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Abstract— Upper limb tremor is a prominent symp-
tom of both Parkinson’s disease and essential tremor.
Its kinematic parameters overlap substantially for these
two pathological conditions, thus leading to high rate of
misdiagnosis, especially for community doctors. Several
groups have proposed various methods for improving dif-
ferential diagnosis. These prior studies have attempted to
identify better kinematic parameters, however they have
mainly focused on single limb features including tremor
intensity, tremor frequency, and tremor variability. In this
paper, we propose a wearable system for multi-segment
assessment of upper limb tremor and differential diagno-
sis of Parkinson’s disease versus essential tremor. The
proposed system collected tremor data from both wrist
and fingers simultaneously. From this data, we extracted
multi-segment features in the form of phase relationships
between limb segments. Using support vector machine
classifiers, we then performed differential diagnosis from
the extracted features. We evaluated the performance of the
proposed system on 19 Parkinson’s disease patients and
12 essential tremor patients. Moreover, we also assessed
the performance cost associated with reducing task load
and sensor array size. The proposed system reached
perfect accuracy in leave-one-out cross validation. Task
reduction and sensor array reduction were associated with
penalties of 2% and 9-10% respectively. The results demon-
strated that the proposed system could be simplified for
clinical applications, and successfully applied to the dif-
ferential diagnosis of Parkinson’s disease versus essential
tremor in real-world setting.
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I. INTRODUCTION

PARKINSON’S disease (PD) and essential tremor (ET) are
the two most common tremor syndromes [1]. In general,

ET is characterized by postural tremor and kinetic tremor,
whereas PD is characterized by resting tremor. However, 18%
of ET patients may have resting tremor [2], and 90% of PD
patients may develop postural tremor [3]. ET patients are also
3.5 times likely to develop PD than healthy people [4]. Thus,
the differential diagnosis of PD versus ET is important in
clinical practice, because a correct diagnosis guides adequate
treatment and has a significant impart on prognosis [5], [6].

However, the differential diagnosis of PD versus ET could
be challenging in clinical settings [7], especially for tremor
dominated PD patients at early stage and patients without a
family history [8]. Moreover, ET patients are at higher risk of
developing PD, and must therefore be re-examined regularly.
In clinical practice, differential diagnosis of PD versus ET
relies on electrophysiological tests and molecular imaging [9].
Those methods can be only implemented in well-equipped
hospitals, and molecular imaging can be expensive [8]. Thus,
a convenient method that can be applied via telemedicine could
be of great value in aiding clinical efforts.

Upper limb tremor is a prominent symptom of both PD
and ET [9]. As a consequence, several groups have focused
on developing noninvasive systems to obtain parameters relat-
ing to upper limb tremor for differential diagnosis. Surface
electromyogram sensors, optical systems, and inertial sensors
are widely adopted methodologies. In general, Surface elec-
tromyogram sensors are used to record the muscle bursting
patterns, whereas optical systems and inertial sensors are
used to monitor specific kinematic parameters of tremor, e.g.
frequency and mean harmonic peak power.

The above kinematic parameters overlap substantially
between PD and ET. Thus, some researchers have attempted
to identify kinematic parameters that support better differ-
entiation between PD and ET. For example, di Biase [10]
proposed the tremor stability index, and Surangstrirat [11]
proposed temporal fluctuation features. They both focused
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on features associated with tremor variability within a single
segment limb. To the best of our knowledge, no prior research
has examined the potential of multi-segment features for
differential diagnosis between PD and ET. We speculated that
multi-segment tremor patterns, e.g. phase relationship, might
differ between PD and ET patients as a consequence of their
different pathogenesis.

Based on the above hypothesis, we propose a wearable
system for multi-segment assessment of upper limb tremor and
differential diagnosis of PD versus ET. We designed a wear-
able multi-sensor measurement system to collect tremor data
from both wrist and fingers simultaneously. We then extracted
single limb segment group features and multi-segment group
features, and subjected them to the elastic net [12] and the
sequential floating forward selection method (SFFS) [13] to
reduce their dimensionality. Finally, we used a support vector
machine (SVM) classifier to differentiate between PD and ET.
To evaluate the proposed system, we enrolled 19 PD patients
and 12 ET patients and included the tremor data of both left
and right hands. Thus, We collected 38 PD tremor record-
ings and 24 ET tremor recordings for evaluation. We used
leave-one-out cross validation (LOOCV) to obtain the perfor-
mance, and achieved perfect accuracy (100.00%). Moreover,
we investigated strategies for simplifying the proposed system.
When adopting two tasks, the LOOCV accuracy decreased
by approximately 2%. When relying only on single-segment
information, the LOOCV accuracy decreased by 9-10%.

A. Related Work

Several groups have adopted inertial sensors or opti-
cal systems to perform differential diagnosis of PD ver-
sus ET. Muthuraman [14], WILE [5], Ghassemi [15], Bar-
rantes [16], di Biase [10], Bove [17], Loaiza [18], Duque [8],
Locatelli [19], Shahtalebi [20], and Su [21] collected tremor
kinematic parameters from the back of the hand or the wrist
using inertial sensors, smart watches, or smart phones to
distinguish between PD and ET. The back of the hand and the
wrist could be good choices for collecting tremor data, because
sensors could be easily fixed on them. However, neurologists
typically evaluate tremor by investing fingers tremor [22], [23].

Surangsrirat [11], Morrison [24], and Zhang [25] used
inertial sensors to collect the acceleration of the forefinger or
the middle finger. Oktay [6] used the Leap Motion Controller
to collect the 3D positions of wrist, palm, and metacarpal
bones for each finger, whereas Kovalenko [26] only extracted
the 3D position of the wrist using a video camera. Except
Oktay [6], most researchers have collected tremor of a single
limb segment, even though there is no research before about
which limb segment is best for differential diagnosis. Oktay [6]
collected kinematic data from both wrist and fingers, however
they did not investigate features related to multi-segment
tremor patterns.

With a few exceptions [6], [20], most studies have adopted
feature-based classifier methods for differential diagnosis of
PD versus ET, because of the limited sample size available.
Many research groups have therefore focused on identifying
better kinematic parameters to distinguish between PD and

ET, e.g. mean harmonic peak power [14], temporal fluc-
tuation [11], regularity [24], and the tremor stability index
(TSI) [10]. All these features reflect tremor variability for a
single limb segment. To the best of our knowledge, there is
no prior research on multi-segment tremor patterns.

B. Contributions and Article Structure
The main contributions of this study are as follow:

• We propose a wearable system for multi-segment assess-
ment of upper limb tremor and differential diagnosis of
PD versus ET, with promising results;

• We designed a wearable multi-sensor measurement sys-
tem to collect the tremor data from wrist and fingers
simultaneously for multi-segment tremor analysis;

• We investigated the performance of the proposed system
when simplifications were applied, given the significant
time pressure experienced in clinical practice especially
for screening. We found a smaller impact of task reduc-
tion compared with sensor array reduction, indicating that
task reduction may be a sensible choice in time-sensitive
scenarios.

This article is organized as follow. In section II, we describe
the proposed wearable system for multi-segment assessment
of upper limb tremor and differential diagnosis of PD versus
ET in detail. In section III we introduce the validation exper-
iment and results. In section IV, we discuss the comparison
with related work, the analysis of multi-segment features, the
simplification of the proposed system, and study limitation.

II. WEARABLE SYSTEM FOR MULTI-SEGMENT
ASSESSMENT OF UPPER LIMB TREMOR

A. Wearable Multi-Sensor Measurement System
To collect tremor data, we designed a wearable multi-sensor

measurement system. The hardware associated with this sys-
tem contained five nine-degrees-freedom sensor units, one
transmission node, one receiving node, and one personal
computer, as shown in Fig. 1. The sensor unit is based on the
MPU9250 chip, it measures 22 × 18×6 mm, and it weights
1.8 g, which is light enough to allow natural movement of the
fingers [27]. The transmission node is based on a MPU9250
chip and a nRF52832 chip, it measures 39*41*11 mm, and it
weighs 38.2 g. The transmission node collects all tremor data
simultaneously at a sample rate of 100 Hz and transmits the
data via Bluetooth. The receiving node (nRF-52-DK) worked
as a Bluetooth serial port transparent transmission module.
A personal computer was used to analyze the tremor data.
As shown in Fig. 1, the sensor units were attached to the distal
interphalangeal joints of the fingers, with Z axes perpendicular
to the fingernails. The transmission node was attached to the
wrist, with Z axis upward.

To estimate sensor orientation, we adopted the Mahony’s
complementary filter [28] to derive the direction cosine matrix
RE

S . As suggested in [29], we decomposed the acceleration
data to remove gravity acceleration as specified by:

aS
L = aS

− aE
g RE

S . (1)
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Fig. 1. Hardware overview of the wearable multi-sensor measurement
system.

In the above expression, E and S represent the local tangent
plane coordinate and the local coordination system of the
sensor respectively; aE

g indicates the gravitational acceleration
with respect to E; aS is the output acceleration of the sensor;
aS

L is linear acceleration with respect to S.
To improve interpretability, we converted direction cosine

matrix to Euler angles in order of Z-Y-X. We therefore derived
linear accelerations and Euler angles.

B. Preprocessing
First, we applied a five-level wavelet based on the db

4 wavelet, to remove signal trend in all components of linear
acceleration and Euler angles. Inspired by [10], we then
adopted principal component analysis to get the 1st principal
component (V 1) by (2). Moreover, we chose the the coeffi-
cient corresponding to the Z-axis weight of the 1st principal
component (r31) to represent tremor axis features, because the
Z-axis is consistent between wrist and fingers.

[ V 1 V 2 V 3 ] = [ V X V Y V Z ]R (2)

R = [

r11 r12 r13
r21 r22 r23
r31 r32 r33

] (3)

In the above expression, V refers to acceleration or angle;
V 1, V 2, and V 3 represent the 1st , 2nd , and 3rd principal
component of V respectively; V X , V Y , and V Z are the X ,
Y , and Z components of V respectively; R is the principal
component coefficients matrix derived by PCA; r31 is the
coefficient corresponding to the Z -axis weight of V 1.

To remove noise, we identified the peak frequency (denoted
f0) of V 1 between 3-12 Hz by Welch’s power spectral density
estimation, and filtered V 1 using a band-pass critically damped
digital filter [30] ranging between f0−2 Hz and f0+2 Hz [10].
In the following analysis, we only used the filtered signal (V f )
and r31.

C. Data Analysis
We adopted power spectral density, cross spectrum, and

temporal analysis to analyze V 1.
In power spectral density analysis, we used Welch’s peri-

odograms to derive power spectral density by averaging the
power spectra of each 50% overlapping 1 s segment. Following
published methods by [31], we extracted peak power frequency
(F0), peak power (K), median power frequency (F50), and

Fig. 2. An example of cross spectrum analysis.

frequency dispersion (SF50). F50 is the frequency at which
power spectral density is halved, and SF50 is half of frequency
band containing 68% of total signal power [32], i.e. frequency
band between F50−SF50 and F50+SF50 contains 68% of
total signal power.

As for cross spectrum analysis, we aimed to analyze the
multi-segment pattern of hand tremor. Fig. 2 shows an exam-
ple for the acceleration pattern between the wrist and the
thumb. First, we derived the magnitude-squared coherence of
wrist and thumb acceleration:

CW T (ω) =
|PW T (ω)|2

PW W (ω)PT T (ω)
. (4)

In the above expression, PW W and PT T represent the power
spectral densities of wrist and thumb acceleration respectively;
PW T refers to the cross power spectral density. We then
derived phase difference between wrist and thumb acceleration
(Phase-WT):

ωcross = argmax(CW T (ω)) (5)
Phase-WT = angle(PW T (ωcross)). (6)

In temporal analysis, we could not apply the method
proposed by [10] directly, because the sample rate of the
proposed system is 100Hz. We therefore interpolated our data
with a cubic spline and an upsampling factor 20, to improve
frequency resolution. We then subdivided the tremor record
into segments delimited by zero-crossings with positive gra-
dient [10], as shown in Fig. 3.

Notably, the interval was constrained to be longer than
0.04 s. Thus, we could got the interval (Tn) and the magnitude
(Mn) of the nth tremor segment. We then derived instantaneous
frequency ( fn), change in frequency (1 fn), and change in
magnitude (1Mn) of the nth tremor segment as specified
below:

fn =
1
Tn

(7)

1 fn = fn+1 − fn (8)
1Mn = Mn+1 − Mn (9)
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Fig. 3. An example of temporal analysis.

We then could derive frequency average (FA), frequency
coefficient of variation (FCV), and frequency stability index
(FSI) [10] by:

FA =
1
N

N∑
i=1

fi (10)

FCV =

√
1

N−1
∑N

i=1( fi − FA)2

FA
(11)

FSI = iqr(1 fn). (12)

In the above expressions, N was is number of fragments and
iqr indicates the interquartile range. We also derived magni-
tude average (MA), magnitude maximum (MM), magnitude
coefficient of variation (MCV), and magnitude stability index
(MSI):

MA =
1
N

N∑
i=1

Mi (13)

MM = max
i

Mi (14)

MCV =

√
1

N−1
∑N

i=1(Mi − MA)2

MA
(15)

MSI =
iqr(1Mn)√∑N

i=1
1M2

i
N

(16)

Notably, we propose MSI to assess tremor magnitude vari-
ability, inspired by [10]. To remove the influence of tremor
intensity, we normalized MSI by root mean square of magni-
tudes.

D. Feature Extraction
In this paper, we divided the extracted features into two

groups: multi-segment group and single limb segment group.
All extracted features were listed in Table I.

We extracted multi-segment group features by cross spec-
trum analysis, to capture the multi-segment tremor pattern.
We extracted C2

6 = 15 features, e.g Phase-WT, since there
were six limb segments involved. We denoted those features

TABLE I
EXTRACTED FEATURES

as Phase-IJ: the phase difference between limb segment I and
limb segment J. I and J could be W, T, F, M, R, and L, when
referring to the wrist, the thumb, the forefinger, the middle
finger, the ring finger, and the little finger, respectively. For
example, Phase-FR referred to the phase difference between
forefinger and ring finger.

We extracted single limb segment group features from the
acceleration or angle of a single limb segment, i.e. one finger
or the wrist. Among these features, root mean square (RMS),
peak power (K), magnitude average (MA), and magnitude
maximum (MM) were adopted to assess tremor intensity.
Peak power frequency (F0), median power frequency (F50),
frequency average (FA), and frequency dispersion (SF50) were
used to assess tremor frequency. Magnitude coefficient of
variation (MCV), magnitude stability index (MSI), frequency
coefficient of variation (FCV), and frequency stability index
(FSI) [10] were used to assess tremor variability. Additionally,
we propose Z -axis weight (ZW) to assess the axis pattern
of tremor, considering pill rolling tremor in PD patients.
We extracted 13 features from acceleration or angle for each
limb segment. Totally, we extracted 78 features from acceler-
ation or angle for the wrist and the five fingers.

E. Feature Selection and Classification
To remove scale effects, we firstly normalized features

using Z scores. We then applied a regularization method to
reduce the number of candidate features. More specifically,
we used elastic net regularization method proposed in [12]
which performs well when the number of features is larger
than the sample size. When using this method, we adopted a
penalty to the regression coefficients as specified below:

Penalty(α, λ) = λ

p∑
i=1

(
1 − α

2
B2

i + α |Bi |). (17)
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Fig. 4. Example of tasks.

In the above expression, α and λ are hyper parameters of
elastic net regularization method; p is the number of features;
Bi is the coefficient of the i th feature. We adopted grid search
to determine values for α and λ.

We adopted the wrapper method to select features, because
it might produce better results without simplifying assump-
tions regarding feature independence. Specifically, we used
SFFS, because it is one of the most promising feature selection
methods for wrapper [13].

As for classification method, we used radial basis function
kernel SVM [33] because the number of participants was
relatively small and radial basis function kernel is a widely
used choice [34]. Specifically, we adopted the grid searching
method to optimize hyper parameters of SVM [33].

We used LOOCV to evaluate the performance of the pro-
posed system. And we adopted accuracy as the evaluation
criterion in this article. Accuracy was defined as the percentage
of correctly classified recordings in validation groups using
LOOCV. We also measured sensitivity, specificity, and F1
Score from recordings in validation groups, where we defined
PD samples as positive and ET samples as negative. More-
over, we estimated confidence intervals by assuming that the
LOOCV accuracy followed a binomial distribution.

TABLE II
DEMOGRAPHIC AND CLINICAL DATA OF DATASET

III. VALIDATION EXPERIMENT

A. Data Collection Protocol
In the experiment, we adopted the following four tasks:
• P1: subjects put their arm on the chair arm with hand

outstretched, as suggested in [22];
• P2: subjects outstretch their arm forward with palm

downward, as suggested in [22];
• P3: subjects fold their arm in front of their chest with

palm downward, i.e. wing beating task suggested in [35];
• P4: subjects fold their arm in front of their chest with

palm inward, as suggested by clinicians.
Fig.4 showed examples for these tasks. The P1 task was

adopted to assess resting tremor, whereas P2, P3, and P4 tasks
were adopted to assess postural tremor.

We enrolled 19 PD patients and 12 ET patients to evaluate
the proposed system, which was approved by the Ethics
Committee of the Second Affiliated Hospital of Zhejiang
University School of Medicine (2021-0450). The inclusion
criteria were: (1) firm diagnosis of tremor dominated PD
or ET following established diagnostic criteria [9], [36]; (2)
patients with tremor symptoms. The exclusion criteria were:
(1) inability to perform the assigned tasks; (2) cognitive
dysfunction.

During the experiments, participants were asked to perform
each task for 15 seconds. Meanwhile, an independent neu-
rologist recorded videos using a smartphone, and evaluated
tremor severity on a five-point scale from 0 to 4 according to
MDS-UPDRS [22].

In total, we collected 38 PD and 24 ET inertial sensor
recordings for each task from both hands. Table II summarized
demographic and clinical data from all participants. Tremor
intensity did not differ significantly between PD and ET
recordings in our dataset, although the scores associated with
P3 and P4 presented a larger difference between PD and ET
compared with P1 and P2. Notably, 2 ET patients and 1 PD
patient presented similar symptoms, and were diagnosed based
on the dopamine transporter imaging.

B. Analysis of Extracted Features
We adopted significance tests to analyze the performance of

extracted features at group level. Specifically, we conducted
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Fig. 5. Significance test results of single segment limb group features (Blue Means p > 0.05; yellow means p < 0.05; red means p < 0.01.)

the one-factor analysis of variance when the normality and
homogeneity of variance assumptions were satisfied. Other-
wise, we conducted the Kruskal-Wallis test. Fig.5 showed
significant results of single limb segment group features.
We only listed features that showed significant differences
in at least one limb segment between PD and ET patients.
We found 46 significant (p < 0.05) single limb segment fea-
tures, extracted from acceleration, and 42 significant features
extracted from angle. Most significant features came from the
P1 task. The P3 task was the largest contributor among the
postural tremor tasks. Features from the forefinger contributed
the most. Notably, features related to tremor intensity, namely
MA and MM, showed significant differences between PD and
ET only in the P3 and P4 tasks, consistent with the data in
the Table II. The frequency stability index, i.e. a previously
proposed tremor stability index [10], did not show significant
differences between PD an ET patients in our dataset. This
result may reflect the relatively low sample frequency or the
symptom similarity between PD and ET patients in our dataset.

When assessing multi-segment group features, we found
that Phase-FR and Phase-FL extracted from angle data in the
P1 task showed significant differences (p < 0.05). Further-
more, Phase-WF, Phase-WR, and Phase-TM extracted from

acceleration data in the P2 task showed significant differences.
For P3 and P4, multi-segment group features did not show
significant difference.

C. Comparison Between Acceleration and Angle

To investigate which signal is better for differential diag-
nosis, we tested the performance of acceleration and angle in
each task and all tasks. As shown in Table III, the classification
performance was superior for models based on angle compared
with those based on acceleration, as a consequence of the
greater significance (p < 0.01) associated with features
extracted from angle data. In view of tasks, P2 and P4
performed the best among those tasks.

Moreover, we tested the influence of random labels
(Table IV), because the total number of features before feature
selection was relatively larger than the sample size adopted in
our study. As shown in the Table IV, the accuracy of the pro-
posed model decreased significantly when data were randomly
labeled. These results demonstrated that the proposed model
did learn from natural data and delivered the promising results
(III), which meant generalization of the proposed system was
possible.
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TABLE III
COMPARISON RESULTS BETWEEN ACCELERATION AND ANGLE

TABLE IV
RESULTS OF RANDOM LABEL

Considering the superior performance produced by angle
data, we only investigated classification model based on angle
information in the following analysis.

D. Comparison Between Task Combinations
In clinical practice, both resting tremor and postural tremor

are important for differential diagnosis of PD versus ET [36].
For this reason, it appears reasonable to combine data from
the resting tremor tasks with data from the postural tremor
task. To identify the optimal combination, we tested the perfor-
mance of our model for each combination. Fig. 6 shows The
SFFS results for each combination. When adding 8 features,
all combinations achieved optimal performance. We therefore
presented detailed performance results from each combination
in the Table V, when selecting 8 features. The P2 and P4
tasks barely improved when combined with the P1 task,
whereas the P3 task improved substantially when combined
with the P1 task. Moreover, the proposed multi-segment
feature, i.e. Phase-FL-P1, was positively selected for all task
combinations.

E. Comparison Between Limb Segments
To investigate which limb segment is better for the proposed

system, we tested the performance of each limb segment
for the P1&P3 task combination and for all tasks. The
results (Table VI) demonstrate that the forefinger or the lit-
tle finger may represent a better choice for the proposed
system.

Fig. 6. SFFS results for each task combination.

TABLE V
FEATURES SELECTED FOR DIFFERENT COMBINATIONS AND

ASSOCIATED RESULTS

TABLE VI
COMPARISON BETWEEN LIMB SEGMENTS

IV. DISCUSSION

A. Comparison With Related Works
In this article, we propose a wearable system for the

multi-segment assessment ofr upper limb tremor and for
differential diagnosis of PD versus ET. Table VII compared
our work with related studies. Our system reached an accuracy
of 91.94% (95% CI: 82.17 − 97.33%) when analyzing single
limb segment, which is comparable to the prior results. Mean-
while, our system reached an accuracy of 100.0% (95% CI:
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TABLE VII
COMPARISON WITH RELATED STUDIES

94.22−100.0%) when analyzing more than one limb segment.
In particular, we tested temporal fluctuation features [11] in
our dataset and reached an accuracy of 72.58% (95% CI:
57.99 − 83.15%), which might result from the similarity in
tremor intensity between PD and ET patients in our dataset.

Most published studies did not mention tremor scores of
ET or PD patients. In some studies [8], [18], [24] PD patients
were assessed according to the MDS-UPDRS [22], and ET
patients were assessed according to the Fahn-Tolosa-Marin
scale (FTMRS) [23]. However, scores from MDS-UPDRS are
not consistent with those from FTMRS: score of 1 and 2 mean
tremor smaller than 3 cm in MDS-UPDRS, and smaller than
1 cm in FTMRS. As a result, the estimated tremor intensity
was not consistent between PD and ET patients, althogh the
authors only included patients with a score of 1 or 2 on
the MDS-UPDRS for PD, and on the FTMRS for ET [8],
[18]. In this article, we enrolled PD and ET patients with
similar hand tremor intensity according to MDS-UPDRS [22],
especially in the P1 and P2 tasks suggested by [22]. Our
dataset is therefore more representative of the clinical reality,
and we obtained promising results with this dataset. To the
best of ourknowledge, our study is the first to assess model
performance for a dataset in which PD patients and ET patients
present comparable hand tremor intensity.

B. Multi-Segment Features
In this study, we propose multi-segment features, i.e. the

phase difference between limb segments. We found that the
angle phase difference of PD patients was closer to zero in the
P1 task, as shown Fig. 7. This indicates that limb segments
engage in synchronous tremor in PD patients.

Fig. 7. Violin figures of phase differences between limb segment.

As shown in Table V, the multi-segment feature, Phase-
FL-P1, was selected in all those combinations. We also
investigated the performance of the proposed system without
multi-segment group features (Table I). The LOOCV accuracy
decreased to 85.48% (95% CI: 74.22−93.14%), 85.48% (95%
CI: 74.22 − 93.14%), 77.42% (95% CI: 65.03 − 87.07%),
87.10% (95% CI: 76.15 − 94.26%), and 95.16% (95% CI:
86.50−98.99%) for P1, P2, P3, P4, and all tasks respectively.
The LOOCV accuracy decreased approximately 3 − 8% with-
out multi-segment feature group. These results demonstrate
the proposed multi-segment features contributed significantly
to the promising performance of the proposed system.

C. Simplification of the Proposed System
In clinical practice, time cost is significant especially for

screening. Thus, ease of wearing could represent a priority
for successful application of the proposed system. During
the validation experiment, we kept the Z axes of the sensor
units perpendicular to the fingernails. However, except for
the Z -axis weight, all features of the proposed system are
rotation invariant. As a consequence, the potential impact of
different wearing configuration would depend only on the Z -
axis weight. Except for ZW-T-P2, the Z -axis weight features
extracted from angle were not significant(Fig. 5). Furthermore,
Z -axis features were not selected, indicating that the proposed
system was robust when the Z axes of the sensor units were
not exactly perpendicular to the fingernails. These results indi-
cated good compliance with different wearing configurations.

Our results also indicate that time costs may be effec-
tively reduced by reducing tasks load and sensor array size.
We investigated the performance penalty incurred when task
reduction and sensor array reduction were applied. We esti-
mated the time cost associated with the original configuration
of six sensors & four tasks from the video recordings, and
estimated the time cost associated with each simplified config-
uration. For example, we assumed that one sensor cost 1/6 of
the time associated with attaching sensors time in the original
configuration, and two tasks cost 2/4 of the time associated
with performing tasks in the original configuration. The results
were presented in Fig. 8.

We investigated performance for each single task separately
(Table III), and for their combination (Table V). The P2 and
P4 tasks, showed the best performance in single task settings,
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Fig. 8. Results of simplified system configuration.

with an accuracy of 93.55% (95% CI: 83.40 − 98.21%).
Moreover, the P3 task (wing beating task) showed the best
performance when combined with resting tremor. As shown in
the Fig. 6 and the Table V, the performance of combination
P1&P3 was superior to other combinations after including
F50-F-P3, which indicating less correlation between features
from the P3 and P1 tasks compared with other combinations.
Overall, we achieved an accuracy of 93.55% (95% CI: 83.40−

98.21%) when adopting only one task and an accuracy of
98.39% (95% CI: 91.34 − 99.96%) when combining P1&P3.
Our results indicated that the combination of the P1&P3 tasks
could be adopted in time-sensitive scenarios.

During the experiments, attaching sensors took about 36%
time. Thus, time cost and device cost could both be reduced
if sensor array reduction was applied. We investigated per-
formance of each single limb segment (Table VI) to estimate
performance penalty when using only one single sensor. The
little finger produced the best performance with an accuracy of
91.94% (95% CI: 82.17 − 97.33%) for all tasks, and 88.71%
(95% CI: 78.11 − 95.34%) for the P1&P3 combination. The
performance of the forefinger was very close to that achieved
by the little finger. These results indicated that a single inertial
sensor attached to the forefinger or little finger could be
adopted in performance-insensitive scenarios.

When comparing penalty in performance from task reduc-
tion and sensor array reduction, we found that the influence
of sensor array reduction was larger than of that associated
with task reduction. We speculated that the lower performance
penalty (approximately 2%) associated with task reduction
might reflect the fact that the P2, P3, and P4 tasks are all
postural tremor examination tasks, and are therefore highly
correlated with each other. The higher performance penalty
(9−10%) associated with sensor array reduction might reflect
the fact that multi-segment features could not be derived from
any single limb segment, and that the features extracted from
each single limb segment were less correlated with each other.

D. Study Limitation
The results of this study are promising, however further

researches are needed. The sample size involved in this study
is relatively small, because we only involved tremor dominated

PD patients and ET patients. Thus, whether the results could
be generalized needed to be further investigated. Moreover, the
pathological mechanism of the different multi-segment tremor
pattern between PD and ET needed to be further investigated.

V. CONCLUSION

In this study, we propose a wearable system for
multi-segment assessment of upper limb tremor and for dif-
ferential diagnosis of PD versus ET. To evaluate the proposed
system, we enrolled 19 PD patients and 12 ET patients. The
results demonstrated that the proposed system successfully
performed differential diagnosis of PD versus ET. Further-
more, we found that task reduction (adopting P1&P3) would
lead to an accuracy reduction of 1.61%, and could therefore
be adopted in time-sensitive scenarios. Finally, we found that
multi-segment features had a significant impact on perfor-
mance, and that a reduction in sensor array size would lead
to a performance penalty of 9 − 10%. These findings indicate
that the proposed system could be simplified for successful
application in real-world clinical settings.
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