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A Novel Neurorehabilitation Prognosis
Prediction Modeling on Separated Left-Right

Hemiplegia Based on Brain-Computer Interfaces
Assisted Rehabilitation

Zhimin Shao , Weibei Dou , Di Ma, Xiaoxue Zhai, Quan Xu, and Yu Pan

Abstract— It is essential for neuroscience and clinic
to estimate the influence of neuro-intervention after
brain damage. Most related studies have used Mirrored
Contralesional-Ipsilesional hemispheres (MCI) methods
flipping the axial neuroimaging on the x-axis in progno-
sis prediction. But left-right hemispheric asymmetry in
the brain has become a consensus. MCI confounds the
intrinsic brain asymmetry with the asymmetry caused by
unilateral damage, leading to questions about the reliability
of the results and difficulties in physiological explana-
tions. We proposed the Separated Left-Right hemiplegia
(SLR) method to model left and right hemiplegia separately.
Two pipelines have been designed in contradistinction to
demonstrate the validity of the SLR method, including MCI
and removing intrinsic asymmetry (RIA) pipelines. A patient
dataset with 18 left-hemiplegic and 22 right-hemiplegic
stroke patients and a healthy dataset with 40 subjects,
age- and sex-matched with the patients, were selected
in the experiment. Blood-Oxygen Level-Dependent MRI
and Diffusion Tensor Imaging were used to build brain
networks whose nodes were defined by the Automated
Anatomical Labeling atlas. We applied the same statis-
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tical and machine learning framework for all pipelines,
logistic regression, artificial neural network, and support
vector machine for classifying the patients who are sig-
nificant or non-significant responders to brain-computer
interfaces assisted training and optimal subset regression,
support vector regression for predicting post-intervention
outcomes. The SLR pipeline showed 5-15% improvement in
accuracy and at least 0.1 upgrades in R2, revealing com-
mon and unique recovery mechanisms after left and right
strokes and helping clinicians make rehabilitation plans.

Index Terms— Brain-computer interface, BCI, machine
learning, brain asymmetry, MRI.

I. INTRODUCTION

S INCE the 20th century, neurorehabilitation scientists have
realized that injured brain tissue has the potential for

regeneration and plasticity [1]. Neurorehabilitation inter-
vention studies try to help patients with brain disorders
recover from dysfunction. For instance, constraint-induced
movement therapy, Transcranial magnetic stimulation, and
Brain-computer interfaces (BCI) are used to rehabilitate motor
recovery [2], [3], [4], [5] after stroke. Typically, a rehabilitation
program lasts for weeks or months. Due to limited medical
resources, the prognostic prediction of treatment performance
is necessary for the clinic to make rehabilitation plans.

Functional connectivity based on resting-state functional
magnetic resonance imaging (rs-fMRI) measures the blood-
oxygen-level-dependent (BOLD) signal’s temporal correlation
across brain regions without imposed tasks [6]. Diffusion
tensor imaging (DTI), one kind of Diffusion MRI, provides
insights into the tissue structure [7]. MRI modalities can be
applied to disease diagnosis and prognosis based on quan-
titative imaging biomarkers [8], [9], [10], [11]. However,
biomarkers were mainly derived from a single brain region,
and the connections were ignored across regions and modali-
ties, remaining unsatisfactory in predicting post-interventional
outcomes at the individual level [12], [13], [14], [15]. The
graph theory-based approach analyzes the whole brain as a
complex network, where brain regions are regarded as nodes,
and edges indicate the relationships between nodes [16], [17].
The network demonstrates the relationship between brain
structure and function and the characteristics of the whole
brain in high-dimensional feature space.
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Machine learning methods are up-and-coming for the study
of high-dimensional neuroimaging data. Reference [18] sum-
marized the typical classification/prediction pipeline for post-
stroke recovery. Due to the small sample size, researchers
commonly mirrored the imaging along the mid-sagittal axis
so that all tracts were in the same hemisphere [13], [15].
Therefore, the issue of left-right brain hemispheres was
converted into that of contra-ipsilesional hemispheres. Nev-
ertheless, hemispheric asymmetry has become a consensus
for brain structure and function [19], [20]. Regarding stroke
patients, researchers aim to distinguish their difference from
healthy controls and then predict the corresponding recov-
ery potential according to clinical and imaging metrics. The
intrinsic left-right asymmetry confuses the difference caused
by impairment and recovery.

We propose modeling the left and right hemiplegia groups
separately, which is called SLR modeling Pipeline in this
paper to sidestep the effect of left-right hemispheric asym-
metry. Two alternative modeling pipelines – the mirrored
contra-ipsilesional hemispheres (MCI) Pipeline and the remov-
ing intrinsic asymmetry (RIA) Pipeline are designed as a com-
parison to verify the effectiveness of SLR. The subjects and
BCI rehabilitation are presented in Section II. In Section III,
some evidence shows that the proposed SLR pipeline may
improve the accuracy of the prognostic classification and
prediction of the treatment performance, which is explained
in detail in Sectionn IV.

II. MATERIALS AND METHODS

A. Participants
The study protocol was approved by the Ethics Commit-

tee of Beijing Tsinghua Changgung Hospital, conducted in
accordance with the tenets of the Declaration of Helsinki
(No. 18172-0-02), and registered in the Chinese Clinical Trial
Registry (No. ChiCTR1900022128). All patients provided
written informed consent prior to study participation.

A patient dataset with 18 left-hemiplegic and 22 right-
hemiplegic stroke patients and a healthy dataset with 40 sub-
jects, age- and sex-matched with the patients, were used in
the study. Every five years was an age group, and subjects
in the same group were considered age-matched. All stroke
patients were selected from hospitalized in Beijing Tsinghua
Changgung Hospital from March 2018 to October 2019. The
diagnosis was in line with the standard consensus of Clinical
research on acute stroke in China and confirmed by brain MRI
or CT examination. Five criteria are considered for study inclu-
sion: (i) age 18-75; (ii) no significant cognitive impairment
(score of simple mental state examination ≥ 21); (iii) first-time
stroke and time since onset > 1 month and ≤ 6 months; (iv)
moderate to severe upper limb motor dysfunction (Brunnstrom
stage ≤ Stage IV [21]); (v) modified Ashworth < III [22].
Detailed demographic and clinical information are listed in
Table I.

The 40 healthy control subjects were selected from the HCP
dataset (including HCP 1.0, 1200 participants, and HCP 2.0,
1300 participants) [23], with age- and gender-matched to the
40 patients, for performing the symmetrical feature selection
procedure.

TABLE I
PATIENTS’ INFORMATION

Please see Supplementary Table S1 for detailed information
about each subject and matched healthy controls. Supple-
mentary Table S2 and Supplementary Fig.S1 show the lesion
location and size among the individuals.

B. Treatment
Each patient received a 20-day BCI-assisted rehabilitation

training program [24], which is an exoskeleton hand con-
trolled by BCI signal to assist the paretic hand exercises.
The BCI recognizes the grasping or releasing motor imagery
signal of the patient’s Electroencephalography (EEG) when the
imagination according to the guidance shown on screen and
voice prompts (10 sets of 10 imagery tasks in each session,
together with passive flexion and extension of fingers through
the exoskeleton, 1 min rest between sets, total lasting 1 hour).
There are five rehabilitation training sessions per week for four
weeks. During the training, patients were instructed to avoid
blinking, coughing, chewing, and head and body movements.

C. Measurement
Before and after the training, Fugl–Meyer’s Assessment

of the upper extremity [25] was used to evaluate the motor
function of the upper limb, including shoulder, elbow, wrist,
hand, and coordination/speed. By summing the five items,
we got the total score, denoted as FMA-total (66 points) in this
paper. The sum of shoulder and elbow scores was the FMA
upper arm score, defined as FMA-SE (30 points). The sum of
wrist and hand scores was the FMA wrist score, defined as
FMA-WH (24 points). The higher the score, the stronger the
function. Two trained rehabilitation therapists completed the
assessment who were limited to know the treatment plans.

Brain MRI scanning was performed with a GE 3.0T MR
scanner (DISCOVERY MR750 model; General Electric Amer-
ican, Waukesha, WI, USA). T1-weighted images (T1), resting-
state BOLD-fMRI, and DTI were acquired using a standard
32-channel head coil. fMRI data of BOLD are scanned using
“Ax-BOLD-rest” series with a gradient echo-planar imaging
sequence (repetition time [TR] = 2000 ms, echo time [TE] =
30 ms, flip angle [FA] = 90◦, pixel space = 3.5 mm2, slice
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thickness = 3.5 mm, spacing between slices = 4 mm, acquisi-
tion matrix = [64, 0, 0, 64], equivalent to in-plane resolution =
64 × 64, reconstruction diameter = 224 mm, 34 axial slices,
and 240 temporal positions). T1-weighted images are scanned
using the “Sag 3D T1BRAVO” series (TR = 8.21 ms, TE =
3.18 ms, FA = 8◦, voxel space = 1 mm3, spacing between
slices = 1 mm, acquisition matrix = [0, 256, 256, 0], equivalent
to 256 axial slices and 256 coronal slices). The sagittal slice
number depended on the head size of each subject, ranging
from 156 to 174 mm, corresponding to the 40 subjects in this
study. The reconstruction diameter was 256 mm. Parameters
for DTI images were “Ax_DTI_24_Directions” series with
TR = 14.5 s, TE = 112 ms, FA = 90◦, slice thickness = 2 mm,
spacing between slices = 2 mm.

D. Labeling of the Patient Dataset
Patients were divided into a significant responder group

(n = 23) and a non-significant responder group (n = 17)
according to the definition of the minimum clinically important
difference, based on an improvement of ≥ 2 points in the
FMA-WH score after training [26].

E. Pipelines
As shown in Fig. 1, the proposed SLR modeling Pipeline

consists of 5 steps: preprocessing of whole-brain neuroimaging
data, brain atlas registration, whole-brain feature extraction,
and left / right classification modeling or prediction modeling.
Atlases are used to define brain regions. The features of
the whole brain include intra- and inter-region and could
be obtained by building brain networks with brain regions
as nodes or other methods. In SLR Pipeline, we separate
patients into two groups beforehand–left and right, referring
to the hemiplegia side, and directly carry out the procedure
of classifying and predicting based on extracted whole-brain
features to achieve the two goals: to classify patients into two
classes–significant responders versus non-significant respon-
ders to the treatment and to predict stroke patients’ function
after rehabilitation treatment. We can replace the ‘Whole-
brain Feature Extraction’ module in the framework with
feasible methods. Some specific implementations are given in
Section II-F.

Two compared pipelines are designed for comparison.
To make all the patients’ injury areas in the same hemi-
sphere, the conventional contra-ipsilesional mirroring routine
is adopted on the whole-brain features, labeled as MCI
Pipeline. In RIA Pipeline, we add a feature selection procedure
to remedy the asymmetry problem, as shown in the box of
Fig 1. Specifically, the whole-brain features are extracted from
healthy controls with the same feature extraction procedure
of patients. Then paired tests are used to check whether
the mean of left and right lateral observations in healthy
controls was equal, paired T-test for characteristics that hold
the assumption of normality (determined by Shapiro’s test,
P > 0.05), otherwise paired Wilcoxon’s test. This procedure
is performed for every extracted feature and thus generates
a p-value for each paired test. All significant attributes (P <

0.05, FDR corrected) are asymmetrical, while those remain-
ing are regarded as left-right symmetry indices. Accordingly,

we apply the above indices to extracted features of patients to
select symmetrical features, denoting the connectivity whose
features are supposed to be left-right hemispheric balanced for
healthy controls. Finally, features are sent to the classification
and prediction models.

F. Preprocessing and Feature Extraction
The SPM-based package DPARSFA [27] was used to

perform the standard resting-state BOLD (rsBOLD) signal
preprocessing steps. Including the first 10 out of 240-time
points were discarded, the spatial resolution was set at 2 mm3,
realigning, normalizing on Montreal Neurological Institute
space with 3 mm isotropic voxel resampling, smoothing
with a Gaussian smoothing kernel with 4-mm full width at
half maximum, removing the linear trend of time courses
and nuisance covariates with global signal regression and
finally temporally filtering with 0.01-0.08 Hz. The prepro-
cessing of the DTI signal was performed by using FSL
tools (http://www.fmrib.ox.ac.uk/fsl/index.html) according to
the following steps: skull stripping by function “bet2”, eddy
current and motion correction by function “EddyCorrect” and
tensor fitting by function ‘DTIFIT’.

Functional and structural features based on rsBOLD and
DTI, respectively, were extracted by network construction
based on a brain atlas and were carried out using in-
house software. The functional features are some graph
theoretic attributes extracted from rsBOLD. After preprocess-
ing of rsBOLD, we constructed a fully weighted functional
inter-connectivity network and intra-connectivity networks.
The inter-connectivity network was obtained by using the
Automated Anatomical Labeling (AAL) [28] atlas to define
the nodes. Average all voxels in each node and then calculate
the Pearson correlation coefficients between every pair of
nodes as the connectivity. There are 116 brain regions in
AAL, with odd numbers for the left hemisphere and even
numbers for the right. For example, L1 and R2 are the
same regions of the left and right hemispheres, respectively.
Further, we constructed an intra-connectivity network for
each brain region, in total 116 intra-connectivity networks.
For each intra-connectivity network, the nodes were all the
voxels corresponding to the brain region, and the Pearson
correlation coefficient between each pair of voxels was the
connectivity. The brain-connectivity toolbox [17] was utilized
to extract a few attributes of the complex network according
to graph theory, including local efficiency (LE), weighted
degree (WD), betweenness centrality (BC), clustering coef-
ficient (CC), global efficiency (GE), modularity (MO), char-
acteristic path length (PL), small-worldness (SWN) [29]. For
attributes of inter-connectivity and intra-connectivity, denoted
here as .inter, .intra respectively. Overall, there are 10 attributes
of BOLD: LE.inter, WD.inter, BC.inter, BC.intra, CC.inter,
CC.intra, GE.intra, MO.intra, PL.intra, SWN.intra. The struc-
tural features of DTI are fractional anisotropy (FA) and mean
diffusivity (MD). After preprocessing, we registered the AAL
atlas to the native space of the reconstructed DTI. ‘Dipy’,
a Python package was used to apply fiber tracking. Finally,
FA and MD values of each brain region (nodes of the structural
network) and fiber bundle counts between two regions (edges



3378 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Fig. 1. The framework of proposed SLR modeling Pipeline (the top row), MCI (the middle row), and RIA (the bottom row) instead of SLR in the
pipeline for comparison with the Contra-Ipsilesional hemispheres Mirrored and Symmetrical Feature Selection (shown in the left-bottom box). ‘nL’
and ‘nR’ denote the number of left/right hemiplegia patients, respectively. Symmetrical features represent that the features of the left and right
hemispheric are symmetrical in healthy controls.

Fig. 2. Framework of Classifiers and Predictive models. The dashed
line indicates the method used for the experiments shown in this paper.

of structural networks) were calculated. The feature vector for
each subject is in total 1392 dimensions (10 × 116 = 1160
BOLD features and 2 × 116 = 232 DTI features).

G. Classification and Prediction Modeling
Fig. 2 illustrates the detailed procedure of the “Classifica-

tion and Prediction Modeling” module. The features obtained
by the upstream of pipelines represent a way of brain
imaging measurement and can be applied to explore under-
lying differences in physiological functions at the individual
level. We then classify stroke patients into significant or
non-significant responders to treatment and predict postin-
terventional outcomes by combining the machine learning
framework and the above-calculated whole-brain features.
It is worth noting that there is a mismatch between data
size (dozens) and feature dimensionality (thousands). Feature

filtering is carried out to reduce the dimensionality of the data
to avoid over-fitting. Subsequently, machine learning mod-
els are performed to classify and predict prognostic results,
and evaluate features’ importance. Brain regions contribut-
ing to the classification and prediction are then subjected
to decoding analysis for impairment and recovery. Popular
classifiers and predictive models are available for this frame-
work [13], [15], [30], [31], [32], such as linear regression
and its variants, artificial neural network (ANN) [33], support
vector machine (SVM) [34] and support vector regression
(SVR) [35].

Leave-one-out cross-validation (LOOCV) [36] is applied to
estimate the performance of classifiers and predictive models.
In the training process, we leave one sample as the test sample
and utilize the remaining data for training. Specifically, Two-
sample tests (T-test or Wilcoxon’s test, uncorrected) were con-
ducted for feature filtering in training data, across significant
responders and non-significant responders on each attribute to
identify the features that make a difference. Some machine
learning frameworks were implemented in the experiment,
logistic regression (LR), ANN with one hidden layer, SVM for
classification, optimal subset regression (OSR) [37] derived
from linear regression, and SVR for prediction. Besides the
neurophysiological variables, initial clinical scores are sig-
nificant predictors of outcomes in stroke patients [15], [38].
Therefore, we include the pre-interventional clinical scores
into the predictors regarding prediction. The trained models
are then employed to classify/predict the left-out sample.
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TABLE II
LOOCV CLASSIFICATION ACCURACY OF ALL PIPELINES AND DATASETS

Repeat the operation until all patients are traversed to test
the performances. We adapt accuracy, R2 and mean absolute
error (MAE) to evaluate models.

III. RESULTS

A. Asymmetrical and Significant Features
For all 40 healthy controls from HCP, BOLD and DTI

features were extracted with the same pipeline of patients, and
258 of the total 1392 features were judged as asymmetrical,
accounting for 18.8%. Fig. 3 shows the heatmap of left-right
hemispheric asymmetry. For detailed information, see Supple-
mentary Table S3.

We performed statistical tests which are the same as feature
filtering in each pipeline but across all subjects and listed
the significant features selected in Supplementary Table S4.
The results show that 26 of 1160 BOLD features and 21 of
232 DTI features were significantly different for the left
hemiplegic group, while the results were 41 BOLD features
and 20 DTI features for the right hemiplegic group, more
significant than the number of characteristics in MCI Pipeline
and RIA Pipeline. Only a tiny proportion differed among
thousands of features, contributing to the distinction between
significant and non-significant responders. Separate modeling
of left and right hemiplegic patients helps to detect more
potentially significant features.

B. Performance on Classification
Table II lists the LOOCV accuracy of each pipeline/dataset

for different methods. Besides, an exact number of correctly
classified samples and the total sample amount for SLR
Pipeline left and right models are summed to form the overall
accuracy. The results of ANN are unstable due to the training
parameter settings. To ensure reproducible and comparative
results, we set seeds and fixed the best parameter in MCI
Pipeline as the hidden layer’s size. Different seeds and the
hidden layer size did not affect the conclusions presented.

The results show that SLR Pipeline gives a 5-15% improve-
ment to all datasets and methods. The sensitivity and speci-
ficity of each implementation are listed in Supplementary
Table S5 and Supplementary Table S6 and the SLR Pipeline

Fig. 3. Heatmap of Asymmetry in healthy controls. The color bar
indicates the number of times the brain region was judged to be
asymmetrical in 12 attributes.

significantly improves the classification performance was ver-
ified therefore. LR and SVM performed well when modeling
left and right hemiplegia separately, and the classification
accuracy/sensitivity/specificity is close to 1. As a remedy to
asymmetry, RIA Pipeline does not help in the case of clas-
sification. For all implementations in our experiment, except
BOLD attributes as the dataset in SVM, removing all asym-
metrical features led to the same or worse LOOCV accuracy,
resulting in increased sensitivity and decreased specificity,
making it easier to determine patients as significant responders
to reduce the possibility of missed diagnoses.

Using BOLD attributes alone as the dataset for all methods
and pipelines gave better results than using DTI attributes
alone. Across all machine learning methods, SLR Pipeline
maintained and improved the accuracy when combining the
two types of attributes. In contrast, most others have led to
worse results than using BOLD alone. It implied that the
BOLD and DTI partially overlap or contradict each other, and
SLR Pipeline helps us discover complementary characteristics.

C. Performance on Prediction
The results in Table III show the R2 and MAE for each

implementation. The OSR method had the largest R2 because
it optimizes for sparsity, which is more conducive to finding
strong predictors of the dependent variable and avoiding the
phenomenon of overfitting. The dataset with a combination
of BOLD and DTI features improved the effectiveness of the
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TABLE III
LOOCV R2 AND MAE OF ALL PIPELINES AND INPUTS (INCLUDING PRE FMA-TOTAL)

TABLE IV
NAMES OF INTERESTING REGIONS CORRESPONDING TO AAL-LABELS

OSR method compared to using them separately as inputs.
This is because the number of predictors of OSR was limited
to 5, and new invalid features were not selected, ensuring that
the results were no less effective than the situation where only
some features were used. SLR Pipeline improved the R2 from
approximately 0.75 to at least 0.85. Furthermore, the MAE is
consistent with R2. The larger the R2, the smaller the MAE.
The proposed SLR pipeline brings about a 40% reduction in
MAE, indicating the reliability of the results. Similar to the
case of classification, RIA does not improve the performance
of the OSR predictive model. See Supplementary Fig.S2-S4
for specific feature selection, and there were precisely 5 fea-
tures after feature filtering for RIA Pipeline with DTI as input,
so no more selection was performed.

For the SVR model, SLR Pipeline was slightly more effec-
tive than MCI Pipeline. SVR aims to find a hyperplane that
minimizes the distance from all the data without imposing
too many restrictions on the features. It is often thought that
dimensionality is a blessing for finding a support vector, but
the rule failed in this experiment. The model became better
with the asymmetry features removed. That is because only
dozens of subjects were included, and almost all of them
were selected as support vectors in the high-dimensional case.
RIA can be regarded as a manual feature selection process to

reduce dimensionality and assist the SVR in selecting more
appropriate support vectors, thus improving prediction results.
The model performed best when using only the DTI dataset
in SLR Pipeline. This suggests that DTI features in prediction
can be used as prognostic biomarkers, agreeing with previous
findings [10], [39].

D. Importance of Predictors
Linear regression and its variants (LR and OSR in this

experiment) autotune the parameters and select some of the
features as predictors. Which brain regions chosen by the
predictors are the most important for neurorehabilitation prog-
nosis prediction? As illustrated in Fig. 4, by permutating
explanatory variables, the order of importance of the predictors
for the BOLD + DTI dataset represents the corresponding
brain regions and their features. Box plots were overlapped
to the bars to provide the distribution of the importance of
the measure across 50 permutations. The names of interesting
brain regions corresponding to the label of AAL-atlas and their
abbreviations are shown in Table IV. Only a few features in
the dataset were strong predictors of post-intervention FMA-
total. Significant predictors in this experiment, including Pre
FMA-total and a few specific functional brain regions, are
consistent with previous studies.
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Fig. 4. Importance of predictors in classification for LR method and predictive models for OSR method with BOLD+DTI as input. Slight color bars
represent the average prediction, whereas dark boxes represent the standard deviation over 50 permutations.

IV. DISCUSSION
Many studies have discussed left/right brain asymmetry

from various aspects. Friedrich et al. [40] has found that
we can identify left and right hemispheres in their low-
and high-dimensional representation. Ortiz et al. [41] studied
motor imagery performance after asymmetrical transcranial
direct current stimulation. Obermaier et al. [42] introduced
an HMM-based classifier allowing asymmetrical structures to
help design the EEG-based BCI training paradigm. Due to the
known asymmetries during motor imagery of right- and left-
hand movement, the classifier of imagery tasks demonstrates
an improvement of 9% for the classification accuracy. Unique
patterns and brain changes in stroke recovery have been dis-
covered in left- and right-hemispheric strokes [43], [44], [45],
indicating that prognosis is significantly correlated with
injured lateral. The human brain asymmetry is also vali-
dated in this study, via the changes in results brought by
compared pipeline RIA (sometimes enhancing and sometimes
worsening). Further, these changes indicate that the intrinsic
asymmetry would confound the evidence for making decisions
of classification and prediction. And the classification and pre-
diction results will be significantly improved when separating
the hemiplegic side for modeling. These facts would be helpful
for revealing possible hemispheric recovery mechanisms in
response to brain damage and offering guidance for stimulation
during treatment, to the end of which, more and further
exploration is deserved.

We utilized BOLD and DTI features to perform the
pipelines since they provide functional and structural infor-
mation, respectively. FA and MD as DTI features, BC and
CC as BOLD features have been validated to be significantly

different before and after therapy in previous studies [39], [46].
These four features might be used as biomarkers to predict
post-intervention outcomes for stroke patients, although their
performance varies and the importance thereof is still unclear.
In this study, we evaluated the role of each data set and found
that our proposed SLR pipeline worked consistently across all
datasets to enhance performance. The results show that BOLD
provides more recovery information in classification, while
DTI has more potential to predict post-intervention scores.
However, DTI has a large amount of structural asymmetry
(in healthy controls), and in RIA, only 4 features were left to
be used as discriminators, with reduced reliability. In general,
the combination of BOLD and DTI improves the prediction
results, while only slight changes occur to the classification.
For each pipeline, BOLD + DTI does not always perform
better than BOLD or DTI alone, and there may exist a
contradictory relationship between the two kinds of features,
suggesting that the graphical properties of the BOLD network
contain a large amount of structural information represented
by DTI.

Noticeably, across all classification and prediction methods
employed in this experiment, the traditional statistical method
(LR and OSR) performed better than algorithmic modeling
(ANN, SVM, and SVR), with higher accuracy and super inter-
pretability, mainly due to the sample size [47]. For detailed
functions of specific brain regions in classification, the chosen
features remained the same after RIA, but their importance
changed–the clustering coefficient of L51 (MOG.L) elevated,
while others remained unchanged. The most important two
regions, L51 and L73 (PUT.L), are associated with cogni-
tive and motor function [48], [49]. Among the subjects of
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this experiment, L73/R74 was with the highest frequency of
injury, and the LR classifiers of MCI and RIA indicated that
the higher the local efficiency of L73, the more likely the
patient was to be a responder of treatment. For SLR Pipeline,
regions associated with visual (R4, R44, L25) and learning
(R90) [50], [51] appeared essential. Generally, these regions
are more often associated with learning cognitive functions.
We conjecture that BCI training requires patients to engage in
motor imagery tasks and that a corresponding neural circuit
is to control the training process. For prediction, the pre-
intervention FMA-total is always the most critical factor and
other brain regions vary for pipelines.

There are some limitations to this study. Brain atlases
provide an objective definition of nodes and thus are usually
used to construct brain networks. Node definitions will change
the graph’s topology and influence the functional relationships
between nodes and hence affecting our results. Differences
in atlas-related metrics for resting-state networks [52] and
structural networks [53] have been found. In the present study,
we only used the AAL atlas to define nodes, and future
studies will focus on selecting brain atlases and fusing them
to construct multilevel networks.

Another drawback of this study was feature filtering.
We adopted the LR method to perform feature selection
automatically while no selection for ANN and the result
that LR has higher accuracy than that of ANN reveals the
importance of feature filtering to some extent. In the pipeline,
we performed an uncorrected t-test/Wilcoxon as preliminary
filtration to detect as many potentially significant features as
possible, leading to the relatively high dimensionality of the
feature space. But in other ways, it may introduce redundant
features and cause pitfalls in the classifier training. In the
future, the t-test/Wilcoxon-test filter can be upgraded to a more
well-designed and robust method. Finally, the data size of
corresponding patients is relatively small and as the left and
right hemiplegia are distinguished beforehand, the proposed
SLR modeling pipeline is suitable for unilateral stroke patients,
and how it performs on patients with multiple brain lesions
remains unknown.

V. CONCLUSION

For more accuracy of neuro-rehabilitation prognosis pre-
diction applied in the clinic, a left and right hemiplegia
separated modeling pipeline SLR is initiated in our study
to eliminate the asymmetry, especially in brain structure,
to improve the performance of classification and prediction.
BOLD and DTI are both used for validating the classification
and prediction accuracy of recovery levels after BCI-assisted
training of stroke patients with upper limb dysfunction. The
comparative experiment is designed to compare the classifi-
cation and prediction accuracy provided by three modeling
pipelines, i.e., SLR, MCI, and RIA, with the same three
classification and two prediction methods. The LOOCV results
show that SLR can efficiently distinguish the significant and
non-significant responders and make more accurate predictions
of post-intervention FMA-total. The overall effect of targeted
modeling for left and right hemiplegic patients is better than
MCI and RIA. This is the first time rs-fMRI and DTI are

applied separately on the left and right hemiplegic patients to
evaluate the rehabilitation outcomes. The final classification
and prediction models obtained from SLR could be used to
help clinicians make a more reliable rehabilitation program for
stroke patients.
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