)

Ẇ = η2S(t)φT FT (36)

By combining (28), (30), (35) and (36) into (34), the time
derivative of V3 can be rewritten as

V̇3 = −(λ + C)ξ2
1 (t) − S(t)K sign(S) + S(t)(εm − ε̂m)

+ S(t)(W∗
− W)φ

−
1
η1

(εm − ε̂m) ˙̂εm −
1
η2

(W∗
− W)F−1Ẇ

T

= −(λ + C)ξ2
1 (t) − S(t)K sign(S) + S(t)(εm − ε̂m)

+ S(t)(W∗
− W)φ − S(t)(εm − ε̂m) − S(t)(W∗

− W)φ

= −(λ + C)ξ2
1 (t) − S(t)K sign(S)

= −(λ + C)ξ2
1 (t) − K |S(t)| ≤ 0 (37)

Thereby, it can be observed that V3 is positive definite while
its time derivative is negative definite. When |S(t)| tends to
infinity, V3 approaches to infinity. According to the Lyapunov
stability criterion [43], the closed-loop controller is globally
asymptotically stable, and the admittance error ξ1(t) gradually
converges to zero and approaches the sliding surface S(t) = 0
in finite time. This completes the proof of the system stability.

III. EXPERIMENTAL PROTOCOL

A. Subjects and Experimental Setup
In this research, we focused on validating the performance

of the proposed ABSMCNN scheme on four neurologically
intact healthy subjects and four stroke patients with different
degrees of hemiplegia. Table II presents the anthropometry
parameters and Fugl-Meyer assessment score [44] of each
subjects. The experimental protocol includes two separate
tests, i.e. the repetitively trajectory tracking test with differ-
ent admittance parameters and the human-robot cooperative
resistive training test with adaptive interaction compliance.
The ethical approval of experimental study was obtained
from the Institutional Review Board of Nanjing University of
Aeronautics and Astronautics under the protocol IRB [2022]-
178. Before the experimental protocol was carried out, all
participants received a detailed explanation on the potential
risks of experiments and signed an informed consent prior
to their participation in this study. In addition, all subjects
gave us the authority to utilize their personal information and
experimental results.

Fig. 5. The experimental setup and soft elbow rehabilitation exoskele-
ton prototype worn by a participant.

The verification experiments were conducted on the afore-
mentioned soft elbow rehabilitation exoskeleton and real-time
control system, as shown in Fig. 2. The experimental setup
and exoskeleton prototype worn by a participant is shown
in Fig. 5. The participants were instructed to comfortably
sit down on a chair and wear the soft elbow exoskeleton
with the help of a laboratory assistant. The monitors of host
computer and follower computer were utilized to displace
the status of program execution and the guidance information
for visual feedback. All participants were required to repeat
the compliance-varying repetitively trajectory tracking test
and adaptive cooperative resistive training test six times for
each condition. There was a ten-minute break between each
experiment to keep participant relaxed and prevent muscle
fatigue.

B. Repetitively Trajectory Tracking Test With Different
Admittance Parameters

Firstly, the repetitively trajectory tracking test with differ-
ent admittance parameters was conducted, with the aim of
investigating the performance and feasibility of the proposed
control strategy in providing rigid passive training assistance
and compliant passive training assistance. For the severe hemi-
plegia patients seriously lacking of muscle contraction and
movement ability, the repetitively rigid passive training along
rational trajectory contributes to improving muscle contraction
function and eliminating articular spasm. In this case, the
control purpose focuses on guaranteeing the trajectory tracking
accuracy during training, and the patients remain in completely
passive state. On the other side, if the hemiplegia patients have
turned better and recovered partial motor functions, the repet-
itively compliant trajectory tracking training test combined
with admittance regulation can induce the active participation
of patients and, furthermore, modulate the actual training
trajectory based on the human elbow joint torque from patient.
It is conducive to enhancing the compliance, immersion and
comfort during rehabilitation training.

In the repetitively rigid passive training test, the adaptive
factor was set to γ =0. The control parameters of the
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Fig. 6. The results of repetitively rigid passive training experiment.
(a) The comparison among the desired trajectory and the actual tra-
jectories with different control strategies conducted by S1. (b) The
comparison of the actual joint angle errors with different control strate-
gies conducted by S1. (c) The statistical results of the RMSE of different
participants and different control strategies. Here, HEAL denotes the
statistical results of all healthy participants, STRO denotes the statistical
results of all stroke participants. (d) The statistical results of the PE of
different participants and different control strategies.

inner-loop adaptive backstepping sliding mode controller were
careful selected via trial and error in order to ensure position
tracking accuracy and system stability, and the control param-
eters were set to λ =0.83, C = 0.37, K = 3.5, η1 =5.5 and
η1 =4.1. In this test, the participants were commanded to
passively perform repetitive rehabilitation training with the
assistance of exoskeleton. The duration of each trial was set
to 10 s. The desired trajectory of elbow joint was defined as a
sinusoid wave trajectory, wherein the first 4 s saw an amplitude
of 30◦ and a frequency of 1 Hz, which then changed to 45◦

and 0.5 Hz from the moment t = 4 s to t = 10 s. The desired
trajectory can be seen in Fig. 6(a).

Meanwhile, in the repetitively compliant trajectory tracking
training test, the adaptive factor was set to γ = 2. The param-
eters of admittance model (i.e. inertial gain, damping gain, and
stiffness gain) were set to three groups (i.e. high admittance:

Md = 0.2, Bd = 0.2, Kd = 0.2; middle admittance: Md = 0.1,
Bd = 0.1, Kd = 0.1; low admittance: Md = 0.05, Bd = 0.05,
Kd = 0.05). The participants were commanded to wittingly
generate biological elbow joint torque and adjust the actual
training trajectory with their active intention. The duration of
each trial was set to 20 s. The desired trajectory of elbow joint
was defined as a sinusoid wave trajectory with an amplitude
of 45◦ and a frequency of 0.5 Hz. The desired trajectory is
shown in Fig. 7(a).

To quantitatively evaluate the control performance, the root
mean square error (RMSE), the peak error (PE), and the active
cooperation level (ACL) are defined as follows:

RMSE =

√√√√ 1
ω

ω∑
i=1

e2
i (38)

PE = max |ei | (39)

ACL =

√√√√ ω∑
i=1

e2
i

/
ω∑

i=1

τ 2
h_i (40)

where ei and τh_i represent the i th data of joint angle error
and elbow joint torque, ω denotes the total number of data.

C. Cooperative Resistive Training Test With Adaptive
Interaction Compliance

Secondly, the cooperative resistive training test integrated
with self-adaptive interaction compliance and active motion
intention of patients was carried out, with the aim of evaluating
the effectiveness of the ABSMCNN control strategy in assist-
ing elbow flexion-extension training in active-training mode,
assist-as-needed training mode, and safety training mode. For
the slight hemiplegia patients who have recovered most of the
motor function, motion intention-based cooperative resistive
training is beneficial to enhancing the rehabilitation treatment
efficiency and recovering psychological confidence. In this
case, the control purpose focuses on allowing the active
training of patients and adjusting human-robot interaction
compliance in different work areas based on practical training
requirements.

In the cooperative resistive training test, the adaptive
factor is modulated according to the actual joint angle
error and the selected parameters of different training
modes. The predefined maximum adaptive factor was set to
γmax =4. The boundaries of different work areas were set to
Ra =15 mm, Rn = 35 mm. The constants defined to adjust
the variation rate of interaction compliance are set to P = 2,
L = 10. The duration of each trial was set to 25 s. The desired
trajectory of elbow joint was set to follow a point-to-point
polyline trajectory with six waypoints as follows: Pa = (0 s,
0◦), Pb = (2 s, 45◦), Pc = (6 s, -60◦), Pd = (14 s, 60◦),
Pe = (22 s, −45◦), Pf = (25 s, 0◦). The desired trajectory can
be seen in Fig. 8(a). The parameters of admittance model were
set to the high admittance level. The experimenters needed to
actively execute reciprocating elbow flexion/extension training
on the sagittal plane. A training guidance module was

developed in the low-level follower computer, which can
immerse the experimenters into the virtual world and guide
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them to actively follow the planning trajectory during coop-
erative resistive rehabilitation training. From (10) and (13),
the interaction torque applied by wearer can be mapped into
the desired elbow joint angle adjustment, which leads to
the active elbow motion toward the corresponding direction.
The resistive torque from the soft exoskeleton can impede the
intention-based free motion of human elbow and, as a result,
adjust rehabilitation training intensity.

IV. RESULTS AND DISCUSSION

Fig. 6 presents the results of the repetitively rigid passive
training test. To evaluate the position control performance of
the inner-loop of proposed ABSMCNN control strategy, the
experimental results were compared to those of a conventional
sliding mode controller (SMC) [45]. Furthermore, to vali-
date the effectiveness of the developed neural network-based
disturbance compensation method, the ABSMCNN without
neural network compensation (ABSMC) was also applied in
the comparative experiments. Fig 6 (a) gives the comparison
results of the desired trajectory and the actual trajectories with
different control strategies conducted by subject S1 in one
trial. The actual joint angle errors are compared in Fig 6 (b).
Besides, on the left side of Fig 6 (c) and Fig 6 (d), the
statistical results of the RMSE and PE of each participant using
different control strategies are summarized. The statistical
results of all healthy and all stroke participants are compared
on the right side of Fig 6 (c) and Fig 6 (d). All participants
carried out the repetitively rigid passive training test six times
for each control strategy.

According to the results in Fig 6, it can be clearly observed
that the position control accuracy of proposed ABSMCNN
scheme is higher than those of SMC and ABSMC. More
specifically, it can be calculated that the average RMSE of
all eight participants and six trials with ABSMCNN is 3.18◦,
which is lower than those of SMC (i.e., 5.15◦) and ABSMC
(i.e., 4.30◦). Similarly, the proposed ABSMCNN achieved the
lowest average PE (i.e., 5.68◦) when compared with those
of the SMC (i.e., 10.85◦) and ABSMC (i.e., 9.19◦). There-
fore, the trajectory tracking error significantly decreases when
the neural-network-based adaptive admittance backstepping
sliding mode control strategy is applied. The neural network
compensation scheme contributes to a decrease of 26.05%
in average RMSE and a decrease of 38.19% in average
PE. Furthermore, the Kruskal-Wallis statistical significance
tests [46] with a significance level of α =0.05 were applied
to analyze the experimental results and reveal the statistically
significant differences. It can be calculated that the p-value of
RMSE for different control strategies, participants and trials
is 0.0073 (p < 0.05). Meanwhile, the p-value of PE for
different control strategies, participants and trials is 0.0061
(p < 0.05). Moreover, a Bonferroni pairwise post-hoc anal-
ysis [47] was performed to prove the significant differences
between two groups. Then, the significant post-hoc pair-
wise differences were found between ABSMCNN and SMC
(p-value of RMSE: 0.0173, p-value of PE: 0.0135), as well
as between ABSMCNN and ABSMC (p-value of RMSE:
0.0156, p-value of PE: 0.0129). The results indicates that the

differences of trajectory tracking performance using different
methods are of statistical significance.

On the other side, the average results on two categories of
healthy and stroke participants with different control strategies
were compared. Here, the average RMSE of healthy subjects
(i.e., SMC: 5.11 ◦, ABSMC: 4.34 ◦, ABSMCNN: 3.13 ◦) are
correspondingly similar to those of stroke subjects (i.e., SMC:
5.20◦, ABSMC: 4.27 ◦, ABSMCNN: 3.23 ◦). The average PE
of healthy participants (i.e., SMC: 10.78 ◦, ABSMC: 9.25 ◦,
ABSMCNN: 5.63 ◦) are similar to those of stroke subjects
(i.e., SMC: 10.91 ◦, ABSMC: 9.14 ◦, ABSMCNN: 5.72 ◦).

Thus, the experimental results demonstrate the superiority
of ABSMCNN over SMC and ABSMC in improving the
position control accuracy of repetitively rigid passive train-
ing. Besides, the variations of motor functions of different
subjects almost have no influence on the trajectory tracking
accuracy. Moreover, the ABSMCNN scheme also presents an
advantage in accuracy when compared with other trajectory
tracking control methods of soft exoskeleton. For example,
a hierarchical cascade control strategy proposed in [48] for
soft arm exoskeleton achieves a

PE about 8.92 ◦, which is higher than that of ABSMCNN.
In [17], a two-layer controller combined with bang-bang
control and PID control was developed for a textile-based
soft upper-limb exoskeleton, and its average RMSE in tra-
jectory tracking test (about 6 ◦) is higher than that of
ABSMCNN.

The experimental results of repetitively compliant trajectory
tracking training test are shown in Fig. 7. The proposed
ABSMCNN was applied in this experiment and the parameters
of admittance model were set to high admittance, middle
admittance and low admittance respectively. More specif-
ically, Fig 7 (a) presents the comparison of the desired
trajectory and the actual trajectories with different admittance
parameters conducted by subject S1 in one trial, when the
subject produces the voluntary effort. Fig 7 (b) gives the
time histories of the corresponding actual joint angle errors
with different admittance parameters. The envelope of sEMG
signals from the triceps and biceps of S1 in the tests with
high admittance, middle admittance and low admittance are
illustrated in Figs 7 (c)-7 (e). The time histories of the
estimated elbow joint torques during experiment are given in
Fig 7 (f). It can be found that the deviation between desired
elbow trajectory and actual elbow trajectory shows positive
correlation with the strength of sEMG signals and the elbow
joint torque generated by wearer. The amplitudes of the sEMG
signals from triceps and biceps, which have been amplified
and filtered, were all limited within the range of −300 mV to
300 mV. Correspondingly, the applied elbow joint torque was
changed within the range of −5 Nm to 9 Nm. The magnitude
and direction of the joint angle errors are consistent with the
applied joint torque. More specifically, it can be calculated that
the RMSE and PE of the experiment with low admittance are
24.13◦ and 50.86◦, which are higher than those with middle
admittance (RMSE:13.98◦, PE: 29.66◦) and high admittance
(RMSE: 9.41◦, PE: 22.13◦). It indicates that there is an upward
trend of joint angle error with the decrease of admittance
parameters.
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Fig. 7. The results of repetitively compliant trajectory tracking training experiment. (a) The comparison among the desired trajectory and the
actual trajectories with different admittance parameters conducted by S1. (b) The comparison of the actual joint angle errors with different
admittance parameters conducted by S1. (c) ∼ (e) The envelope of sEMG signals from triceps and biceps in the tests with high admittance,
middle admittance and low admittance. (f) The estimated elbow joint torque of S1. (g) The statistical results of the ACL of different participants and
different admittance parameters. Here, HEAL denotes the statistical results of all healthy participants, STRO denotes the statistical results of all
stroke participants.

The statistical results of the ACL of each participant
adopting different admittance parameters are summarized on
the left side of Fig 7 (g). Meanwhile, the statistical results
of all healthy and stroke participants are compared on the
right side of Fig 7 (g). All the participants carried out the
repetitively compliant trajectory tracking test six times for
each admittance level. It can be obtained that the average
ACL of all eight participants and six trials with high admit-
tance is 4.51 ◦/Nm, which is lower than those with middle
admittance (6.63 ◦/Nm) and low admittance (10.99 ◦/Nm).
Besides, the average ACL of healthy and stroke participants
were analyzed. The average ACL of healthy participants with
different admittance levels (i.e., high admittance: 4.46 ◦/Nm,
middle admittance: 6.72 ◦/Nm, low admittance: 11.13 ◦/Nm)
are correspondingly similar to those of stroke participants (i.e.,
high admittance: 4.56 ◦/Nm, middle admittance: 6.54 ◦/Nm,
low admittance: 10.85 ◦/Nm). The Kruskal-Wallis tests were
applied to reveal the statistically significant differences among
the results with high admittance, middle admittance and low

admittance. It can be calculated that the p-value of ACL for
different admittance levels, participants. and trials is 0.0039
(p < 0.05), which indicates that the differences of ACL using
different admittance parameters are of statistical significance.

Therefore, the experimental results verify that the active
joint torque generate by participant can realize real-time
adaption of the practical training trajectory, and the
human-exoskeleton interaction compliance level increases with
the decrease of admittance parameters. In addition, the vari-
ations of motor functions and hemiplegia degrees almost
have no influence on the value of ACL. Compared with the
existing passive tracking control schemes without trajectory
regulation [20], [22] and the compliance tracking control
strategies with constant interaction characteristics [49], the
proposed ABSMCNN scheme shows superiority in helping
patients induce their active participation during repetitively
trajectory tracking rehabilitation training.

Fig. 8 gives the results of cooperative resistive training
test with adaptive interaction compliance. More specifically,
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Fig. 8. The results of cooperative resistive training experiment with adaptive interaction compliance. (a) The comparison between the desired
trajectory and the actual trajectory of S1. (b) The absolute value of actual joint angle error of S1 and the boundaries of ATM and AANTM.
(c) The envelope of sEMG signals from triceps and biceps. (d) The estimated elbow joint torque of S1. (e) The variation of adaptive factor γ.
(f) The statistical results of the number of activated training modes of different participants. HEAL denotes the statistical results of all healthy
participants, STRO is the statistical results of all stroke participants. g) The statistical questionnaire results related to the smoothness, effort and
stability of experiments conducted by different participants.

Fig. 8(a) shows the comparison between the desired training
trajectory and actual training trajectory of the experiment
conducted by subject S1 in one trial. The time histories of the
absolute value of actual joint angle errors and the boundaries
of ATM and AANTM are shown in Fig. 8(b). It can be
found that the cooperative resistive training with predefined
waypoints can be completed via the proposed ABSMCNN
scheme. In the trial with S1, the training mode is switched
between ATM and AANTM for many times. Due to the
need to adapt to the cooperative resistive training process,
the switching frequency in initial period is higher than those
in the middle and later periods. The time histories of the
envelope of sEMG signals from the triceps and biceps and
the corresponding estimated elbow joint torques are shown
in Figs. 8(c) and 8(d). We can observe that the actual train-
ing trajectory is modulated according to the sEMG signals

and elbow joint torques, and that allows the participant to
actively dominate the rehabilitation training based on their own
motion intention. The time histories of the position error-based
adaptive factor γ is given in Fig. 8(e). It can be seen that
the adaptive factor in the ATM is equal to 4. Meanwhile,
in the AANTM, the adaptive factor decreases rapidly with
the increase of joint angle errors, contributing to reducing
interaction compliance and ensuring training integrity.

The statistical results of the number of activated training
modes (i.e., 1, 2 and 3) of all eight participants in six trials are
summarized in Fig. 8(f). Moreover, the statistical results of all
healthy participants and all stroke participants are compared.
Here, 1 denotes the training in ATM; 2 denotes the training
in AANTM; 3 denotes the training in STM. The average
value of activated training mode number of healthy participants
is 1.58, while the average value of activated training mode
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number of stroke participants is 2.42. It can be seen that the
average activated training mode number increases with the
paralysis degree of participant. The training modes of healthy
participants are mainly distributed in the ATM and AANTM
regions, as they have enough muscular strength to complete
training. By contrast, for the stroke patients, the training modes
are mainly distributed in the AANTM and STM regions.
Especially, the patient with severe paralysis basically worked
in the STM due to the lack of motor ability. It conduces to
guarantee that the disabled subjects can fulfill the training task
with robot assistance and avoid safety problems. Moreover,
the Kruskal-Wallis tests were applied to reveal the statistically
significant differences of activated training mode of the partic-
ipants with different motor functions. It can be calculated that
the p-value of training mode is 0.0126 (p < 0.05), which
indicates that the differences are of statistical significance.
Most of the existing cooperative control schemes of soft
exoskeletons were developed with a single rehabilitation train-
ing mode [31], [50], [51]. Compared with them, the proposed
ABSMCNN with four training modes shows superiority in
satisfying the training requirements of patients with different
hemiplegia degrees and different training objectives.

A questionnaire study about the smoothness, effort and sta-
bility of each trial for all participants were conducted to eval-
uate the human-exoskeleton collaboration performance [52].
The performance scores was defined as five levels, i.e., 0, 1,
2, 3 and 4. Here, 0 represents the worst performance, while
4 represents the best performance. In Fig. 8(g), the statistical
questionnaire results of the cooperative resistive rehabilitation
training experiment conducted by different participants in six
trials are summarized. Besides, the statistical results of healthy
participants and stroke participants are compared and illus-
trated. It can be calculated that, for the healthy participants,
the average smoothness score is 3.25, the average effort score
is 1.50 and the average stability score is 3.42. Meanwhile,
for the stroke participants, the average smoothness score is
1.67, the average effort score is 3.38 and the average stability
score is 1.71. The Kruskal-Wallis tests were applied to see
the statistically significant differences between the results of
healthy and stroke subjects. The p-value of smoothness score,
effort score and stability score are 0.0159, 0.0182 and 0.0141,
respectively. They are all smaller than 0.05, indicating that the
differences are significant. We can observe that the smoothness
scores and stability scores of stroke patients are lower than
those of the healthy subjects. That is mainly caused by the
variation of adaptive factor in AANTM and STM, leading
to the rapid adjustment of planning trajectory. In addition,
the participants with severe paralysis and moderate paralysis
found that they needed more effort to complete the cooperative
resistive training when compared with the healthy subjects and
the patients with slight paralysis.

V. CONCLUSION AND FUTURE WORKS

In this research, a new ABSMCNN control strategy was
proposed for a soft elbow exoskeleton to assist multi-mode
cooperative rehabilitation training. The human-robot coupling
dynamic model was developed based on a sEMG-based joint

torque estimation method and a neural network-based distur-
bance observer. The interaction characteristics of ABSMCNN
is modulated via an adaptive admittance model according
to real-time position errors, and it can be transformed into
PTM, ATM, AANTM and STM to meet the specific therapy
requirements. It contributes to inducing the active partic-
ipation of patients and ensuring the accomplishment and
safety of training. The effectiveness of proposed scheme was
evaluated via the compliant trajectory tracking test and the
adaptive cooperative resistive training test conducted by four
healthy subjects and four stroke patients. Experimental results
involving position control accuracy, active cooperation level,
smoothness, effort and stability were analyzed and discussed.

Our future works will cover various areas. For structure
design, we plan to optimize the wearable components and
actuator module, so that the wearable comfort and lightweight
level can be promoted. For control methodology, the adaptive
law of admittance model will be improved according to the
clinical knowledge of therapists. For rehabilitation evaluation,
a visual recovery evaluation system will be developed for
the quantitative analysis of therapy effect and optimization of
rehabilitation strategy.
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