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Jiayang Huang , Zhi-Qiang Zhang , Member, IEEE, Bang Xiong , Quan Wang ,

Bo Wan , Fengqi Li , and Pengfei Yang , Member, IEEE

Abstract— In steady-state visual evoked potential
(SSVEP)-based brain-computer interfaces (BCIs),
various spatial filtering methods based on individual
calibration data have been proposed to alleviate the
interference of spontaneous activities in SSVEP signals
for enhancing the SSVEP detection performance. However,
the time-consuming calibration session would increase
the visual fatigue of subjects and reduce the usability
of the BCI system. The key idea of this study is to
propose a cross-subject transfer method based on domain
generalization, which transfers the domain-invariant spatial
filters and templates learned from source subjects to the
target subject with no access to the EEG data from the
target subject. The transferred spatial filters and templates
are obtained by maximizing the intra- and inter-subject
correlations using the SSVEP data corresponding to the
target and its neighboring stimuli. For SSVEP detection of
the target subject, four types of correlation coefficients are
calculated to construct the feature vector. Experimental
results estimated with three SSVEP datasets show that
the proposed cross-subject transfer method improves the
SSVEP detection performance compared to state-of-art
methods. The satisfactory results demonstrate that the
proposed method provides an effective transfer learning
strategy requiring no tedious data collection process for
new users, holding the potential of promoting practical
applications of SSVEP-based BCI.

Index Terms— Brain-computer interfaces (BCIs), cross-
subject, domain generalization, steady-state visual evoked
potential (SSVEP), transfer learning.
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I. INTRODUCTION

BRAIN-COMPUTER interface (BCI) is a new connection
pathway for information transfer and control between the

brain and a device with computing capabilities [1], [2]. Among
different types of BCIs, electroencephalography (EEG)-based
systems with the characteristics of non-invasiveness and porta-
bility have been widely used in real-world applications [3],
[4]. Steady-state visual evoked potential (SSVEP)-based BCIs,
as one of the popular paradigms in EEG-based BCIs, have
been extensively applied in varieties of scenarios due to
their high efficiency, ease of use, and high reliability [5], [6],
[7], [8].

For SSVEP-based BCIs, developing SSVEP decoding meth-
ods is the main task to guarantee the high efficiency of
practical applications [9]. Thus far, many spatial filtering
methods have been proposed to enhance the performance of
SSVEP-based BCIs [10], [11]. One type of spatial filtering
methods, such as canonical correlation analysis (CCA) [12],
filter bank CCA (FBCCA) [13], and multivariate variational
mode decomposition CCA (MVMD-CCA) [14], are called
training-free methods, which identify SSVEP frequency with
artificial sine-cosine reference signals without pre-training.
However, such easily-used methods would obtain limited
information transfer rates (ITRs) due to the interference of
spontaneous brain activities. To address this issue, another type
of spatial filtering method based on individual training data is
further developed based on CCA. By incorporating individual
calibration data, L1-regularized multi-way CCA (L1-MCCA)
[15], multi-set CCA (MsetCCA) [16], and extended CCA
(eCCA) [17] were proposed to improve the SSVEP frequency
detection performance. Furthermore, spatial filtering methods
as the task-related component analysis (TRCA) [18] and
the sum of squared correlation (SSCOR) method [19] were
reported to detect SSVEP frequency only using individual
calibration data of the corresponding target stimulus, which
significantly improved the SSVEP detection performance.
To further improve the TRCA method, the correlated compo-
nent analysis (CORCA) [20] was proposed by incorporating
individual calibration data from other subjects; the spatial
filtering method incorporating the data from neighboring-
location stimuli [21] was introduced, which further enhanced
the target identification performance of SSVEP-based BCIs.
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Despite these training-based spatial filtering methods have
effectively boosted the performance of SSVEP-based BCIs,
the time-consuming calibration session needs to be conducted
for each one of the subjects, which would cause visual fatigue
of the subject and affect the applicability of SSVEP-based
BCIs. To alleviate the impact of the variability of different sub-
jects, the transfer learning (TL) strategy has been introduced
to SSVEP-based BCIs to transfer common knowledge from
source subjects to target subjects [22], [23]. One direction of
transfer learning in SSVEP-based BCIs is to directly transfer
templates across subjects to boost the SSVEP detection perfor-
mance of new subjects by augmenting the calibration data [24].
For example, Yuan et al. proposed a transfer template-based
CCA (tt-CCA) method [25] to transfer SSVEP templates
from source subjects to a target subject for enhancing the
SSVEP detection performance. Waytowich et al. introduced
the Adaptive Combined-CCA (Adaptive-C3A) [26] to extend
CCA by incorporating the SSVEP templates computed from
previously collected subjects. Such methods would extract
insufficient SSVEP features from the transferred templates
which were obtained by averaging across trials from source
subjects.

In addition to transferred templates, common spatial filters
were also learned from source subjects to transfer across
different subjects. For instance, Wang et al. proposed a
novel inter- and intra-subject maximal correlation (IISMC)
method [27] to obtain transferred spatial filters and tem-
plates via employing the similarity and variability within and
between source and target subjects. Zhang et al. proposed
an inter-subject transfer learning method [28] to train the
transferred templates and spatial filters by maximizing the
correlations among the training data, the individual template,
and the artificial reference signal simultaneously. Wong et al.
proposed a subject transfer-based CCA (stCCA) method [29]
which utilizes the knowledge within the target subject and
between source and target subjects to reduce the calibration
effort. All these methods significantly boosted the SSVEP
detection performance, but individual calibration data are still
required from the target subject for spatial filter training.
By contrast, some subject-independent methods extended by
CCA were introduced to further reduce the impact of calibra-
tion sessions. For instance, Yan et el. successively proposed a
cross-subject spatial filter transfer (CSSFT) method [30] and
an improved CSSFT method [31] that transfer the templates
and spatial filters from the existing users to the new user
test data. However, in the aforementioned methods, except for
transferred spatial filters and templates learned from source
subjects, at least one spatial filter or template was learned from
the data provided by the target subject to detect the SSVEP
frequency. It means that these models have to get access to
target domain data, and barely consider an unseen test domain.

In this paper, considering the unseen target subject, we aim
to develop a cross-subject transfer framework based on domain
generalization strategy [32] that can generalize to an unseen
test domain by learning domain-invariant features, including
the internally- and mutually-invariant features [33], [34]. First,
the internally-invariant template for each source subject is
constructed by learning the spatial filter which maximizes the

intra-subject correlation to extract common frequency informa-
tion from neighboring stimuli. Second, the mutually-invariant
template is obtained by learning a spatial filter that maxi-
mizes the inter-subject correlation to learn common knowledge
shared across all source subjects. Third, a test-trial spatial filter
is trained by maximizing the correlation between one-trial data
from the source subject and the two types of domain-invariant
templates to improve the signal-to-noise (SNR) of test-trial
data. Finally, all spatial filters and templates learned from
source subjects are transferred to detect the SSVEP fre-
quency of test data from the target subject by constructing
a four-dimensional feature vector, which is comprised of the
four different types of correlation coefficients between the test
data spatially filtered by the transferred spatial filters and trans-
ferred templates. For the performance evaluation, two publicly
available datasets including the dataset from the University of
California San Diego (UCSD) [35] and the benchmark dataset
from Tsinghua University [36] and a self-collected SSVEP
dataset are utilized to conduct extensive comparisons with
state-of-art methods such as FBCCA, tt-CCA, and CSSFT.
The experimental results have demonstrated the feasibility and
efficiency of the proposed cross-subject transfer method.

The organization of the article is arranged as follows:
Section II introduces the materials and methods. In section III,
the experimental results are reported. The discussions are
shown in Section IV. Finally, the conclusion is presented in
Section V.

II. MATERIALS AND METHODS

A. Dataset Descriptions
In this study, two public SSVEP datasets and a self-collected

dataset, namely Dataset I, II, and III, are utilized to evaluate
the proposed cross-subject transfer method. The details of the
three datasets are described as follows.

1) Dataset I: The first public dataset is the 12-target SSVEP
dataset collected by UCSD [35], which is freely downloaded at
https://github.com/mnakanishi/12JFPM_SSVEP. The UCSD
dataset is collected from 10 healthy subjects at 8 electrodes
(PO7, PO3, POz, PO4, PO8, O1, Oz, and O2) covering
the occipital area. Each subject was instructed to gaze at
the 12 stimuli, and the whole SSVEP-BCI experiment was
repeated 15 times, forming a 15-block dataset. Each block
includes 12 trials corresponding to the 12 targets, and each
trial contains a 1-s gaze shifting cue and a 4-s gazing time.
The SSVEP data were collected at a sampling rate of 2048 Hz
and downsampled to 256 Hz. The 12 stimuli were coded by
the joint frequency and phase modulation (JFPM) method [37],
where the frequency ranged from 9.25 Hz to 14.75 Hz with
an interval of 0.5 Hz, and the phase range was from 0π to
1.5π with an interval of 0.5π , shown as Fig. 1(a).

2) Dataset II: The second public dataset is the bench-
mark dataset proposed by Tsinghua University [36], which is
available at http://bci.med.tsinghua.edu.cn/download.html. The
benchmark dataset consists of 64-channel EEG recordings of
35 healthy subjects by gazing at 40 characters. As shown
in Fig. 1(b), the 40 targets are stimulated at 8–15.8 Hz
frequencies with an interval of 0.2 Hz and 0-1.5π phases
with an interval of 0.5π using the JFPM method. The SSVEP



HUANG et al.: CROSS-SUBJECT TRANSFER METHOD BASED ON DOMAIN GENERALIZATION 3309

Fig. 1. The stimulation interfaces of the three SSVEP datasets (Dataset I (a), Dataset II (b), and Dataset III (c)) and the corresponding frequency
and phase values.

data were recorded with a sampling rate of 1000 Hz and
then downsampled to 250 Hz. For each subject, the dataset
contains 6-block data, and each block is comprised of 40 trials
corresponding to the 40 targets, and each trial contains a 0.5-s
gaze shifting cue, a 5-s stimulation, and a 0.5-s rest. The
9 channels (Pz, PO5, PO3, POz, PO4, PO6, O1, Oz, and O2)
located at the occipital area were selected for SSVEP signal
analysis in this study.

3) Dataset III: In addition, a self-collected SSVEP dataset
with 12 stimuli is also used for performance evaluation.
9-channel EEG data were collected from 11 healthy partic-
ipants (four females and seven males, aged from 24 to 27).
All subjects were informed of the experimental process and
protocols and signed the informed consent before the experi-
ment. And the experiment is approved by the Research Ethics
Committee of Xidian University. The 9 Ag/AgCl electrodes
(Pz, PO7, PO3, POz, PO4, PO8, O1, Oz, and O2) were
selected from the parietal and occipital regions. The ground
and reference electrodes were placed at FPz and right earlobe
respectively. For each subject, 10-block EEG data were col-
lected in the BCI experiments. Each block contains 0.5-s cue,
5-s stimulation, and 0.5-s rest. During the stimulation, subjects
were asked to avoid eye blinks. To prevent visual fatigue, there
was a two-minute rest between two successive blocks. The
interface comprises a 4 × 3 matrix of visual stimuli coded by
the JFPM method as shown in Fig. 1(c). The frequency ranged
from 9.25 Hz to 14.75 Hz with an interval of 0.5 Hz. And the
phase range was from 0π to 1.5π with an interval of 0.5π .

B. Data Preprocessing
According to the 0.14-s visual latency [36], [38], the first

0.14-s data were removed for SSVEP signal analysis. And
then, all the extracted data were filtered by a sixth-order
Butterworth filter with the 7-90 Hz band. A notch filter
at 50 Hz is utilized to eliminate the power-line noise. After
the data preparation was completed, all the data processing
and target detection were then performed.

C. Transferred Spatial Filters and SSVEP Templates
Assume that the individual calibration data from one source

subject corresponding to the n-th stimulus is defined as Xn =[
X1

n, X2
n, · · · , X Nb

n

]
∈ RNc×Nd×Nb , and n = 1, 2, · · · , N f .

Fig. 2. The illustration of the b-th combination of SSVEP data consists
of the target and its neighboring stimuli data.

Here, Nc, Nd , Nb, and N f represent the number of channels,
the number of sampling points, the number of blocks, and
the number of stimuli respectively. Xb

n ∈ RNc×Nd (b =

1, 2, · · · , Nb) denotes the b-th block data of Xn .
In order to extract accurate common knowledge across sub-

jects for transferring, we construct internally- and mutually-
invariant templates and a test-trial spatial filter by using
SSVEP data from different blocks. Therefore, we first separate
the EEG data Xn into two parts according to each block b:
the one-trial data Xb

n from block b and the multi-trial data
X b

n ∈ RNc×Nd×(Nb−1) from the other blocks. Xb
n is used to

simulate the unseen test-trial data to calculate the spatial filter
for improving the SNR of the test signal. X b

n is used for
transferred template training, defined as:

X b
n =

[
X1

n, · · · , Xb−1
n , Xb+1

n , · · · , X Nb
n

]
. (1)

Based on previous studies [18], [21], SSVEPs from the
neighboring-location stimuli share a common spatial pattern
and contain common frequency information. The neighboring
stimuli data are also used for transferred template train-
ing. Here, define the neighbors of the n-th stimulus as the
horizontally and vertically adjacent stimuli, as the n1-th,
n2-th, . . . , nNh -th stimuli. Therefore, the collection of the
neighbors of the n-th stimulus is denoted as:

2n =
{

Xn1 , Xn2 , · · · , XnNh

}
, (2)
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Fig. 3. The training procedure to obtain the transferred spatial filters
and templates.

where Xnh ∈ RNc×Nd×Nb (h = 1, 2, · · · , Nh) is the all-block
SSVEP data of one neighboring stimulus, h is the index of the
neighbor of the n-th stimulus, nh represents the stimulus index
of the h-th neighbor to the n-th stimulus, and Nh represents
the number of neighboring stimuli. Consistent with X b

n , the
multi-trial data of each neighbor X b

nh ∈ RNc×Nd×(Nb−1) is
denoted as:

X b
nh =

[
X1

nh ,· · ·, Xb−1
nh , Xb+1

nh ,· · ·, X Nb
nh

]
. (3)

As shown in Fig. 2, the b-th combination of SSVEP data
consists of the target and its neighboring stimuli data, (i.e.,
Xb

n , X b
n , and X b

nh (h = 1, 2, · · · , Nh). Since b ranges from
1 to Nb for each stimulus n, there are Nb combinations of
SSVEP training data.

Using the b-th combination of SSVEP training data, the
whole training procedure to obtain the transferred spatial filters
and templates mainly contains three steps:

1) Learning the internally-invariant spatial filter and tem-
plate for each source subject to extract common frequency
information across neighboring stimuli;

2) Calculating the mutually-invariant spatial filter and tem-
plate from all source subjects to learn common knowledge
shared across subjects;

3) Training a test-trial spatial filter to improve the SNR
of test-trial data by incorporating the internally- and
mutually-invariant templates.

The flowchart of the training process is illustrated in Fig. 3.
We will elaborate on the three steps in detail below.

1) Internally-Invariant Template: To obtain the internally-
invariant template for each source subject m, the spatial filter
corresponding to the n-th stimulus wb

m,n ∈ RNc is calculated
by maximizing the intra-subject correlation using SSVEPs
corresponding to the target and its neighboring stimuli

X b
m,n ∈ RNc×Nd×(Nb−1) and X b

m,nh ∈ RNc×Nd×(Nb−1) (h =

1, 2, · · · , Nh) from each source subject m.
To simplify the expression of X b

m,n and X b
m,nh defined as

Eq. (1) and (3), we redefine the multi-trial data corresponding
to the target stimulus as:

X b
m,n = [X b1

m,n, X b2
m,n, · · · , X bNt

m,n], (4)

where X bk
m,n ∈ RNc×Nd (k = 1, 2, · · · , Nt ). Nt is the number

of trials of the multi-trial data and Nt = Nb − 1. In the same
way,

X b
m,nh = [X b1

m,nh , X
b2
m,nh , · · · , X bNt

m,nh ], (5)

where X bk
m,nh ∈ RNc×Nd (k = 1, 2, · · · , Nt ).

Therefore, the internally-invariant spatial filter ŵ
b
m,n is cal-

culated as:

ŵ
b
m,n = arg max

w

w⊤Sw

w⊤ Qw
. (6)

The summation of the auto-covariances of X b
m,n ∈ RNc×Nd

and X b
m,nh ∈ RNc×Nd is denoted as:

S = cov
(
X b

m,n

)
+

Nh∑
h=1

cov
(
X b

m,nh

)
(7)

where

X b
m,n =

1
Nt

Nt∑
k=1

X bk
m,n, (8)

X b
m,nh =

1
Nt

Nb∑
k=1

X bk
m,nh . (9)

And the sum of covariances of all-trial data from n-th stimulus
and its neighboring stimuli is defined as:

Q =

Nt∑
k=1

cov
(
X bk

m,n

)
+

Nh∑
h=1

Nt∑
k=1

cov
(
X bk

m,nh

)
. (10)

By using generalized eigendecomposition of Q−1 S to
solve Eq. (6), the spatial filter ŵ

b
m,n is determined as the

eigenvector corresponding to the largest eigenvalue. With the
internally-invariant spatial filter wb

m,n , the internally-invariant
template T b

m,n ∈ RNd for each source subject m is obtained
as:

T b
m,n = wb

m,n
⊤X b

m,n . (11)

2) Mutually-Invariant Template: To obtain the mutually-
invariant template, the mutually-invariant spatial filter is
learned from the SSVEP data from all M source subjects.
The mutually-invariant spatial filter vb

n ∈ RNc corresponding
to the n-th stimulus is estimated by maximizing the correlation
between different subjects [20], [27]. In this method, instead
of only using the data of the target stimulus, the inter-subject
maximal correlation is calculated using the SSVEP data of the
target and its neighboring stimuli.

First, the b-th multi-trial data of n-th stimulus from two
different subjects m1 and m2 are respectively denoted as
X b

m1,n ∈ RNc×Nd×Nt and X b
m2,n ∈ RNc×Nd×Nt . Then,
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define C12 and C21 as the inter-subject cross-covariances, C11
and C22 as the intra-subject auto-covariances. Assuming that
v⊤C11v = v⊤C22v, the term C21 is the transposition of C12.
And the optimization problem can be solved as:

v̂
b
n = arg max

v

v⊤ Pv

v⊤ Rv
, (12)

where P = C12 + C21 and R = C11 + C22. Therefore, the
matrices P and R are respectively calculated as:

P =
1

M(M − 1)

[ ∑
m1

∑
m2

m2 ̸=m1

cov
(
X b

m1,n, X b
m2,n

)

+

Nh∑
h=1

∑
m1

∑
m2

m2 ̸=m1

cov
(
X b

m1,nh , X b
m2,nh

) ]
. (13)

R =
1
M

M∑
m=1

cov
(
X b

m,n

)
+

Nh∑
h=1

cov
(
X b

m,nh

) . (14)

The optimal estimation of v̂
b
n in Eq. (12) can be obtained

from the eigenvector v of P−1 R with the maximal eigen-
value. With the mutually-invariant spatial filter vb

n , the
mutually-invariant template Zb

n ∈ RNd is obtained as:

Zb
n = vb

n
⊤X̃ b

n, (15)

where X̃ b
n =

1
M

M∑
m=1

X b
m,n is the averaged template across all

source subjects.
3) Test-Trial Spatial Filter: With the internally-invariant and

mutually invariant templates, a test-trial spatial filter ub
m,n ∈

RNc for each source subject m is trained using the one-trial
data Xb

m,n . The spatial filter ub
m,n is obtained by simultane-

ously maximize the correlation between Xb
m,n and T b

m,n and
the correlation between Xb

m,n and Zb
n . Therefore, the estima-

tion of ub
m,n is formulated by the multi-objective optimization

problem:

ûb
m,n = arg max

u
F(ub

m,n),

subject to
Nc∑

c=1

uc
= 0, (16)

where

F(ub
m,n) =

[
ρ(ub

m,n
⊤Xb

m,n, T b
m,n)

ρ(ub
m,n

⊤Xb
m,n, Zb

n)

]
, (17)

and c is the index of channel, and c = 1, 2, · · · , Nc. uc is
the weight value corresponding to the c-th channel in ub

m,n ,
that is, ub

m,n =
[
u1, u2, · · · , uNc

]⊤. ρ(s1, s2) is the Pearson’s
correlation coefficient between s1 and s2 [39]. The constrained
multi-objective optimization problem described in Eq. (16) can
be solved by the function fgoalattain() in MATLAB.

Given Nb combinations of training data, the training process
from 1) to 3) would repeat Nb times. The final transferred

spatial filters and templates are calculated by averaging across
Nb as follows:

wm,n =
1

Nb

Nb∑
b=1

wb
m,n, (18)

vn =
1

Nb

Nb∑
b=1

vb
n, (19)

um,n =
1

Nb

Nb∑
b=1

ub
m,n, (20)

T m,n =
1

Nb

Nb∑
b=1

T b
m,n, (21)

Zn =
1

Nb

Nb∑
b=1

Zb
n . (22)

D. SSVEP Detection With Transferred Parameters
With all transferred spatial filters and templates, single-trial

data from one target subject Y ∈ RNc×Nd will be recog-
nized. For SSVEP detection, four different types of correlation
coefficients between spatially filtered test data and transferred
templates are computed by incorporating the transferred spatial
filters and templates trained from source subjects, which are
described as follows:
(i) ρ

(
vn

⊤Y , Zn
)

with the mutually-invariant spatial filter
and template;

(ii) ρ
(
wm,n

⊤Y , T m,n
)

with the internally-invariant spatial
filter and template;

(iii) ρ
(
um,n

⊤Y , Zn
)

with the test-trial spatial filter and the
mutually-invariant template;

(iv) ρ
(
um,n

⊤Y , T m,n
)

with the test-trial spatial filter and the
internally-invariant template.

For each source subject m, the correlation coefficients (ii)-(iv)
can be estimated. The correlation values can be obtained by
averaging across M source subjects. The correlation feature
vector λn between the spatially filtered test data and n-th
templates is defined as:

λn =


λn(1)

λn(2)

λn(3)

λn(4)

=



ρ
(
vn

⊤Y , Zn
)

1
M

M∑
m=1

ρ
(
wm,n

⊤Y , T m,n
)

1
M

M∑
m=1

ρ
(
um,n

⊤Y , Zn
)

1
M

M∑
m=1

ρ
(
um,n

⊤Y , T m,n
)


. (23)

And then the correlation values λn(α) (α = 1, 2, 3, 4) in
Eq. (23) are combined as the correlation value γn correspond-
ing to the n-th stimulus:

γn =

4∑
α=1

sign (λn(α)) (λn(α))2 , (24)

where sign() is to retain discriminative information from
negative correlation coefficients.
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E. Filter Bank Processing
The filter bank analysis [13] is applied to decompose

SSVEPs into subband components, which extracts accurate
harmonic information from SSVEP data. With the filter bank
technique, the SSVEP detection performance can be further
boosted. Here, each subband j ( j = 1, 2, · · · , N j ) of the filter
bank is at the frequency range of [ j×8 Hz, 88 Hz], which is
implemented by zero-phase Chebyshev type I infinite impulse
response (IIR) filters. After that, the feature γ

j
n is calculated

for each subband via Eq. (24). By integrating γ
j

n from all
subbands, the final correlation feature 0n is obtained as:

0n =

N j∑
j=1

β( j) ·

(
γ

j
n

)2
, (25)

where β( j) = j−1.25
+ 0.25 is the weight function [13].

Finally, the target frequency f̂ with the maximal correlation
coefficient is described as:

f̂ = argmax
n

0n, n = 1, 2, · · · , N f . (26)

F. Performance Evaluation
In this study, the classification accuracy and ITR estimates

were computed to evaluate the SSVEP detection performance
of the proposed method. The classification accuracy is defined
as the percentage of the correct predictions out of all predic-
tions. ITR is the amount of information transferred per minute,
defined as:

ITR=
60
T

×

[
log2 N f +P × log2 P+(1−P)×log2

(
1−P
N f −1

)]
,

(27)

where T is the selection time for each target, including gazing
time and 0.5-s gaze-shifting time, N f is the number of stimuli,
and P represents the classification accuracy.

The estimates were calculated by using holdout cross-
validation. For Dataset I and III, the transferred spatial filters
and templates were trained with 5 source subjects and then
tested on the other subjects. For dataset II, the data from
10 source subjects was used for training transferred spatial
filters and templates, while data from the other subjects were
used as test data. In the proposed method, source subjects
are selected randomly from the datasets. The settings of the
number of source subjects will be discussed in Section III-C.
To get the general performance of the proposed cross-subject
transfer method, the whole training and test process was
conducted 10 times for Dataset I and III and 5 times for
Dataset II respectively.

In the training stage, since Dataset I contains 15-block data
(Nb = 15), the whole dataset can be divided into 15 com-
binations. Therefore, the training procedure using Dataset I
was repeated 15 times for each source subject. The final
transferred spatial filters and templates were computed by
averaging across 15 runs. In the same manner, the training
procedure for each source subject in Dataset II was conducted
for 6 runs according to the number of blocks (Nb = 6).
Therefore, for each source subject, the transferred spatial filters
and templates were obtained by averaging across 6 runs. For

Dataset III with 10 blocks, the training procedure for each
source subject was conducted for 10 runs, so the transferred
spatial filters and templates were obtained by averaging across
10 runs.

In the test stage, all-block data from the target subjects were
used for SSVEP detection. Therefore, for Dataset I (Nb = 15),
the test process of each target subject was repeated 15 times;
for Dataset II (Nb = 6), the test process of each target subject
was conducted 6 times; for Dataset III (Nb = 10), the test
process of each target subject was conducted 10 times. The
classification accuracy and ITR of each target subject were
estimated by averaging across blocks.

III. EXPERIMENTAL RESULTS

A. Baseline Methods and Parameter Settings
To verify the efficiency of the proposed method, exten-

sive comparisons of SSVEP frequency detection performance
evaluated by the classification accuracy and ITR were imple-
mented using three datasets between the proposed method
and state-of-the-art methods, FBCCA, tt-CCA, and CSSFT.
The parameter settings of each baseline method are described
below.

1) FBCCA: For all three datasets, the number of harmonics
of the reference signal in FBCCA was set to 5. The numbers of
subband filters of FBCCA were set to 3, 5, and 3 for Dataset I,
II, and III respectively [30]. The final classification accuracy
and ITR obtained by FBCCA were calculated by averaging
across all subjects.

2) Tt-CCA: The number of harmonics and subband filters
were set the same as FBCCA. The target subject was sequen-
tially selected one from all subjects, and the remaining subjects
were treated as the source subjects.

3) CSSFT: Here, the CSSFT was applied to FBCCA, which
referred to the FBCCA-based CSSFT method. The number of
harmonics and subband filters in CSSFT were the same as in
FBCCA. The source subjects in CSSFT were selected from
all subjects who achieved the highest recognition accuracies
with the FBCCA method, and the remaining subjects are used
as the target subjects. Specifically, the highest 2 for Dataset
I and III, the highest 5 for Dataset II are selected to be the
source subjects.

B. SSVEP Detection Performance
The overall SSVEP detection performance is illustrated as

the averaged accuracies and ITRs at different data lengths
shown in Fig. 4. The data lengths ranged from 0.2 s to 2.0 s
with an interval of 0.2 s for all three datasets. It is shown in the
figures that the proposed method reaches the highest averaged
accuracy and ITR among all the compared methods at any data
length with both datasets. To further verify the significance
of the proposed method on SSVEP detection performance,
paired t-tests of accuracy and ITR were conducted among the
methods on three datasets. The statistical analysis results show
that the proposed method outperformed the other competing
methods by a significant margin, especially with Dataset I.
And the smaller the data length is, the more significance can be
shown between the proposed method and the other competing
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Fig. 4. The averaged accuracies and ITRs obtained by FBCCA, tt-CCA, CSSFT, and the proposed method at different data lengths on Dataset I
(a), II (b) and III (c). The data lengths range from 0.2 s to 2.0 s with a step of 0.2 s. The error bars represent standard deviations. The asterisks
indicate significant differences between the four methods obtained by paired t-tests (∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001, ∗∗∗∗p<0.0001).

methods. The comparison results show that the proposed
cross-subject transfer method can effectively generalize to the
unseen target subjects for SSVEP frequency detection.

The final target SSVEP frequency is directly determined
by the feature values calculated by the constructed feature
vector as Eq. (24)-(26). To intuitively present the contribution
of the proposed method, Fig. 5 presents the feature values
corresponding to each stimulus in Dataset I from exam-
ple subject S1 (Fig. 5(a)), Dataset II from example subject
S9 (Fig. 5(b)), and Dataset III from example subject S9
(Fig. 5(c)) obtained by the proposed method and FBCCA. The
feature values in each subfigure were calculated by averaging
the feature values across blocks and then normalized to 1.
The corresponding SSVEP frequency of the target stimulus
is presented with the black dashed line. As shown in the
figures, the proposed method obtained more accurate decisions
by selecting the target stimulus with the largest feature value.
It is observed that the feature values obtained by FBCCA
show a slight difference between the target and non-target
stimulus frequencies, causing a high false rate. By contrast,
the proposed method can obtain more discriminative features
to detect the true SSVEP target frequency. The comparison
result indicates that the proposed feature vector can effectively
extract discriminant features to distinguish between the target
and non-target stimuli.

C. The Impact of Parameters
1) The Number of Source Subjects: Since the SSVEP data

from source subjects play a vital role in this cross-subject

transfer method, the impact of the number of source subjects
(M) on SSVEP detection performance was first explored
in this section. Fig. 6 presents the averaged classification
accuracies of tt-CCA, CSSFT, and the proposed method with
the varying M . For Dataset I shown in Fig. 6(a), the averaged
classification accuracies were obtained using 1.5-s SSVEP
data, where M varied from 1 to 9 with an interval of 2.
In Fig. 6(b), the accuracy estimates were calculated using
1.0-s SSVEP data with M varying from 5 to 25 with an
interval of 5. For Dataset III (Fig. 6(c)), the data length was
set as 1.5 s, and the number of source subjects increased
from 2 to 10 with a step of 2. As shown in the figures, the
averaged accuracies of the state-of-art methods CSSFT remain
stable with different numbers of source subjects. Distinct
from the CSSFT method, the averaged classification accuracies
obtained by the proposed method and tt-CCA increase with the
number of source subjects. Compared with the tt-CCA and
CSSFT methods, the averaged classification accuracies of the
proposed method show superior performance with sufficient
source subjects, that is, M ≥ 5 for Dataset I and III and
M ≥ 10 for Dataset II.

2) The Number of Training Blocks: In the proposed
cross-subject transfer method, the transferred spatial filters and
templates were learned using individual calibration data from
source subjects. The impact of training blocks on SSVEP
detection performance should also be investigated. Fig. 7
provides the averaged classification accuracies across target
subjects obtained with different numbers of training blocks
(Nb) on three datasets. Here, in the proposed method, the
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Fig. 5. The feature values corresponding to all stimuli obtained by FBCCA and the proposed method from an example subject. For Dataset I with
12 stimuli (a), Dataset II with 40 stimuli (b), and Dataset III with 12 stimuli (c), the data lengths were set as 1.5 s, 1.0 s, and 1.5 s respectively. The
source subjects were randomly selected. The dashed line represents the corresponding SSVEP frequency of the target stimulus.

Fig. 6. Averaged classification accuracies across target subjects of Dataset I and III at 1.5 s data length (a,c) and Dataset II at 1.0 s data length
(b) with different numbers of source subjects. The vertical error bars represent standard deviations. The asterisks indicate significant differences
between every two methods obtained by paired t-tests (∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001, ∗∗∗∗p<0.0001).

Nb blocks were split into Nt trials as Eq. (1) and one trial
for calculating the three types of transferred spatial filters.

While for the tt-CCA and CSSFT methods, the Nb-block
data were used to calculate the transferred templates by
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Fig. 7. Averaged classification accuracies across target subjects of Dataset I and III at 1.5 s data length (a,c) and Dataset II at 1.0 s data length
(b) with different numbers of training blocks. The vertical error bars represent standard deviations. The asterisks indicate significant differences
between each two methods obtained by paired t-tests (∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001).

Fig. 8. The averaged classification accuracies across all target subjects from Dataset I at 1.5 s data length (a), Dataset II at 1.0 s data length
(b), and Dataset III at 1.5 s data length (c) with different numbers of neighboring stimuli. In the figures, the vertical error bars represent standard
deviations. The asterisks indicate significant differences between every two conditions obtained by paired t-tests (∗∗∗p<0.001, ∗∗∗∗p<0.0001).

averaging across blocks. In Fig. 7(a) for Dataset I, the data
length was set as 1.5 s, and the number of training blocks
varied from 3 to 15 with an interval of 3. In Fig. 7(b) for
Dataset II, the classification accuracies were obtained using
1.0-s SSVEP data with the number of training blocks varying
from 2 to 6. In Fig. 7(c) for Dataset III, the classification
accuracies were obtained using 1.5-s SSVEP data with the
number of training blocks increasing from 2 to 10 with an
interval of 2. As can be seen from the graph, with the
increment of the number of training blocks, the classification
accuracies of the three competing methods increase with a
5% step. Moreover, the proposed method obtained higher
accuracies than the other state-of-art methods regardless of the
number of training blocks. Therefore, the number of training
blocks has shown a positive impact on the SSVEP detection
performance.

3) The Number of Neighboring Stimuli: The proposed
method obtained enhanced performance on SSVEP detection
by employing SSVEPs from source subjects corresponding to
both target and its neighboring stimuli. Finally, we further
explored how the number of neighbors influences the SSVEP
frequency detection performance. The results of the classi-
fication accuracies with the different numbers of neighbors
on three datasets are provided in Fig. 8 by error bars. The
comparison was conducted with the number of neighbors
(Nh) increasing from 0 to the total number of stimuli. For
Dataset I and III, the total number of stimuli is 12; while for
Dataset II, the total number of stimuli is 40. In the proposed
method, the neighbors are defined as the neighboring-location

Fig. 9. The illustration of the neighboring stimuli at different numbers of
neighbors.

stimuli. Therefore, as shown in Fig. 9, Nh = 4 represents
the horizontal and vertical neighbors of the target stimulus.
Nh = 8 indicates all neighbors surrounding the target stim-
ulus, including horizontal, vertical, and diagonal neighbors,
Nh = 24 represents two-layer neighbors surrounding the
target stimulus, including the two-layer horizontal, vertical,
and diagonal neighbors. It is noted that Nh = 4 or 8 or
24 only applies to those stimuli in the middle, and the stimuli
on the border or corner will have fewer neighbors for both
cases. From the graph, we can see that as the number of
neighbors increases from 0 to 4, the accuracies of the proposed
method show obvious increments in classification accuracies.
While the number of neighbors is larger than 4, the accuracy
of the proposed method remains stable with a slight differ-
ence. Therefore, the incorporation of neighboring stimuli data
does contribute to improving SSVEP detection performance,
and the horizontal and vertical neighbors are adequate for
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learning the transferred spatial filters and templates from
source subjects.

D. Performance Comparison With Other Transfer
Learning Methods

In this proposed method, SSVEP data from the source
subject are utilized to obtain spatial filters and templates for
the SSVEP detection of the target subject. In other words,
the target detection of SSVEPs from the target subject was
independent of the SSVEP data of the target subject him-
self. In this subsection, the proposed method was further
compared with three CCA-based subject-independent trans-
fer learning methods, respectively incorporating TRCA [18],
multi-stimulus TRCA (ms-TRCA) [40], and task-discriminant
component analysis (TDCA) [41]. Here, the transferred spatial
filters and templates were obtained by TRCA, ms-TRCA,
or TDCA using SSVEPs from source subjects, and then the
correlation coefficients between the spatially filtered test data
from the target subject and the artificial sine-cosine reference
signal and the transferred template were calculated to detect
the SSVEP frequency. The selection of source subjects is
consistent with the proposed method. The numbers of training
blocks were set to 15, 6, and 10 for the three validation
datasets in all methods. For TDCA, the number of subspaces
and the number of delayed points were set as eight and one
respectively. According to the comparison results in Fig. 10,
the proposed method achieved the highest accuracies among
all four methods with data length increasing from 0.2 s to
2.0 s. The paired t-tests result revealed that the proposed
method showed statistically significant superiority compared
with the other three methods, which further demonstrated the
effectiveness and feasibility of the proposed method in SSVEP
detection.

IV. DISCUSSIONS

A. Model’s Performance
In this paper, we propose a cross-subject transfer scheme

based on domain generalization that learns transferred spatial
filters and templates from source subjects and then generalizes
them to the unseen target subject. In the proposed method,
the transferred spatial filters and templates are obtained by
maximizing the intra- and inter-subject correlations only from
the source domain. Although numerous cross-subject methods
in SSVEP-based BCIs utilized intra- and inter-subject cor-
relation maximization to learn transferred parameters, such
as stCCA [29] and IISMC [27], the transferred parameters
were learned from both the source and target domain, which
indicates that individual calibration data are still required from
target subjects. Instead of using individual calibration data
from the target subject, domain adaption methods using the
unlabeled data from target domain were proposed to improve
the detection performance and reduce the calibration effort,
such as ALign and Pool for EEG Headset domain Adaptation
(ALPHA) [42]. Compared to these closely-related transfer
learning methods, the proposed method learns transferred
parameters without access to the data from target domain.
From the users’ viewpoint, there is no initial training period

Fig. 10. The averaged classification accuracies obtained by different
transfer learning methods across target subjects from three datasets
with time windows increase from 0.2 s to 2.0 s. The vertical error bars
represent standard deviations. The asterisks indicate significant differ-
ences between every two methods obtained by paired t-tests (∗p<0.05,
∗∗p<0.01, ∗∗∗p<0.001, ∗∗∗∗p<0.0001).

for data collection and analysis of the new users. Therefore,
the training process in the proposed method is implicit, which
makes the SSVEP-based BCI a plug-and-play system. By con-
ducting extensive comparisons with the state-of-art methods,
the experimental results present the superiority on SSVEP
detection performance by at least 10% (Fig. 4), meaning that
the proposed method can provide a satisfactory classifica-
tion accuracy and ITR for practical applications. In addition,
the comparison results in Fig. 7 illustrate that the proposed
method can reach relatively high SSVEP detection accuracy
in the case of small calibration data from source subjects.

B. Transferred SSVEP Templates
In this proposed method, the accurate SSVEP frequency

detection mainly depends on the transferred SSVEP templates
containing accurate SSVEP features, which are constructed by
the SSVEPs from source subjects. To reveal the contributions
of the transferred templates, the target stimulus of 14.75-Hz
frequency and 1.5π phase was taken as an example. Fig. 11
provides the averaged spatially filtered SSVEP templates in
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Fig. 11. The averaged spatially filtered SSVEP templates in the time
domain (top) and frequency domain (bottom) from constructed using
1.0-s SSVEP data from source subjects in Dataset I. Here, the example
target stimulus is set as the one at the 14.75-Hz frequency and 1.5π
phase. The dotted lines represent the target stimulus frequency and its
corresponding harmonics.

Fig. 12. The averaged classification accuracies with different types
of feature vectors using Dataset I. The vertical error bars represent
standard deviations. The data length was set to 1.5 s.

the time domain (top) and frequency domain (bottom) with
1.0-s SSVEP data from source subjects in Dataset I. As illus-
trated in the figures, the internally-invariant template extracts
relatively strong responses corresponding to the fundamental
and harmonic frequencies, while the two types of templates
can extract accurate periodic impulse responses in the time
domain. In conclusion, both internally- and mutually-invariant
templates can capture accurate features in the aspect of time
and frequency domain. By combining two types of templates
for SSVEP detection, the performance can be significantly
boosted for the SSVEP-based BCIs.

C. Feature Vector Construction
In this method, the feature vector (Eq. (23)) is con-

structed with four different types of correlation coefficients as
(i)-(iv) described in Section II, D. We further explored the
contribution of each correlation feature by conducting the
ablation experiments. In Fig. 12, the averaged classification
accuracies across target subjects with different types of feature

Fig. 13. The SSVEP detection accuracy and training time for two
conditions with different numbers of source subjects using Dataset I are
illustrated in a double y-axis graph. The bars represent the classification
accuracies with the left y-axis, and the lines represent the training
time with the right y-axis. The vertical error bars represent standard
deviations of classification accuracy. The data length was set to 1.5 s.

vectors were compared using Dataset I. The different types
of feature vectors were respectively defined as: 1) without
(w/o) (i); 2) w/o (ii); 3) w/o (iii); 4) w/o (iv); 5) (i)-(iv).
As can be seen from the figure, with all four correlations as
(i)-(iv), the proposed method reached the highest classification
accuracies among the five types of feature vectors. Compared
to the feature vector 5) in the proposed method, the accuracies
achieved by the other four types of feature vectors showed
at least a 5% difference. The comparison result demonstrates
that each correlation coefficient used in Eq. (23) contributes to
improving the SSVEP recognition performance of the target
subject.

D. Algorithm Implementation Complexity
It can be seen from the experimental results in Fig. 6 that

the classification accuracies of the proposed method increased
as the number of source subjects. However, such improvement
came at the expense of more computational costs. Moreover,
the Nb times of training also requires massive computa-
tion time. To further investigate the computation overhead,
we compared the detection performance and training time
between the two settings, one is training with Nb combi-
nations of SSVEPs from source subjects as the proposed
method (termed as Condition I), and the other is training
with all-block data from the source subjects without the leave-
one-out splitting (termed as Condition II). Figure 13 compares
the classification accuracies and the computation costs under
these two settings with the number of source subjects increas-
ing from 1 to 9 using Dataset I. The cross-subject transfer
algorithm was implemented on a Lenovo PC with the Intel(R)
Xeon(R) Silver 4116 CPU @ 2.10GHz, 32 GB RAM, and
64-bit Windows 10 OS using Matlab 2022a. From the graph,
we can see that the detection performance and the training
time for each target stimulus of the proposed method both
increase as the number of source subjects. Compared with
the all-block training condition, the proposed method requires
more computation overhead but achieves higher SSVEP detec-
tion performance. Although the training time of the proposed
method was relatively high with sufficient source subjects, the
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SSVEP detection stage only costs 0.03 s for each time window,
which indicates that it won’t affect the computational speed
of real-time SSVEP detection in practical applications.

E. Limitations and Future Directions
As a subject-independent transfer method, the proposed

cross-subject transfer method has shown satisfactory perfor-
mance on SSVEP detection, which provides the potential
of constructing plug-and-play SSVEP-based BCIs. However,
there still exists abundant room for further progress on the
proposed method. First, according to the analysis of imple-
mentation complexity as Fig. 13, the training process of the
proposed transfer method causes relatively high computation
overhead due to the requirements of sufficient source subjects
and Nb-run repetitive training. To further boost the SSVEP
detection performance with fewer source subjects, the feature
extraction of SSVEP signals could be further improved by
incorporating sine-cosine reference signals as [28]. Second,
as the possible targets increase in the SSVEP-based BCIs
for practical applications [43], [44], the training process
corresponding to all targets still consumes massive time.
Therefore, the cross-target transfer scheme [45], [46], [47]
should be further considered to improve the usability of the
SSVEP-based BCIs. Finally, the proposed method is a proof-
of-concept that verified the effectiveness and feasibility of
offline experiments. To meet the requirements of practical
applications, the dynamic window strategy [48], [49] can be
incorporated for the robust control of the SSVEP-based BCIs.

V. CONCLUSION

In this paper, a cross-subject transfer method based on
domain generalization was proposed, which transferred the
spatial filters and templates learned from source subjects to
the target subject with no access to the SSVEP data from the
target subject. The transferred spatial filters and templates are
obtained by maximizing the intra- and inter-subject correla-
tions using the SSVEP data corresponding to the target and
its neighboring stimuli. For SSVEP detection, four types of
correlation coefficients based on the transferred spatial filters
and templates were calculated to construct the feature vector.
The effectiveness and feasibility of the proposed method
were demonstrated through experimental evaluations on three
SSVEP datasets.
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