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Abstract— Accurately predicting anesthetic effects is
essential for target-controlled infusion systems. The tradi-
tional (PK-PD) models for Bispectral index (BIS) prediction
require manual selection of model parameters, which can
be challenging in clinical settings. Recently proposed deep
learning methods can only capture general trends and may
not predict abrupt changes in BIS. To address these issues,
we propose a transformer-based method for predicting the
depth of anesthesia (DOA) using drug infusions of propo-
fol and remifentanil. Our method employs long short-term
memory (LSTM) and gate residual network (GRN) networks
to improve the efficiency of feature fusion and applies an
attention mechanism to discover the interactions between
the drugs. We also use label distribution smoothing and
reweighting losses to address data imbalance. Experimen-
tal results show that our proposed method outperforms
traditional PK-PD models and previous deep learning meth-
ods, effectively predicting anesthetic depth under sudden
and deep anesthesia conditions.

Index Terms— Depth of anesthesia prediction, bispectral
index, transformer, drug infusion history, data imbalance.

I. INTRODUCTION

W ITH the advancement of automated control technology,
intravenous target-controlled infusion techniques are

increasingly being utilized in anesthesia procedures [1], [2].
The pharmacokinetic-pharmacodynamic (PK-PD) model [3],
[4] is currently widely adopted in infusion pumps to calculate
the effector compartment concentration of anesthetic drugs.
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However, the traditional PK-PD model has a significant limi-
tation. In clinical practice, it typically requires the selection of
multiple parameters due to individual organism differences [5].
This is because the drug effect between the drug dose and
a specific organism is unclear. Even if the same dose of an
anesthetic drug is administered at the same time, physiological
responses vary from person to person [6]. To date, no reason-
able or effective research has been conducted on precisely
administering drugs according to a specific individual, while
combining with the existing PK-PD model.

An accurate drug efficacy prediction model is essential
for intravenous target-controlled infusion systems [7], [8].
In recent years, deep learning methods have been investi-
gated for addressing this problem [9], [10]. Compared to
traditional PK-PD prediction models, deep learning methods
have the advantage of complex nonlinear dynamic computa-
tion, resulting in good prediction performance under different
situations such as complex environmental information, unclear
knowledge background, and unclear inference rules. Lee et al.
proposed a method in [11] that combines the PK-PD model
framework with the long short-term memory (LSTM) network
to extract features from drug injection history information, and
then incorporates human physiological characteristics such as
age, gender, height, and weight to predict the Bispectral Index
(BIS). Although this method shows significant improvement
in anesthesia depth prediction compared to previous PK-PD-
based methods, it performs poorly on samples with large
fluctuations in BIS. As a result, the deep learning-based pre-
diction method proposed in [11] is less efficient at predicting
the depth of anesthesia (DOA) during unexpected situations.

In addition, some researchers have successfully utilized
the Electroencephalogram (EEG) signal [12] to calculate the
BIS value. For example, Li et al. used the Butterworth filter
to extract several features such as column entropy, sample
entropy, wavelet entropy, and band power from EEG, and then
input these features to the sparse denoising autoencoder and
long short term memory (SDAE-LSTM) network to predict
the DOA [13]. Combining the signal processing and deep
learning technique, this method has high prediction accuracy
for the DOA. However, the EEG-based prediction method is
less practical than the PK-PD-based prediction method, since
it requires the huge amount of the EEG signal data and is
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Fig. 1. Prediction results of PK-PD and LSTM for different samples. Top: the blue line is the predicted values of the PK-PD model, which shows
a great deviation from the ground true value, especially in the light blue area. Bottom: the orange line is the predicted values of the LSTM model,
which usually has relatively poor results (see the light pink area) under the conditions of abrupt change.

Fig. 2. Label distribution of the dataset, which is divided into three
regions including the many-shot region (59.73%), the medium-shot
region (29.65%), and the few-shot region (10.62%).

easily interfered by the electromagnetic. Furthermore, from
the viewpoint of real-world applications, the proposed method
in [13] is hard to directly establish a simulation environment
for EEG signals in the field of anesthesia control.

Fig. 1 shows the prediction results of the PK-PD model [3]
and the LSTM-based deep learning method [11] for dif-
ferent samples. The figure reveals two main drawbacks of
previous approaches to predicting the depth of anesthesia
(DOA). Firstly, when sudden changes in bispectral index (BIS)
occur during the maintenance period, the prediction results of
previous methods remain relatively stable and do not reflect
the actual changes, as can be seen in the light blue and pink
areas in Fig. 1. Secondly, the BIS data collected for anesthesia
clinical records are often unbalanced, with most values falling
in the 30 − 50 range, as illustrated in Fig. 2. Previous works
have neglected the few-shot region, leading to overfitting in
many-shot regions and inaccurate predictions in other regions.

This paper proposes a new deep learning method, based on
transformer architecture, to accurately predict the DOA using
the drug infusion of propofol and remifentanil. The proposed

method uses the fusion of human parameters, drug injection
history, and derived multimodal features to enhance prediction
accuracy. The PK-PD model is embedded at the beginning of
the network to provide pseudo-historical information, which is
corrected in the training phase using the LSTM network and
bottleneck layer. The gate residual network (GRN) module is
then applied to fuse multidimensional features and patient con-
text information, suppress irrelevant variables, and aggregate
physiological characteristics into each time step. An improved
attention mechanism is used to learn long-term dependencies
among mixed features for exploiting drug-drug interactions.
To overcome data imbalance, the proposed method uses label
distribution smoothing and reweighting losses to prevent over-
fitting in many-shot regions and exhibit good prediction ability
in other regions.

In summary, the main contribution of this work are as
follows:

1) A new transformer-based deep learning framework is
proposed to predict the DOA by using the drug infusion
history of propofol and remifentanil simultaneously,
which can overcome the limitations of previous DOA
prediction methods;

2) A feature fusion layer is developed in the proposed
method to combine dynamic and static information from
different modalities to achieve the fusion of temporal
and textual information, enabling the entire network
to fully consider the response of patients with differ-
ent ages, genders, heights and weights for the same
drug;

3) The label distribution smoothing and reweighting losses
are used to solve the issue of data imbalance in different
intervals in the filed of DOA.

The remainder of this paper is organized as follows. The
related works are introduced in Section II. The proposed
method is presented in Section III. The experimental results
are shown in Section IV. Finally, the conclusion is given in
Section V.
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II. RELATED WORKS

A. Prediction of Anesthetic Efficacy
Anesthetic prediction methods based on PK-PD models

have been widely used in clinical drug effect prediction [5],
[14]. These methods model the transfer and metabolism of
drugs in each component of the human body by solving a
system of differential equations. However, PK-PD models with
fixed parameters often have poor performance due to inter-
patient variability. Although an optimization approach in [15]
was used to identify the parameters for different patients,
it still required measuring BIS values during the procedure
for optimization. Recently, deep learning methods have been
proposed for drug effect prediction based on time series
prediction [10], [11]. For instance, in [11], an LSTM model
was used to extract long-term and short-term memory of drug
injection records, and combined with patient characteristics
for BIS value prediction. However, the proposed method did
not pay enough attention to sparse data samples (e.g. deep
anesthesia states with BIS below 40), which often leads to
poor performance on imbalanced data.

B. Multivariate Time Series Forecasting
Distinguishing from the univariate time series forecasting,

the distinction between variables needs to be considered under
the task of multivariate input, since different variables may be
heterogeneous or even belong to different modalities. Previous
studies have often considered in the location of the feature
fusion layer. For example, Anastasopoulos et al. experimen-
tally verified that multimodal data fusion usually have better
performance in the middle or deep layers of the network [16].
Pérez-Rúa et al. discovered the optimal architecture from a
large number of possible combinations of positions of the
network by means of a sequential model-based exploration
method approach [17]. In recent years, heterogeneous feature
fusion based on the attention mechanisms [18] technique has
gradually applied in the practical tasks [19], [20]. Bryan Lim
et al. proposed to use a gating mechanism and an interpretable
attention mechanism to achieve multilevel time series predic-
tion [19]. Arevalo et al. developed a gated multimodal units,
which found the best combination from different combinations
of data and allowed to apply this fusion strategy anywhere in
the model [20].

C. Data Imbalance
For the anesthesia clinical records, the collected data are

often unbalanced (as shown in the Fig.2, most of the BIS
values are in the range of 30-50). To solve this issue, the
proposed method in [21] adjusted the distribution among the
data by resampling the samples. However, such methods are
often difficult to grasp the sampling ratio, leading to oversam-
pling easily. In order to further address this problem of data
imbalance, some improved methods have been successfully
proposed in [22] and [23], which adjusted the learning weights
of the loss function for a small number of samples. According
to [24], one can observe that the methods that directly adjust
the weights of the loss function requires a high degree of
differentiation between categories. Hence, in [25], a novel

method has been developed to improve the performance of
reweighting loss by smoothing the label distribution of the
samples.

III. METHODOLOGY

A. Problem Definition
In this paper, our goal is to design a transformer-based

network for accurate drug effect prediction by using the
drug injection history of propofol and remifentanil and body
covariates together. The overall framework of our proposed
method are shown in Fig. 3, which consists of three compo-
nents: A) drug effect encoder, it is used for extracting the
temporal features from the drug injection history, B) feature
fusion layer, it is used for fusing different dynamic and
static information, and C) temporal fusion decoder, it is
used for learning the mixed features of different long-term
dependencies. A re-weighted root mean square loss function is
adopted in the training phase to overcome the drawback of data
imbalance. First, the two anesthetic drugs that are often used
in combination in anesthetic surgery are described in detail in
the next subsection.

B. Anesthesia Clinical Record and Feature Extraction
1) Prorofol Infusion History: Propofol is a widely used

anesthetic drug in general anesthesia procedures [26], which
provides rapid and stable hypnosis function and has addi-
tional or synergistic hypnotic effects with other drugs used
in anesthesia (such as barbiturates, benzodiazepines, opioids
and ketamine) [27]. Thanks to its large absorption and rapid
elimination by the body, propofol has become the best anes-
thetic target-controlled infusion (TCI) drug. In the automated
target-controlled infusion systems, the injection rate of propo-
fol is often used as one of the most important characteristics
for calculating the BIS prediction values [14]. In our work, the
injection history of propofol in the range of 1800s before t is
adopted as a model feature to predict the BIS value at moment
t + 1.

2) Remifentanil Infusion History: Remifentanil is commonly
used as a supplement for the general anesthesia and is
extensively metabolized extrahepatically by blood and tissue
non-specific esterases, resulting in an extremely rapid clear-
ance efficiency (3 L/min) [3]. However, when the synergistic
effect of remifentanil and propofol is given in [15], similarly,
the injection history of remifentanil at 1800s before moment t
into the proposed model is utilized to predict the BIS value at
moment t + 1.

3) Drug Effect Site Concentration: The concentration of the
drug effect represents the ideal concentration of the drug at the
site of action in the body. To some extent, it reflects the effect
of the anesthetic drug on the DOA. Note that the effector
compartment is not real and therefore cannot be measured
directly. Based on the traditional three-compartment model [5],
it can be calculated by a pharmacokinetic model. Combining
the effector compartment concentration and the pharmacoki-
netic model, the simple pseudo-BIS values are able to initially
calculate. Then the neural network method is applied to correct
the pseudo-BIS values calculated by the PK-PD model to
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Fig. 3. An overview of our model. Our framework consists of three components, A: Pharmacodynamic encoder, it is used to extract drug history
information. Right side of A: correction of pseudo-bis values calculated by PK-PD model; B: Feature fusion layer, it combines the dynamic temporal
information with the static human physiological features; C: Temporal fusion decoder, it is adopted to learn the long-term dependencies of temporal
hybrid features using a multi-headed attention mechanism.

briefly provide the historical information for the proposed
model, which is illustrated in part A of Fig. 3.

C. Model Architecture
Our proposed method combines a recurrent neural network

(RNN) with an attention mechanism and transformer archi-
tecture. RNNs are effective at capturing features from time
series data and preserving memory, but using a single RNN
can be difficult when dealing with multiple, heterogeneous
inputs. Simply combining different types of data in the net-
work can lead to the loss of important characteristics [17].
To address this issue, our method extracts features from dif-
ferent inputs using separate long short-term memory (LSTM)
modules and combines them using a feature fusion layer
that controls the mixing of multiple types of information.
Furthermore, we incorporate static covariates at each time
step to explore the relationship between dynamic and static
information. To compensate for the uneven distribution of data
caused by the small number of samples, we use the label
distribution smoothing method to smooth data with highly
unbalanced label categories. At the end of the model, we use
a reweighting loss function to assign higher loss weights to
categories with sparse numbers (such as deep anesthesia states
with BIS values between 20 and 30). This encourages the
network to pay more attention to deep anesthesia states with
critical sample sizes, despite their small representation in the
data.

Our model consists of the following three parts:
1) Drug Effect Encoder: To capture pharmacological feed-

back under different anesthesia stages, the proposed network
first applies the PK-PD model to calculate the pseudo historical
information of BIS, and then uses LSTM and bottleneck

Fig. 4. Structure of the PK model based on three compartments and
an effect site compartment.

(as shown on the right side of part A in Fig. 3) to correct
the pseudo historical information. The PK-PD model is a
classical model widely used in anesthesiology to calculate
the effects of anesthetic drugs. The PK-PD model uses a
three-compartment model that utilizes the drug infusion rate
as input to simulate the transfer and metabolism of the drug
between various regions of the body, and reflects the drug
effect with an ideal effector compartment. Assuming that
the drug effect with an ideal effector compartment has a
negligible volume, the clinical effect of the drug is quantified
as the effector concentration Ec. Fig. 4 shows the general
structure of the PK model used in anesthesia, where the central
chamber represents the plasma and tissue, and the fast and
slow chambers represent the peripheral chambers, including
less perfused organs [28].

According to this structure, the Schnider and Minto
model [5] parameters is used to calculate the effect concentra-
tion Ec by solving the system of differential equations. Then
the response surface model proposed by Short et al. [14] is
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adopted to calculate the BIS values:

B I S = B I S0 + (B I Smin − B I S0)

(
Ecr

Ec50r
+

Ecp
Ec50p

)γ

1 +

(
Ecr

Ec50r
+

Ecp
Ec50p

)γ

(1)

where Ecr and Ecp are the effect concentrations of propofol
and remifentanil respectively. γ stands for the nonlinear shape
of the sigmoid curve. Ec50r and Ec50p denotes the effector site
concentration corresponding to 50% of the maximum clinical
effect, which can calculated from Eqn.(2) to Eqn.(5):

V1
dC1(t)

dt
= V2C2(t)k21 + V3C3(t)k31

− V1C1(t) (k10 + k12 + k13) + u(t) (2)

V2
dC2(t)

dt
= V1C1(t)k12 + V2C2(t)k21 (3)

V3
dC3(t)

dt
= V1C1(t)k13 + V3C3(t)k31 (4)

d Ec(t)
dt

= C1(t)ke0 − Ce(t)ke0 (5)

where V1, V2, V3 are the volumes of central compartment, fast
compartment and slow compartment, respectively, and ki j is
the rate of drug transfer between the chambers. All of them
are calculated from human physiological characteristics (age,
sex, height, weight), as shown in Table II.

However, a PK model with a limited number of com-
partments and covariates may be insufficient to accurately
account for propofol kinetics. Therefore, we used a separate
LSTM modules and Bottleneck (a three fully connected layer)
to increase PK-PD model’s parameter quantity by extract
features from pseudo-history BIS values and injection history
of propofol and remifentanil. When encountering a population
that is very different from our training set, we can fine-tune
its parameters by using a small number of samples to retrain
the model.

Because different drugs have different elimination times, For
example, propofol takes longer to be absorbed (elimination
of 66% in about 25 minutes) while remifentanil has a faster
absorption and elimination. Therefore, we used three indepen-
dent LSTM modules with different parameters to address this
issue.

2) Feature Fusion Layer: It should be noted that the effects
of drugs can vary among different populations, even when
administered at the same dose and time [6]. Generally, the
variability between patients makes it impossible to overlook
their physiological characteristics. However, the relationship
between a patient’s physiological information and the cor-
responding drug effects is not always direct, and this can
negatively affect the results. As a result, using a simple fully
connected layer may degrade the performance of the model.
In our proposed method, we use the gate residual network
(GRN) from [19] to control the input variables. GRN uses a
gating mechanism to eliminate irrelevant noisy variables and
extract important parts from variables in multivariate regres-
sion, where the specific contributions of variables to the output
are often unknown. The human physiological information (age,

Fig. 5. Structure of GRN. The gated residual network blocks enable the
efficient information flow with the skip connections and the gating layer.

gender, height, and weight) is integrated into the network
based on GRN to combine temporal and static information
features.

Fig. 5 demonstrates the structure of GRN, in which the
parameters a and c denote the primary input and external input
of GRN respectively. Specific to our method, a is generated
by drug effect encoder, which is temporal feature about drug
infusion history and BIS pseudo history. And c is patient
physiological information. After first fully connection (FC)
layer, Exponential Linear Unit (ELU) activation function be
used to accelerates the learn speed by reducing the effect
of bias offset and making the normal gradient closer to the
unit natural gradient [29]. The gated linear unit (GLU) is
applied at the output layer to select the input information,
which can effectively suppress the noisy information that is
not relevant to the output result [30]. Finally, the primary input
a is connected to the output layer after passing through the
Layernorm Layer [31], which serves to normalize a single
sample and accelerate the convergence of the entire network.

3) Temporal Fusion Decoder: In our work, the interpretable
multi-headed attention mechanism is used to learn long-term
and short-term dependencies between different time steps from
the multidimensional features with a mixture of temporal and
static information. Different from the classical multi-headed
attention, the interpretable multi-headed attention modifies the
calculation of the attention weights in multiple heads, for
enhancing the characterization of specific features by:

F( Q, K , V ) = H̃W H (6)

where Q, K , and V denote the keys, queries and values
respectively, all of them are the vectors and originated from the
input features. W H denotes the weights for H̃ , which is used
for linear mapping. In addition, H̃ is obtained by summing
each head:

H̃ = Ã( Q, K )V W V

=

{
1

m H

m H∑
h=1

A
(

QW (h)
Q , K W (h)

K

)}
V W V

=
1

m H

m H∑
h=1

Attention
(

QW (h)
Q , K W (h)

K , V W V

)
(7)
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where W (h)
Q and W (h)

K are the head-specific weights for Q and
K , and W V are the value weights shared across all heads.

Specifically, for the temporal fusion features Z(t) =

[z(t − k), · · · , z(t)]T obtained by the feature fusion layer, the
multi-headed attention mechanism is applied:

A(t) = F(Z(t), Z(t), Z(t)) (8)

to yield B(t) = [β(t − k), · · · , β(t)]T . Finally, the last
time step β(t) of B(t) is utilized as the output, and then
the skip connection is adopted to combine the hidden states
h(1)

τ , h(2)
τ , h(3)

τ of the last layer of the three LSTM modules
in the encoder and β(t) into the bottleneck. The output is
the final BIS prediction values. The skip connections are used
to facilitate feature fusion as well as to prevent performance
degradation caused by over-deepening the network.

4) Label Distribution Smoothing: In classification tasks, it is
popular to increase the loss weights of samples from a few
categories. This can lead the used network to focus on those
categories with less data for solving the issue of data imbal-
ance [24]. However, weighting of the loss function usually
requires a high correlation between the label distribution of
the samples and the error distribution. Furthermore, a dataset
with a continuous label space usually has the following
properties: the error distribution is smooth and no longer
correlates well with the label density distribution. Therefore,
to address the imbalance of the label distribution in our task,
the label distribution smoothing proposed in [25] is utilized,
which adopts a Gaussian kernel function convolved with the
empirical density of the labels to extract a kernel-smoothed
new label distribution, given by:

p̃
(
y′

)
≜

∫
Y

k
(
y, y′

)
p(y)dy (9)

where p(y) is the number of appearances of label y in the
training data, p̃

(
y′

)
is the effective density of label y′, and

k(y, y′) is Gaussian kernel, which characterizes the similarity
between target value y′ and any y in the target space. The new
distribution has an excellent negative Pearson correlation with
the error. After obtaining a more efficient label density, the
usual methods are able to apply for solving the label imbalance
in our task. The details are described in the following section.

5) Loss Function: We first define some notations.
We parameterize the encoder (part A in Fig. 3) as θen
(excluding the fixed parameters in PK-PD), the feature
fusion layer (part B) is denoted as θ f l , and the decoder
(part C) is denoted as θde. Suppose we are predicting
BIS at moment τ , the pseudo-history BIS of PK-PD
predictions corrected by neural networks is denotes as
Ŷi = [ŷi (τ − 1), · · · , ŷi (τ − l)], the ground true history of
BIS is denotes as Yi = [yi (τ − 1), · · · , yi (τ − l)], i ∈ N , N
is training batch size. The final predicted BIS and ground
true is denotes as ŷi and yi .

To provide the network with a preliminary BIS history,
Lh

(
Ŷ , Y ; θen

)
is adopted in the encoder part such that the

encoder extracts a BIS value that is as close as possible to the

historical true value trend:

Lh

(
Ŷ , Y ; θen

)
=

1
N T

N∑
i=1

T∑
t=1

(
ŷi (τ − t) − yi (τ − t)

)2 (10)

Based on the length of the drug in fusion history, we set T =

180 in the experiments, which corresponds to the length of
the input sequence.

In the outset, we used the standard mean squared error
(MSE) loss function as the objective function for gradient
descent to train the model:

L M SE
(
ŷ, y; θen, θ f l , θde

)
=

1
N

N∑
i=1

(
ŷi − yi

)2 (11)

However, we found that using only the MSE loss function
does not encourage the model to learn the mutation condition
of BIS, particularly during the maintenance period of anesthe-
sia (i.e., from 10 minutes after anesthetic injection to the end
of drug infusion), where the model tends to learn the mean
of the sample. Therefore the model can be further improved
by introducing the reductive bias, a weighted combination of
multiple loss functions, with each particular function that is
used to focus on a different side. Therefore, we use a weighted
MSE loss as follows:

Lw

(
ŷ, y; θen, θ f l , θde

)
=

1
N

N∑
i=1

wi
(
ŷi − yi

)2
, wi ∈ W

(12)

W =
1

p̃(y′)
=

1∫
y k (y, y′) p(y)dy

(13)

where the weight matrix W = [w1, w2, · · · , w100] is the
inverse of the new label distribution p̃(y′) after kernel smooth-
ing. The smaller the number of samples, the larger the weights
wi . Correspondingly, the loss of the sample is larger. Overall,
the optimal model can be obtained by:

arg min(λh Lh

(
Ŷ , Y ; θen

)
+ λw Lw

(
ŷ, y; θen, θ f l , θde

)
) (14)

where λh and λw are the loss weights. In the experiments,
we set them to 5 and 10 respectively.

IV. EXPERIMENTS AND RESULT

A. Data Preparation
In our experiments, the used data is the VitalDB database,

which includes the drug injection records and static covariates
of patient physiological characteristics (age, gender, height,
weight). The detailed description is illustrated in Section B
of Methodology. Since the VitalDB database contains the real
surgery records collected in real time, there is a lot of noise,
interference, and incorrect records in the data, which greatly
affect the learning of the model. Additional data processing
is required to convert it into a suitable form for computer
computation. Therefore, the database is cleaned to minimize
the interference of the noisy signals.

Considered that a large amount of noise and error records
is in the database, we first performed data cleaning. Since
there are many missing values in some samples, the following
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TABLE I
PATIENT CHARACTERISTICS, MEAN±STANDARD DEVIATION (MIN-MAX)

operations are performed: 1) interpolate the data outliers and
nulls with linear interpolation; 2) discard samples with more
than 30s data loss; 3) discard samples with only half-field
surgery records. After that, the data are subjected to additional
processing. Considering the retention time of the drug on the
human body, propofol clears 66% of the time after 3 hours
of injection for about 25 minutes [27], we set the time range
of the drug input history within 1800s to extract the features,
which is consistent with the hypothesis in [32]. It is worth
noting that during the initial periods, the input, in the form
of a zero sequence concatenate a medication record, is used
for our proposed model to predict the BIS value. That means,
when t ∈ [1, 1800]s, the input is a zero sequence of length
(1800 − t) seconds concatenate a t seconds of medication
record.

The injection histories of propofol and remifentanil in the
original database are the total drug injections recorded every
1s. To save the computing resources, the data are processed
into the drug doses injected in every 10s (i.e., 180 data points).
In addition, the drug dose is divided by the length of time
to obtain the drug injection rate, which often is used in
the PK-PD model to calculate BIS characteristics. The drug
injection history and other static covariates are normalized to
facilitate faster network convergence.

To suppress the negative influence of the noise contained
in the database, the true BIS values of the training set is
smoothed and the locally weighted scatter plot smoothing
(LOWESS) with a smoothing parameter of 0.03 is used for
the original BIS values to reduce the computational error
during the training phase. To ensure the authenticity of the
experiments, the validation set and test set are not smoothed.

B. Data Characteristics
We use the VitalDB database as our capital training set,

which is a open access data source, freely downloadable
from the website, https://vitaldb.net. In our experiments,
680 samples that contain the real surgical records with TIVA
general anesthesia injection are randomly selected from the
VitalDB database as the original database. After data cleaning,
348 samples with serious missing data (e.g., only half of the

surgical records) are excluded. In this case, only 332 samples
are used as the remaining samples. Among them, 180 samples
are randomly selected as the training set, 76 samples are
randomly selected as the validation set, and the other samples
are used as the test set. The characteristics of these three sets
of samples are shown in the Table I.

C. Experimental Settings
The evaluation metrics including median performance error

(MDPE), median absolute performance (MDAPE) and mean
square error (RMSE) are used to evaluate the performance of
our proposed model. The predictive performance is evaluated
for each period according to the definition of three periods
in anesthesia surgery (induction period: from the start of
the anesthetic drug propofol injection until 10 minutes later,
maintenance period: from the end of the induction period until
the cessation of prorofol injection, and recovery period: from
the cessation of propofol injection until the end of the surgical
record). In addition, a paired t-test is used to compare the
performance of our model with other compared methods, and
the experimental results are expressed as mean ± SD (range).
Statistical analysis is performed with SPSS 21 (IBM, USA),
and P < 0.05 is the considered significant for the paired t-test.

The model is optimized by using the Adam optimizer.
Batchsize is set to 1024 while training, the initial learning
rate is 0.03, and the learning rate decays to 0.1 times after
every 10 epochs. Unless otherwise mentioned, the parameters
of PK-DK model used in our proposed method are shown in
Table II.

The pytorch 1.4.0 framework and python 3.9.1 are adopted
in our implementations. All experiments are run on a
single 24GB NVIDIA TITAN RTX GPU, which takes
about 30 minutes to train 50 epochs with batch size
1024 on the entire dataset. Our code is made available at
https://github.com/heeeyk/Transformer-DOA-Prediction.

D. Experimental Results
In the experiments, our proposed model has made a com-

parison with the LSTM method [11] and the PK-PD method
[14], the experimental results are shown in the Table III.
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TABLE II
PK AND PD PARAMETERS OF PROPOFOL AND REMIFENTANIL

TABLE III
COMPARISON OF ERRORS BETWEEN OURS PROPOSED MODEL AND THE BASELINE MODEL DURING THREE ANESTHESIA PERIODS

From this table, one can observe that the proposed model
outperforms the baseline method and the PK-PD method in
all periods in terms of evaluation metrics except for MDAPE
in the maintenance period, in which our proposed model has
a slight performance degradation. The main reason is that the
baseline method tends to predict the smooth BIS curves, which
coincides with the overall trend in the maintenance period with
a very large sample size, and thus has a better performance
on the whole dataset. The detailed analysis is described in
the next section. The performance comparison on different
test samples is shown in Fig. 6. Obviously, our method has
greatly improvements on the predictive capability for the
mutation conditions and outperforms the baseline method,
which are performed significantly in the light pink areas.
In addition, the concordance correlation coefficient (CCC)
is used to measure the correlation between BIS and ground
true BIS. The experimental results for all methods are shown
in Table IV. The CCC (95% Confidence Interval) is 0.677
[0.691 to 0.665] in our model, which is significantly larger
than that in the LSTM method (0.590 [0.582 to 0.609]) and
in the PK-PD method (0.556 [0.543 to 0.571]).

In the real-world applications, the DOA prediction is often
set to predict the BIS value every 1 second. Therefore, we set

TABLE IV
CCC (CONCORDANCE CORRELATION COEFFICIENT) COMPARISONS

the batch size to 1 to simulate the inference process of
the DOA prediction, and find that our model only takes
0.014 seconds to predict the BIS value every single time. This
indicates that our model can be used for real-time monitoring.

E. Test Error Analysis
For a single case, one can observe the extreme unreason-

ableness of prediction curve for the baseline method, such
as lacking variation and fluctuating in a rough range around
40 for the BIS values. This coincides with the label distribution
of the dataset, as shown in the upper part of Fig. 8. By ana-
lyzing the label distribution of the dataset, it is verified that
the baseline method is disappointing in terms of the overall
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Fig. 6. Performance comparison between our proposed method and other compared methods (i.e., the baseline LSTM method [11] and the
PK-PD [14] method) on different test samples. Each subfigure corresponds to an independent sample.

Fig. 7. Prediction results of ablation study on different components for our proposed model. (a): MDPE; (b): MDAPE; (c): RMSE.

prediction performance, because it has a overfitting problem in
the many-shot region with large data volume and neglects the
prediction ability for other regions, especially the unbalanced
data distribution happens to be the medical data.

Therefore, the testing errors in the sample labels is adopted
to verified the fact that our method outperforms the baseline
method. Specifically, the test error is calculated by the follow-
ing formula:

error ( j)
=

1
n( j) |

l∑
i=1

(
[Ŷi ]

( j)
− [Yi ]

( j)
)

|, j ∈ [0, 100]

(15)

where j denotes the range of the BIS values, n( j) is the
number of points in the dataset, [.] stands for the rounding
operation, Ŷi and Yi denote the predicted output of the model
and the ground true for the i th sample, respectively. As shown
in Fig. 8, one can see that, compared with the baseline
method, our proposed method has great improvements on the
prediction performance in other regions, and at the same time,
without reducing the predictive power in the many-shot region.
Especially in the few-shot interval between 10 to 20 and
between 60 to 90, the test error decreases by 15.23% and
48.99%, respectively. These experimental results are coincide
with the rare deep anesthesia state and the shallow anesthesia
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Fig. 8. Top: the sample label distribution of the dataset is divided into
three regions, in which the largest amount of data in the many-shot
region contains 59.73% and the smallest amount of data in the few-shot
region contains 10.62%. Bottom: comparison of the baseline method
with our proposed method on the test error.

state between wakefulness and anesthesia during the induction
period. Moreover, the enhancement of the predictive ability
over these two regions indicates that our proposed method
solves the overfitting problem in the many-shot region.

F. The Region Where BIS Mutations Occur

For all experimental data, the main mutations of BIS occurs
in the medium-shot region, in which the number of the
samples is less than 30%. In order to improve the prediction
performance, a weighted MSE loss function is adopted in
the proposed model to solve the issue of data imbalance,
such that much attention is paid to the medium-shot region.
We have conducted a statistical analysis during the relatively
stable anesthesia maintenance phase, and the percentage of
the mutations of BIS in different regions is shown in Table V
From this table, one can see that, if the BIS value, denoted as
Bt at time t , satisfies one of the following conditions:{

|Bt − min(BT )| > m
|Bt − max(BT )| > m,

T ∈ (t − 30, t + 30)s (16)

where m denotes the magnitude of BIS changes, and a larger
m indicates a greater mutation magnitude. In Table V, we have
illustrated the results with m = 5, 7 and 10 respectively.
In particular, when m = 10, approximately 33% of the
BIS mutations occurred in the Many-shot region (B I S ∈

[31, 48]). However, the rest of the BIS mutations occurred
in the Medium-shot and Few-shot regions. This means, the
loss function assigns the weight to these data points in the
Medium-shot and Few-shot regions more than twice the weight
in the Many-shot region. Therefore, our loss function enables
the network to pay more attention to the mutation condition of
BIS. This indicates, the number of samples and the mutation
condition of BIS has necessary relationship in our proposed
model.

TABLE V
PERCENTAGE OF THE MUTATIONS OF BIS IN DIFFERENT REGIONS

G. Ablation Experiments

To illustrate the contribution of each individual module in
our proposed model, the ablation experiments are conducted.
Starting from our full network model and gradually removing
some of the network components, each method is trained
under the same conditions until the network converged, and the
experimental results in terms of MDPE, MDAPE and RMSE
are shown in Fig. 7 respectively. From this figure, one can
observe that, each network component has a contribution to
improve the performance metrics (e.g., MDAPE and RMSE)
for the prediction of DOA. Our proposed model outperforms
the baseline method in the entire anesthesia period. However,
the prediction performance may degrade during the induction
period. Based on the experimental results, this problem may be
caused by the introduction of the PK-PD model, because the
PK-PD model in the induction period predicts the BIS values
with large deviations (e.g., there is a certain time lag). This
will lead to the performance degradation. In addition, if the
GRN component is discarded and only the attention layer is
considered, the effect will not be greatly improved compared
with the combination of the baseline method plus PK-PD.
The main reason is that the lack of the GRN component
prevents the effective inclusion of static covariates in the
temporal information, which often leads to a bad prediction
performance.

In general, incorporating the PK-PD model into the network
can improve the prediction performance of the model because
it contains a large number of hyperparameters calculated
from human experiments itself. Furthermore, it provides some
statistical data to the deep learning model for enhancing the
robustness of the model. The PK-PD model also does regres-
sion calculations on the past BIS indices, which brings much
time series information to the model. But the disadvantage
is that the PK-PD model has bias in the induction period,
which easily leads to partial performance degradation of the
model. To analyze the contribution of the PK-PD model in
our method, the combination of the baseline (i.e., LSTM)
model and the PK-PD model and the baseline model are
conducted in the ablation experiment. From the experimental
result in Fig. 7(a), one can observe that the performance
of the combination of them can improve in most periods,
except for the induction period. In particular, the MDPE in
the induction period increases from 0.47 (only LSTM) to
2.43 (LSTM+PK-PD), which degrades the performance of
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Fig. 9. Performance comparison between our proposed method and the baseline methods (LSTM [11] and PK-PD [14]) on our in-house dataset.

TABLE VI
COMPARISON OF ERRORS BETWEEN OURS PROPOSED MODEL AND OTHER METHODS IN OUR IN-HOUSE DATASET

the model. However, when the other modules (i.e., Attention
and GRN) are incorporated into our model, the MDPE in the
induction period drops to 1.14, which illustrates our model can
reduce the negative influence efficiently for the disadvantage
of the PK-PD model.

The GRN module, on the other hand, can favourably
reflect the physiological changes of drug doses in different
populations by adding the static information to the time series
(different ages have different drug elimination rates), and the
unique gating mechanism of GRN can eliminate the signal
noise and the static variables that have almost no contribution
to the output. The attention mechanism can learn the long-term
relationship between different time steps, but it is difficult
to perform effectively when the dynamic-static information
is missing in GRN. The confounding effect of temporal
information and static covariance is considered to maximize
the effect of the attention mechanism.

H. Model Generalization
To verify the generalization of our model, the experiments

that training a model on the VitalDB source and testing it
on our in-house dataset are conducted. Our in-house dataset
contains 44 cases collected from a hospital in China. The main

TABLE VII
DATASETS DIFFERENCE

difference between the the VitalDB dataset and our dataset
is shown in Table VII. Since the two datasets are collected
from different race and data acquisition equipment, it may
lead to the large domain gap. In particular, our dataset is
mainly sampled from younger people, hence the average age
of samples in our dataset is the larger that that of samples
in the VitalDB dataset. In the experiments, 20 cases are
randomly selected as the training set to fine-tune the baseline
and our model. The PK-PD cannot be fine-tune, since its
parameters is fixed. The experimental results are shown in
Fig. 9 and Table VI, and obviously our method still has the
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best performance. It’s worth noting that, due to the limitation
of our collection equipment, we can only record the BIS values
every 5 seconds. In this situation, the BIS and narcotic record
may cause inaccurate label information after interpolation.

V. CONCLUSION

Accurate drug efficacy prediction is helpful for anesthesi-
ologists to make suitable decisions in the clinical procedures.
In this paper, a transformer-based prediction method is pro-
posed for predicting the depth of anesthesia. Particularly, the
proposed method adopts a LSTM based deep learning archi-
tecture and an enhanced attention mechanism to efficiently
predict the sudden change of anesthesia depth under the effect
of drugs. In addition, a weighted loss function is used in
the network to solve the problem of data imbalance, improv-
ing the generalization in comparison to previous approaches.
Experimental results show that our proposed model has better
prediction performance than previous methods, especially in
the few-shot region such as deep anesthesia stage and situation.
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