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A Wearable Biofeedback Device for
Monitoring Tibial Load During Partial
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Abstract— Patients with tibial fractures are usually
advised to follow a partial weight-bearing gait rehabilita-
tion program after surgery to promote bone healing and
lower limb functional recovery. Currently, the biofeedback
devices used for gait rehabilitation training in fracture
patients use ground reaction force (GRF) as the indicator
of tibial load. However, an increasing body of research has
shown that monitoring GRF alone cannot objectively reflect
the load on the lower limb bones during human movement.
In this study, a novel biofeedback system was developed
utilizing inertial measurement units and custom instru-
mented insoles. Based on the data collected from exper-
iments, a hybrid approach combining a physics-based
model and neural network architectures was used to pre-
dict tibial force. Compared to the traditional physics-based
algorithm, the physical guided neural networks method
showed better predictive performance. The study also
found that regardless of the type of weight-bearing walking,
the peak tibial force was significantly higher than the peak
tibial GRF, and the time at which the peak tibial compres-
sion force occurs may not be consistent with the time at
which the peak vertical GRF occurs. This further supports
the idea that during gait rehabilitation training for patients
with tibial fractures, monitoring and providing feedback on
the actual tibial force rather than just the GRF is neces-
sary. The developed device is a non-invasive and reliable
portable device that can provide audio feedback, providing
a viable solution for gait rehabilitation training outside
laboratory and helping to optimize patients’ rehabilitation
treatment strategies.

Index Terms— Tibial force, rehabilitation, partial weight-
bearing, machine learning, ambulatory monitoring.
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I. INTRODUCTION

T IBIAL fractures are one of the most common types
of fractures in clinical practice, especially among mili-

tary personnel [1] and sportspeople [2]. After tibial fracture
surgery, clinical physicians typically advise patients to follow
a partial weight-bearing (PWB) protocol [3]. PWB is defined
as a specific weight that patients are allowed to bear on
the affected limb during standing and walking with the use
of assistive devices [4]. PWB walking can promote fracture
healing and lower limb function recovery in patients with
lower limb fractures [5], [6], and also reduce the incidence
of postoperative complications after fracture surgery [7], [8].
A successful PWB gait is the core of the rehabilitation plan
for patients with lower limb fractures [9].

To help patients with tibial fractures achieve correct and
effective PWB walking, physical therapists usually use verbal
instructions or bathroom scales to improve patient compli-
ance. However, the effectiveness of these methods is not
ideal [10], [11]. This is largely due to the fact that PWB
gait training is primarily conducted by patients at home or
in the community after discharge, and even if patients learn
how to properly perform PWB walking in a clinical setting,
it remains difficult for them to maintain compliance without
effective supervision and guidance post-discharge [8], [11].
Therefore, there is increasing attention being paid to the
development of portable biofeedback devices to aid in the
gait rehabilitation training of lower limb fracture patients
after discharge. With the development of sensing technologies,
commercial biofeedback systems have been developed for
monitoring and guiding PWB gait training for patients with
fractures. For example, Sensistep (Evalan BV, Amsterdam,
The Netherlands) [8], OpenGo Science (Moticon GmbH,
Munich, Germany) [12], and SmartStep (Andante Medical
Devices, Beer Sheva, Israel) [13]. These devices are portable
and can continuously collect and monitor ground reaction
force (GRF) in patients during PWB gait training in both
clinical and home settings, providing real-time feedback and
significantly improving patient compliance [14]. However,
none of these devices are currently designed for multi-day at-
home patient monitoring. Additionally, these devices use the
GRF on the sagittal plane as an indicator of the longitudinally
compressive force of the tibia (TCF) during walking. In fact,
the force on the tibia during walking is mainly caused by
muscle forces rather than GRF [15], [16], and recent studies
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have shown that the peak vertical GRF (FG RF,max ) during
movement does not have a strong correlation with the peak
tibial compression force [17], [18]. The timing of FG RF,max
does not necessarily coincide with the timing of peak tib-
ial compression force [19], [20]. Therefore, the validity of
using only GRF information to guide rehabilitation training
for tibial fracture patients is questionable. Guiding patients’
gait rehabilitation training solely based on GRF information
may lead to overloading of the fracture site. Although the
probability of loss of fixation leading to secondary fractures
due to overloading is small, overloading and non-loading can
both lead to delayed healing [21], [22]. During rehabilitation
training for the patient, real-time tibial compression force
should be obtained and provided to both the patient and the
physician.

To obtain the internal load of the tibia, the field of orthope-
dics usually uses either invasive or non-invasive measurement
methods. In vivo measurement methods involve measuring the
stress or strain on the fixation devices implanted inside the
body of the fracture patient [23], [24]. However, the fracture
site will bear some load after the lower limb is subjected to
external loads, which will affect the deformation of the fixation
device. Therefore, the measured TCF is not accurate [25].
In vitro measurement methods typically use optical motion
capture (OMC) systems and force plates (FP) to collect patient
biomechanical data, and then calculate TCF using a mus-
culoskeletal model [25], [26]. Although these systems have
high measurement accuracy and the calculated TCF is more
accurate, OMC and FP are bulky, expensive, and have complex
usage procedures, and this method can only be implemented
in the laboratory [27]. To continuously monitor lower limb
loading of the human body in daily life, many researchers
use wearable devices such as pressure sensitive insoles and
inertial measurement units (IMUs) to estimate the bone load of
lower limbs [28], [29]. However, low-quality sensor data and
limited data dimensions make it difficult for wearable sensors
to achieve the desired effect in monitoring lower limb load-
ing [30]. In recent years, machine learning (ML) has become a
promising method to overcome the shortcomings of wearable
devices in terms of measurement accuracy and data compu-
tation [31]. Matijevich et al. [32] first proposed a method to
estimate peak tibial forces during running by combining wear-
able sensor signals and ML. Subsequently, Elstub et al. [33]
combined IMUs and pressure-sensing insoles with the Lasso
algorithm to more accurately estimate peak tibial forces during
running compared to traditional physics-based algorithms.
However, they only predicted discrete data such as peak
tibial forces during running, and the traditional ML algorithm,
Lasso, is not suitable for providing real-time predictions based
on in-situ data [34]. For tibial fracture patients, real-time
estimation of the load on the fracture site and obtaining the
tibial load curve during PWB walking is beneficial [11].

Currently, there is no wearable device available in orthope-
dics that can monitor and provide real-time feedback on tibial
load for PWB gait training in fracture patients. In response to
the limitations of previous devices that could only monitor and
provide feedback on patient GRF, the present study developed
a new portable biofeedback device for collecting, monitoring,

and providing feedback on tibial force information during gait
rehabilitation training for lower leg fracture patients. By using
a combination of physics-based models and neural network
architectures, we obtained better prediction results than the tra-
ditional physics-based algorithm. The design and development
of this system can help physicians and patients understand
the real tibial load during PWB walking, which can optimize
the rehabilitation strategy for lower limb fracture patients and
reduce the risk of overloading during rehabilitation training.

II. METHODS

A. Participants
To account for potential safety issues, 15 healthy volunteers

(12 men and 3 women; mean age ± SD, 27.6 ± 2.41 years;
height, 172.63 ± 4.58cm; weight, 73.26 ± 10.90kg) were
recruited for this study. All subjects had no history of lower
limb surgery, were able to walk normally without reliance
on walking aids, and had sufficient upper limb strength to
use crutches. Prior to testing, all participants provided written
informed consent, and the study was approved by the Ethics
Committee and Institutional Review Board of Wuhan Chil-
dren’s Hospital.

B. System Description
The biofeedback system designed in this study consists of

a pair of customized instrumented shoe, two IMUs and a
microcontroller. As shown in Fig. 1, two 3-axis force sensors
(Jinghe Sensor, Bengbu, China) were attached to the sole under
heel and metatarsal area of each instrumented shoe. Compared
with pressure sensitive insoles, which can only collect the
vertical component of the GRF, the instrumented shoe can
measure the three-dimensional (3D) GRF during walking, and
the measurement accuracy is higher [35]. The force sensor
had a measurement accuracy of 0.1N and a sampling period
of 10ms. Two IMUs (WitMotion, Shenzhen, China) were
affixed to the foot and calf by double-sided tape as shown
in Fig. 2(a, b). Previous studies have indicated that accurate
estimation of GRF is crucial for obtaining tibial force measure-
ments [32], [33], which is why we chose instrumented shoes
with higher measurement accuracy sensors instead of pressure
sensitive insoles. IMUs transmitted 3-axis acceleration and 3-
axis angular velocity information to the microcontroller via
Bluetooth, with an attitude measurement accuracy of 0.2◦ and
an acquisition period of 5ms. The microcontroller included a
digital transmitter, a speaker, an RS485 to TTL converter, and
a Raspberry Pi Zero. The Raspberry Pi Zero processed the
data from the force sensors and IMUs in real time to obtain
the vertical GRF and TCF of the affected limb, and controlled
the speaker to provide audio feedback.

C. Partial Weight-Bearing Gait Training Method
This study referred to the most commonly used rehabilita-

tion training program in orthopedic rehabilitation [22], [36].
Two days prior to the experimental testing, four target loads
were determined based on the weight of each subject, namely
25%, 50%, 75%, and 100% of their body weight. Subse-
quently, the subjects randomly selected one leg as the affected
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Fig. 1. Hardware of biofeedback system.

limb, and were instructed by the researchers to perform
3-point gait crutch walking. Due to the current limitations in
theory and technology, subjects are unable to receive accurate
feedback on tibial force during walking. Therefore, according
to the traditional training regimen, the subjects wore the
biofeedback device to practice using crutches to control the
peak vertical GRF of the affected leg during walking to reach
the target load.

The biofeedback device obtained the vertical GRF during
walking through an IMU and two 3-axis force sensors installed
on the foot. Firstly, the orientation of the 3-axis force sensors
in the navigation coordinate system was determined through
attitude calculation based on the velocity and acceleration
information provided by the IMU [37]. Subsequently, a three-
dimensional ground reaction force equation, as shown in (1),
was established.

FG RF = Rn
b · (Fheel + Ftoe) (1)

where Rn
b represents the attitude matrix of the IMU from the

IMU coordinate system to the navigation coordinate system,
while Fheel and Ftoe denote the measured values of the 3-axis
force sensors on the forefoot and heel, respectively. FG RF
represents the GRF in all three directions during walking.
Compared to the traditional method of using pressure insoles,
this approach has been demonstrated to yield results that are
more consistent with data obtained from force plates [35], [38].

As shown in Fig. 2(c), a subject wore the biofeedback
device and used crutches for PWB training. The sensing
system gave an audible feedback when the peak vertical GRF
exceeded the pre-set target load during the walking training.
At the end of each gait cycle, the system emitted an alert
sound when it detected that the maximum values of the peak
vertical GRF are below the minimum value specified by the
physician. Subjects were required to perform three types of
PWB gait training using crutches (25% PWB, 50% PWB, and
75% PWB) and slow walking training without crutches (FWB)
for 30 minutes for 2 days in the lab.

D. Data Collection
On the day of data collection, 26 retro-reflective markers

were placed on each subject’s body. During walking, the

Fig. 2. (a) A lateral view of the subject wearing the biofeedback device;
(b) An anterior view of the subjects wearing the biofeedback device;
(c) A subject performing PWB. The subject has granted permission for
the use of his identifiable image in this study.

marker trajectories were recorded with 8-camera motion cap-
ture system (Nokov, Beijing, China) at 200 Hz, and two force
plates (Bertec, Ohio, USA) embedded in the walkway were
used to collect 3D GRF during walking. The sampling fre-
quency for 3D GRF was 1000 Hz. After wearing instrumented
shoes and IMUs, subjects performed 25%, 50%, and 75%
PWB crutch walking on the walkway at self-selected speeds,
and then walked naturally at a slow speed (0.8m/s ± 10%)
without crutches. During the experiment, the error between the
peak vertical GRF of the affected limb and the target load was
acceptable within 5% of body weight, and at least 10 complete
gait cycles were recorded for each load level. The signals from
the wearable sensors were synchronized with those from the
motion capture cameras and force plates.

E. Biomechanical Model
An overview of the lab-based data analysis and

wearable-based data analysis is provided in Fig. 3. This
study used the AnyBody Modeling System (AnyBody
Technology A/S, Aalborg, Denmark) for data analysis. The
data collected by OMC and FP were filtered with a 4th order
low pass Butterworth filter with a 15 Hz cutoff frequency.
All data within each gait cycle was normalized to 101 time
steps. Rigid joints were added at the midpoint of the tibia
in the AnyBody musculoskeletal model, and the model was
adjusted to match the segment size and inertial properties
of each subject using marker data. The joint kinematics and
internal tibial loads of the lower limb were then computed.
Although the analysis provided three-dimensional forces and
moments in the tibia, we chose to only focus on longitudinal
compression force due to the relatively small forces and
moments in other directions of the tibia [25]. The tibial force
generated by the biomechanical model (Ft ) was regarded as
the reference data.

F. Physics-Based Algorithm
The physics-based algorithm uses the data obtained by wear-

able sensors to calculate TCF according to traditional inverse
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Fig. 3. Lab-based data analysis and wearable-based data analysis overview. The tibial force calculated from the musculoskeletal model using
lab-based data (OMC and FP) was considered as the actual bone load. FPH,t represents the tibial force obtained from wearable sensors using the
physics-based algorithm. F̂t represents the tibial force obtained from wearable sensors using the machine learning algorithm.

dynamics method [32]. TCF is determined by adding the force
exerted on the tibia by GRF (Fext ) and the force exerted on
the tibia by plantarflexor calf muscles (Fm) [17], [32]. Fext
and Fm can be expressed as follows

Fext = GRFn · cos β + GRFt · sin β (2)

Fm =
Ma

rt
=

GRFn · COPap

rt
(3)

where β represents the angle between GRF in the sagittal plane
and the direction of the tibial segment. GRFn is the normal
force under the foot and GRFt is the tangential force under
the foot. Ma is the ankle moment in the sagittal plane. β,
GRFn and GRFt were all obtained through the processing
of data collected by wearable sensors [32], [39]. rt is the
Achilles tendon moment arm, which was assumed to be
5 cm for all subjects [40]. COPap is the anterior-posterior
center of pressure distance relative to the ankle joint position.
The anterior-posterior center of pressure is defined as the
point of concentration of the GRF in the anterior-posterior
direction. COPap can be expressed as follows

COPap =

√(
Fn1xheel+Fn2xtoe

GRFn

)2

+

(
Fn1 yheel+Fn2 ytoe

GRFn

)2

(4)

where Fn1 and Fn2 represent the forces experienced by two
force sensors in the sagittal plane. We used r⃗heel and r⃗toe to
respectively represent the relative displacement of the forefoot
force sensor and the heel force sensor with respect to the center
of the ankle joint, then xheel and yheel represent the projection
lengths of r⃗heel on the frontal and sagittal axis, respectively.
Similarly, xtoe and ytoe represent the projection lengths of r⃗toe
on the frontal and sagittal axis, respectively.

G. Physics-Guided Neural Networks

The previous studies indicate that artificial neural network
(ANN) is a promising method for evaluating human motion
based on data from wearable sensors [29], [31]. However,
they require a large amount of data, and data-driven models
lack generalizability to out-of-sample scenarios [30]. Con-
sidering that collecting a large amount of data on PWB
crutch walking is impractical, and the application of pure
ML methods to small sample size training is usually not
ideal [30], [33]. In order to fully leverage the advantages of
both physical and data-driven methods, this study employed a
Physics-guided neural networks (PGNN) approach that com-
bined a physics-based model with ANN to solve TCF.

Firstly, an ANN model was established in MATLAB
R2022a (MathWorks, United States). The results obtained
through calculations based on the physical model and the
data collected from wearable sensors were used as the
input of the ML model. As shown in Fig. 4, ANN had
19 variables in the input layer. These variables consisted of
3-axis acceleration and angular velocity information from
two IMUs, 3-dimensional force information from two force
sensors on the instrumented shoe, and results from the
physics-based algorithm (FPH,t ). The output layer of ANN
had one variable (Ft ). The ANN had two hidden layers, one
with 100 and one with 50 neurons, connected to the input and
output nodes. The network was trained for 1000 iterations,
and training was stopped if the gradient did not decrease for
six consecutive iterations.

To improve the consistency between ANN model and phys-
ical knowledge due to the limited dataset, a physics-based
loss function was introduced to guide the learning of ANN
model [41]. The custom loss function was defined as follows

Loss = Loss(F̂t , Ft + λR(W) + LossP HY (F̂t ) (5)
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Fig. 4. A schematic diagram of the hybrid-physics-data (HPD) model.

where Loss(F̂t , Ft ) is the mean squared error of the predicted
value (F̂t ) and reference value (Ft ), λR(W) as regularization
terms, and LossP HY (F̂t ) is a physical-based loss function.
It can be seen from (2) and (3) that the sum of the normal and
tangential forces of the two force sensors, FGRF, should not be
greater than TCF at each moment during walking. Therefore,
the physics-based loss function can be expressed as follows

LossPHY(F̂t ) = ReLU(FGRF − F̂t ) (6)

where ReLU denotes the rectified linear unit function. The
addition of the physics-based loss function ensured the phys-
ical consistency of the predictions. Finally, for each type
of weight-bearing walking, a cross-validation strategy was
employed by sequentially partitioning the data of 15 subjects
into 15 folds. Fourteen of these folds were used for training
the model, while one fold was used for testing. The process
was repeated until the whole set was exhausted.

H. Statistical Analysis
For each type of weight-bearing walking, the results

obtained from all methods were normalized to the subject’s
body weight (BW). The Pearson’s correlation coefficient (r)
was used to evaluate the similarity between the results pre-
dicted by the physics-based algorithm and PGNN, respectively,
and those calculated by the musculoskeletal model. The accu-
racy of the two methods was evaluated by calculating the root
mean squared error (RMSE) and relative root mean squared
error (rRMSE) in units of BW [42]. The rRMSE facilitates
the comparison between the different weight-bearing walking
with different force amplitudes. The averages and standard
deviations were calculated for r, RMSE and rRMSE from the
15 cross-validation subsets. The Fisher’s z-transformation was
applied to r, and the mean of the transformed values was
calculated. The average value of r was obtained by reversing
the transformation. In addition, we also calculated the percent
differences (%Diff) between the peak tibial compression force
predicted by the physics-based algorithm and the PGNN,
respectively, and the peak value of tibial compression force
calculated by the musculoskeletal model.

III. RESULTS

Table I shows an overview of the accuracy of the two
methods for estimating four types of weight-bearing tasks.
The TCF predicted by the physics-based algorithm showed
a moderate to strong correlation with the reference values.
The PGNN-predicted TCF yielded r values that ranged from
0.65 to 0.86 for the different weight-bearing tasks. The
results predicted by the physics based algorithm and PGNN
had the highest correlation with Ft during slow walking
without crutches, with values of 0.86 ± 0.46 and 0.98 ±

0.25, respectively. For all weight-bearing tasks, the RMSE
for the physics-based algorithm was between 0.09 ± 0.03 and
0.40 ± 0.19 BWs, whereas for the PGNN, that was between
0.04 ± 0.02 and 0.27 ± 0.14 BWs. The rRMSE for the
different weight-bearing tasks ranged between 20.7 ± 9.7%
and 31.8 ± 28.7% for the physics-based algorithm and
between 9.3 ± 6.0% and 14.2 ± 7.4% for the PGNN.

Table II presents the %Diff results for four types of weight-
bearing walking. The mean %Diff between the predicted peak
tibial compression force by the physics-based algorithm and
the reference values across all weight-bearing walking was
16.85 ± 16.5%. In contrast, the mean %Diff between the
peak tibial forces predicted by PGNN and the reference values
was 7.4 ± 6.1%. For all types of weight-bearing tasks, the
mean difference for the peak tibial compression force predicted
by PGNN were smaller than those predicted by the physics-
based algorithm. The FWB showed the smallest %Diff (5.3 ±

3.7%) for the PGNN-estimated peak tibial compression force
in comparison to the reference values.

Fig. 5 shows the differences between the predicted results
by the physics-based algorithm and PGNN and the reference
values for the four types of weight-bearing tasks. Additionally,
the vertical GRF data collected by force plates were also
presented for comparison.

IV. DISCUSSION

In this paper, we have developed a new wearable biofeed-
back system and proposed a method to predict TCF during
walking by combining a physics-based model and ANN.
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TABLE I
ACCURACY (r, PEARSON’S CORRELATION COEFFICIENT; RMSE, ROOT-MEAN-SQUARED ERROR; rRMSE, RELATIVE ROOT-MEAN-SQUARED

ERROR) OF TWO METHODS FOR ESTIMATING CONTINUOUS RESULTS

TABLE II
PERCENT DIFFERENCES(%DIFF) BETWEEN TIBIAL FORCE PEAKS

PREDICTED BY TWO METHODS AND REFERENCE VALUES

We compared the performance of PGNN with the traditional
physics-based algorithms. For the physics-based algorithm,
foot mass and inertia were ignored, the Achilles tendon
moment arm was considered a constant, and there was a lack
of real estimation of the ankle joint center. Therefore, the
equations used were simplified, leading to overestimation or
underestimation of TCF [17], [26]. In comparison, as shown
in Table I, for all weight-bearing tasks, the prediction results
of PGNN were more accurate than those of the physics-based
algorithm, and the TCF predicted by the PGNN showed a
strong correlation with the reference values. For each PWB
task, the average rRMSE of PGNN was below 15%. For the
prediction of peak tibial forces during walking, PGNN also
showed higher accuracy than the physics-based algorithm.

In this study, PGNN employed the results obtained from
a physics-based algorithm as input for ANN, which could
be regarded as predicting and compensating for errors in the
physics-based approach. Due to the limited data collection and
processing capabilities of wearable sensors for all subjects,
the physics-based algorithm employed a generic and simpli-
fied biomechanical model to compute TCF, which could not
provide personalized adjustments for each individual based on
their collected data, unlike musculoskeletal modeling software.
In contrast, PGNN compensated for the errors caused by the
lack of personalized scaling in the simplified biomechanical
model of the human body to a significant extent through
data training, as it automatically learned the simplifications
and unconsidered factors in the physical algorithm, such as
variations in the lengths of lower limb bones and muscles,
as well as differences in Achilles tendon moment arm among

individuals. Another key to accurately obtaining TCF is to
accurately estimate the ankle joint torque to obtain the muscle
force Fm acting on the tibia. However, the data from wearable
sensors is often scattered and incomplete, making it impossible
to achieve the very accurate estimation of the changes in
the center of foot pressure and ankle joint angle during
walking, as achieved by OMC and FP [29], [33]. Therefore,
the calculated ankle joint torque often contains errors, which
may accumulate during the computation process and lead
to deviations in the final predicted results. Incorporating the
outcomes obtained from the physics-based algorithm and
wearable sensor data as inputs to machine learning can also
enable the ML model to learn the patterns of measurement
and computation errors of the sensors, adjust the neural
network weights, and thus reduce the impact of errors on
the predicted results. Furthermore, in PGNN, we introduced
a physics-based loss function to guide the learning of the
ANN model. The use of physics-guided constraints provided
effective regularization for training deep generative models,
reducing the possible search space of parameters, especially
in cases where the cost of acquiring data is high and the
available data sets are small [43]. As an ML model that follows
the required physical characteristics, PGNN is more likely
to be generalizable to out-of-sample scenarios. Additionally,
although the ANN used in this study was not compared with
other types of ML algorithms, such as convolutional neural
networks and long short-term memory networks, previous
research has demonstrated that the dataset, neural architecture
search, and hyperparameter optimization are more influential
in determining the predictive performance than the type of
neural network used [44], [45], [46]. We believe that embed-
ding biomechanical knowledge into a simple neural network
architecture can serve as a starting point for developing other
wearable sensor methods for continuous monitoring of lower
limb loading during walking.

Currently, various commercial wearable biofeedback sys-
tems on the market only guide lower limb fracture patients
in weight-bearing walking by monitoring GRF [14]. However,
as shown in Fig. 5, for all types of weight-bearing walking,
the peak tibial forces were significantly greater than FG RF,max .
Especially during slow walking without crutches, the load of
muscles on bones was much greater than the forces exerted on
the tibia by GRF, which is consistent with the results of other
scholars [15], [16], [17], [33]. Moreover, the FG RF,max and
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Fig. 5. The TCF and vertical GRF curves during four different weight-bearing walking conditions for fifteen participants. Green lines and shaded
areas represent the mean and standard deviation of TCF, which was calculated by importing the data obtained from FP and OMC into the
biomechanical model. Blue lines and shaded areas represent the mean and standard deviation of TCF obtained by PGNN. Black dashed lines
and shaded areas represent the mean and standard deviation of TCF obtained by the physics-based algorithm. Coral lines and shaded areas
represent the mean and standard deviation of the vertical GRF collected by FP.

the peak values of TCF may not have occurred simultaneously
during walking. The peak vertical GRF typically occurred
when the foot contacted the ground at the beginning of the
stance phase, while the peak TCF usually appeared at the
terminal stance. Table III presents the Pearson’s correlation
coefficient (rG,T) between the vertical GRF measured by FP
and the reference value (Ft ) of tibial force for 15 subjects
across four types of walking. The mean and standard deviation
of the correlation coefficients for each weight-bearing task
were obtained through Fisher’s z-transformation. Table III
shows that the average correlation coefficient between ver-
tical GRF and TCF ranged from 0.61 ± 0.11 to 0.64 ±

0.25 across all types of weight-bearing walking. Among them,
5 participants demonstrated weak positive correlation (0.3≤

rG,T < 0.5) between their vertical GRF and TCF in each
type of PWB walking. Consistent with the views of Walker
et al., there was no strong correlation (rG,T ≥ 0.8) observed
between vertical GRF and TCF across all types of weight-
bearing walking. Particularly, with the increase of the load
on the affected limb, the rG,T tended to decrease, which may
have been attributed to the possibility that the increase in

load caused the influence of muscle force on the tibia to
increase faster compared to the influence of GRF on the
tibia. Furthermore, in all types of weight-bearing walking,
no negligible correlation (rG,T < 0.3) was observed between
vertical GRF and TCF, further indicating that the impact of
GRF on tibial force could not be ignored [17]. However,
the standard deviation of the correlation coefficients among
the subjects in each PWB walking type was large, indicating
that there may be significant differences in the relationship
between the GRF curve and the TCF curve across individuals
due to physiological characteristics, movement habits, and
other factors. This suggests that GRF and TCF cannot be
regarded as having a simple linear relationship, and that more
biomechanical data should be collected to estimate the actual
TCF for each individual during walking. Therefore, even if
traditional wearable biofeedback systems achieve the same
level of measurement accuracy as FP in measuring GRF, these
devices are severely limited in reflecting the tibial loading
of different individuals during PWB walking, and may even
mislead lower limb fracture patients in understanding the load
on the fracture site.
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TABLE III
THE PEARSON’S CORRELATION COEFFICIENT BETWEEN THE

VERTICAL GRF AND TCF

In the field of orthopedics, while surgical treatment tech-
niques are rapidly advancing, the level of attention to postop-
erative rehabilitation treatment, which promotes bone healing
and functional recovery, is still low [21], [36]. Although
PWB is a common recommendation for the rehabilitation of
orthopedic patients, the effectiveness of PWB walking is still
controversial due to the inability to accurately understand and
control the load on the fracture site during gait rehabilitation
training [22]. Moreover, there is no international consensus
on postoperative weight-bearing strategies [14], [22]. Rehabil-
itation training for most fracture patients is often blind and
based on experience. Currently, the advantage of using GRF
as an indicator of tibial load in many human movements is
simply due to its ease of monitoring. Reference [17]. However,
in situations where there is a lack of effective estimation of
the load on the fracture site during rehabilitation training,
PWB walking may not be particularly effective [47], [48].
This can further lead to a lack of emphasis on gait rehabilita-
tion training, resulting in a non-benign cycle in orthopedic
rehabilitation. Our study shows that for all types of PWB
walking, GRF is not the sole dominant factor in the increase of
tibial force. The increase in tibial force can occur without an
increase in GRF. Physicians should guide patients to control
the actual force on the fracture site during rehabilitation
training according to the recovery status of the affected limb to
achieve the target load. Therefore, it is crucial to use wearable
devices to monitor the TCF of the affected limb in real-time
and establish personalized rehabilitation plans, instead of
letting tibial fracture patients follow common rehabilitation
plans based on GRF.

It should be noted that this study also has some limitations.
Firstly, the PGNN method did not consider intra-subject train-
ing because collecting a large amount of walking data from
a single subject that achieves the target load is not practical.
Previous studies have shown that the prediction performance
of intra-subject training is better than that of inter-subject

training [29], [31]. In the future, we can expect the application
of biofeedback systems in the rehabilitation training of tibial
fracture patients, and collect more gait data for neural network
training to achieve better prediction performance. Another
limitation of the study is that we could not directly measure
tibial load. However, compelling evidence from cadavers [15]
and implanted sensors [16] suggests that using musculoskeletal
modeling software to process data collected from OMC and FP
can provide a reasonable approximation of tibial bone loading.
In addition, this study was limited to analyzing weight-bearing
training on flat ground and did not consider other types of
activities, such as stair climbing, walking on slopes, and sit-
to-stand. It is expected that our future research will expand to
other types of activities and investigate the potential impact
of long-term use of this system on weight-bearing activities
in individuals. Additional device development would also be
needed to determine if and how to embed 3D force sensors into
shoes in a manner that would be acceptable to patients for daily
at-home use, as well as to create the remote data monitoring
capabilities. Finally, we did not discuss the compliance of
subjects after using the device in this study. Nevertheless, pre-
vious research has shown that audio feedback can significantly
improve patient compliance [10], [14]. In fact, the future of
orthopedic rehabilitation lies in combining robotics technology
and developing intelligent devices that do not rely on patient
compliance to accurately control the load on the fracture
site during walking. Our study also provides an important
theoretical and hardware foundation for the design and control
of future intelligent orthopedic rehabilitation devices.

V. CONCLUSION

This study developed a wearable biofeedback system com-
posed of instrumented shoes and IMUs to estimate tibial load
in patients with tibial fractures during PWB walking. We com-
pared the effectiveness of the PGNN and the physics-based
algorithm method in predicting tibial force and demonstrated
the advantages of combining a physics-based model and ANN.
The research showed that PGNN can achieve better prediction
of tibial force during different weight-bearing walking than
traditional methods when training data is limited. The study
results also showed that current commercial devices that only
monitor GRF cannot effectively reflect the load on the tibia
during PWB walking in individuals. This study combined
wearable sensors, musculoskeletal biomechanics, and ML to
estimate tibial load in real-time during walking, which is of
great significance for improving rehabilitation treatment plans
for lower limb fracture patients and developing intelligent
orthopedic rehabilitation devices.

REFERENCES

[1] F. Cosman et al., “Determinants of stress fracture risk in United States
military academy cadets,” Bone, vol. 55, no. 2, pp. 359–366, Aug. 2013.

[2] R. W. Willy, L. Buchenic, K. Rogacki, J. Ackerman, A. Schmidt, and
J. D. Willson, “In-field gait retraining and mobile monitoring to address
running biomechanics associated with tibial stress fracture,” Scandin.
J. Med. Sci. Sports, vol. 26, no. 2, pp. 197–205, Feb. 2016.

[3] B. Wildemann et al., “Non-union bone fractures,” Nature Rev. Disease
Primers, vol. 7, no. 1, p. 57, Aug. 2021.



3436 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

[4] H. L. Hurkmans, J. B. Bussmann, and E. Benda, “Validity and interob-
server reliability of visual observation to assess partial weight-bearing,”
Arch. Phys. Med. Rehabil., vol. 90, no. 2, pp. 309–313, Feb. 2009.

[5] C. C. Joslin, S. J. Eastaugh-Waring, J. R. W. Hardy, and J. L. Cunning-
ham, “Weight bearing after tibial fracture as a guide to healing,” Clin.
Biomechanics, vol. 23, no. 3, pp. 329–333, Mar. 2008.

[6] P. Zhuang, J. Hong, W. Chen, J. Wu, and Z. Ding, “New methods clinical
analysis of the rap stress stimulator applied for crus fracture after skeletal
external fixation,” Arch. Med. Sci., vol. 3, pp. 612–618, Jun. 2015.

[7] R. Eisele, E. Weickert, A. Eren, and L. Kinzl, “The effect of partial and
full weight-bearing on venous return in the lower limb,” J. Bone Joint
Surgery. Brit. volume, vols. 83–B, no. 7, pp. 1037–1040, Sep. 2001.

[8] M. Raaben et al., “Real-time visual biofeedback during weight bearing
improves therapy compliance in patients following lower extremity
fractures,” Gait Posture, vol. 59, pp. 206–210, Jan. 2018.

[9] J. W. Youdas, B. J. Kotajarvi, D. J. Padgett, and K. R. Kaufman, “Partial
weight-bearing gait using conventional assistive devices,” Arch. Phys.
Med. Rehabil., vol. 86, no. 3, pp. 394–398, Mar. 2005.

[10] J. W. Hustedt, D. J. Blizzard, M. R. Baumgaertner, M. P. Leslie, and
J. N. Grauer, “Is it possible to train patients to limit weight bearing on a
lower extremity?” Orthopedics, vol. 35, no. 1, pp. e31–e37, Jan. 2012.

[11] B. J. Braun et al., “Weight-bearing recommendations after operative
fracture treatment—Fact or fiction? Gait results with and feasibility of a
dynamic, continuous pedobarography insole,” Int. Orthopaedics, vol. 41,
no. 8, pp. 1507–1512, Aug. 2017.

[12] B. J. Braun et al., “A novel tool for continuous fracture aftercare–clinical
feasibility and first results of a new telemetric gait analysis insole,”
Injury, vol. 47, no. 2, pp. 490–494, Feb. 2016.

[13] E. Isakov, “Gait rehabilitation: A new biofeedback device for monitoring
and enhancing weight-bearing over the affected lower limb,” Eura
Medicophys., vol. 43, no. 1, pp. 21–26, Mar. 2007.

[14] E. M. Jagtenberg, P. H. S. Kalmet, M. A. P. de Krom, T. J. Blokhuis,
H. A. M. Seelen, and M. Poeze, “Feasibility and validity of ambulant
biofeedback devices to improve weight-bearing compliance in trauma
patients with lower extremity fractures: A narrative review,” J. Rehabil.
Med., vol. 52, no. 8, pp. 1–6, Aug. 2020.

[15] N. A. Sharkey and A. J. Hamel, “A dynamic cadaver model of the stance
phase of gait: Performance characteristics and kinetic validation,” Clin.
Biomechanics, vol. 13, no. 6, pp. 420–433, Sep. 1998.

[16] P. V. Komi, “Relevance of in vivo force measurements to human
biomechanics,” J. Biomechanics, vol. 23, pp. 23–34, Jan. 1990.

[17] E. S. Matijevich, L. M. Branscombe, L. R. Scott, and K. E. Zelik,
“Ground reaction force metrics are not strongly correlated with tibial
bone load when running across speeds and slopes: Implications for
science, sport and wearable tech,” PLoS ONE, vol. 14, no. 1, Jan. 2019,
Art. no. e0210000.

[18] E. M. Walker, M. Nelson, M. D. Drew, S. M. Krammer, and T. N. Brown,
“Tibial compression during sustained walking with body borne load,”
J. Biomechanics, vol. 133, Mar. 2022, Art. no. 110969.

[19] B. M. Nigg, M. Mohr, and S. R. Nigg, “Muscle tuning and preferred
movement path—A paradigm shift,” Curr. Issues Sport Sci. (CISS),
vol. 2, pp. 1–12, Nov. 2017.

[20] D. D. D’Lima, S. Patil, N. Steklov, J. E. Slamin, and C. W. Colwell,
“Tibial forces measured in vivo after total knee arthroplasty,” J. Arthro-
plasty, vol. 21, no. 2, pp. 255–262, Feb. 2006.

[21] G. Meys et al., “A protocol for permissive weight-bearing during allied
health therapy in surgically treated fractures of the pelvis and lower
extremities,” J. Rehabil. Med., vol. 51, no. 4, pp. 290–297, Apr. 2019.

[22] R. van Lieshout, M. J. Stukstette, R. A. de Bie, B. Vanwanseele, and
M. F. Pisters, “Biofeedback in partial weight bearing: Validity of 3
different devices,” J. Orthopaedic Sports Phys. Therapy, vol. 46, no. 11,
pp. 993–1001, Nov. 2016.

[23] K. Seide, N. Weinrich, M. E. Wenzl, D. Wolter, and C. Jürgens, “Three-
dimensional load measurements in an external fixator,” J. Biomechanics,
vol. 37, no. 9, pp. 1361–1369, Sep. 2004.

[24] L. Claes et al., “Monitoring and healing analysis of 100 tibial shaft
fractures,” Langenbeck’s Arch. Surgery, vol. 387, nos. 3–4, pp. 146–152,
Jul. 2002.

[25] T. Wehner, L. Claes, and U. Simon, “Internal loads in the human tibia
during gait,” Clin. Biomechanics, vol. 24, no. 3, pp. 299–302, Mar. 2009.

[26] T. R. Derrick, W. B. Edwards, R. E. Fellin, and J. F. Seay, “An
integrative modeling approach for the efficient estimation of cross
sectional tibial stresses during locomotion,” J. Biomechanics, vol. 49,
no. 3, pp. 429–435, Feb. 2016.

[27] D. R. Seshadri et al., “Wearable sensors for monitoring the internal and
external workload of the athlete,” NPJ Digit. Med., vol. 2, no. 1, p. 71,
Jul. 2019.

[28] T. Khurelbaatar, K. Kim, S. Lee, and Y. H. Kim, “Consistent accuracy
in whole-body joint kinetics during gait using wearable inertial motion
sensors and in-shoe pressure sensors,” Gait Posture, vol. 42, no. 1,
pp. 65–69, Jun. 2015.

[29] I. Eitzen, J. Renberg, and H. Færevik, “The use of wearable sensor
technology to detect shock impacts in sports and occupational settings:
A scoping review,” Sensors, vol. 21, no. 15, p. 4962, Jul. 2021.

[30] E. Dorschky, M. Nitschke, C. F. Martindale, A. J. van den Bogert,
A. D. Koelewijn, and B. M. Eskofier, “CNN-based estimation of
sagittal plane walking and running biomechanics from measured and
simulated inertial sensor data,” Frontiers Bioengineering Biotechnol.,
vol. 8, p. 604, Jun. 2020.

[31] L. Xiang, A. Wang, Y. Gu, L. Zhao, V. Shim, and J. Fernandez, “Recent
machine learning progress in lower limb running biomechanics with
wearable technology: A systematic review,” Frontiers Neurorobotics,
vol. 16, Jun. 2022, Art. no. 913052.

[32] E. S. Matijevich, L. R. Scott, P. Volgyesi, K. H. Derry, and K. E. Zelik,
“Combining wearable sensor signals, machine learning and biomechan-
ics to estimate tibial bone force and damage during running,” Hum.
Movement Sci., vol. 74, Dec. 2020, Art. no. 102690.

[33] L. J. Elstub, C. A. Nurse, L. M. Grohowski, P. Volgyesi, D. N. Wolf,
and K. E. Zelik, “Tibial bone forces can be monitored using shoe-
worn wearable sensors during running,” J. Sports Sci., vol. 40, no. 15,
pp. 1741–1749, Aug. 2022.

[34] X. Gao, M. Shi, X. Song, C. Zhang, and H. Zhang, “Recurrent neural
networks for real-time prediction of TBM operating parameters,” Autom.
Construction, vol. 98, pp. 225–235, Feb. 2019.

[35] J. A. Ramirez-Bautista, J. A. Huerta-Ruelas, S. L. Chaparro-Cárdenas,
and A. Hernández-Zavala, “A review in detection and monitoring
gait disorders using in-shoe plantar measurement systems,” IEEE Rev.
Biomed. Eng., vol. 10, pp. 299–309, 2017.

[36] M. E. Müller, M. Allgöwer, and R. Schneider, AO Principles of Fracture
Management. New York, NY, USA: Thieme, 2007, pp. 740–741.

[37] H. M. Schepers, H. F. J. M. Koopman, and P. H. Veltink, “Ambulatory
assessment of ankle and foot dynamics,” IEEE Trans. Biomed. Eng.,
vol. 54, no. 5, pp. 895–902, May 2007.

[38] P. H. Veltink, C. Liedtke, E. Droog, and H. van der Kooij, “Ambulatory
measurement of ground reaction forces,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 13, no. 3, pp. 423–427, Sep. 2005.

[39] T. J. Hullfish and J. R. Baxter, “A simple instrumented insole algorithm
to estimate plantar flexion moments,” Gait Posture, vol. 79, pp. 92–95,
Jun. 2020.

[40] D. J. Farris and G. S. Sawicki, “Human medial gastrocnemius force–
velocity behavior shifts with locomotion speed and gait,” Proc. Nat.
Acad. Sci. USA, vol. 109, no. 3, pp. 977–982, Jan. 2012.

[41] A. Karpatne et al., “Theory-guided data science: A new paradigm for
scientific discovery from data,” IEEE Trans. Knowl. Data Eng., vol. 29,
no. 10, pp. 2318–2331, Oct. 2017.

[42] L. Ren, R. K. Jones, and D. Howard, “Whole body inverse dynam-
ics over a complete gait cycle based only on measured kinematics,”
J. Biomechanics, vol. 41, no. 12, pp. 2750–2759, Aug. 2008.

[43] Y. Yang and P. Perdikaris, “Adversarial uncertainty quantification
in physics-informed neural networks,” J. Comput. Phys., vol. 394,
pp. 136–152, Oct. 2019.

[44] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, per-
spectives, and prospects,” Science, vol. 349, no. 6245, pp. 255–260,
Jul. 2015.

[45] M. Mundt, W. R. Johnson, W. Potthast, B. Markert, A. Mian, and
J. Alderson, “A comparison of three neural network approaches for
estimating joint angles and moments from inertial measurement units,”
Sensors, vol. 21, no. 13, p. 4535, Jul. 2021.

[46] S. Pawar, O. San, B. Aksoylu, A. Rasheed, and T. Kvamsdal, “Physics
guided machine learning using simplified theories,” Phys. Fluids, vol. 33,
no. 1, Jan. 2021, Art. no. 011701.

[47] G. N. Duda, B. Bartmeyer, S. Sporrer, W. R. Taylor, M. Raschke, and
N. P. Haas, “Does partial weight bearing unload a healing bone in
external ring fixation?” Langenbeck’s Arch. Surgery, vol. 388, no. 5,
pp. 298–304, Oct. 2003.

[48] A. Vasarhelyi, T. Baumert, C. Fritsch, W. Hopfenmüller, G. Gradl,
and T. Mittlmeier, “Partial weight bearing after surgery for fractures
of the lower extremity–is it achievable?” Gait Posture, vol. 23, no. 1,
pp. 99–105, Jan. 2006.


