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Abstract— The goal of this study was to validate a series
elastic actuator (SEA)-based robotic arm that can mimic
three abnormal muscle behaviors, namely lead-pipe rigidity,
cogwheel rigidity, and spasticity for medical education
training purposes. Key characteristics of each muscle
behavior were first modeled mathematically based on
clinically-observed data across severity levels. A controller
that incorporated feedback, feedforward, and disturbance
observer schemes was implemented to deliver haptic target
muscle resistive torques to the trainee during passive
stretch assessments of the robotic arm. A series of bench-
top tests across all behaviors and severity levels were
conducted to validate the torque estimation accuracy of the
custom SEA (RMSE: ∼ 0.16 Nm) and the torque tracking
performance of the controller (torque error percentage:
< 2.8 %). A clinical validation study was performed with
seven experienced clinicians to collect feedback on the
task trainer’s simulation realism via a Classification Test
and a Disclosed Test. In the Classification Test, subjects
were able to classify different muscle behaviors with a
mean accuracy > 87 % and could further distinguish
severity level within each behavior satisfactorily. In the
Disclosed Test, subjects generally agreed with the simula-
tion realism and provided suggestions on haptic behaviors
for future iterations. Overall, subjects scored 4.9 out of
5 for the potential usefulness of this device as a medical
education tool for students to learn spasticity and rigidity
assessment.

Index Terms— Medical education training, simulation,
neurological examination, spasticity, rigidity, muscle tone,
haptics, force control, series elastic actuator, medical
robotics.

Manuscript received 9 March 2023; revised 16 July 2023;
accepted 5 August 2023. Date of publication 14 August 2023; date of
current version 22 August 2023. This work was supported by the Jump
ARCHES endowment through the Health Care Engineering Systems
Center. (Corresponding author: Elizabeth T. Hsiao-Wecksler.)

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted
by the Institutional Review Board, University of Illinois at Urbana
Champaign.

Yinan Pei, Mahshid Mansouri, and Elizabeth T. Hsiao-Wecksler are
with the Department of Mechanical Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, IL 61801 USA (e-mail:
ethw@illinois.edu).

Christopher M. Zallek is with the Neurology Department, OSF Health-
Care, Peoria, IL 61603 USA (e-mail: christopher.m.zallek@ini.org).

Digital Object Identifier 10.1109/TNSRE.2023.3304951

I. INTRODUCTION

A. Overview of Rigidity and Spasticity

SPASTICITY and rigidity are common abnormal muscle
behaviors and are characterized by distinct resistive

muscle tone characteristics when the the affected muscles
are passively stretched (Fig. 1) [1]. Rigidity is observed in
patients with Parkinson’s disease, manifested as an increased
muscle tone which is independent of the stretch speed [2].
There are two types of rigidity: a) lead-pipe rigidity (LR)
which exhibits a uniformly elevated muscle resistance across
the full range of motion and b) cogwheel rigidity (CR) which
has an intermittent pattern of resistance with a frequency of
6-9 Hz [3]. Unlike rigidity, spasticity (SP) manifests as an
increased muscle tone but with stretch speed dependency and
is commonly observed in patients with neurologic conditions
affecting upper motor neurons (e.g., stroke, cerebral palsy,
spinal cord injury). A typical spasticity resistance response is
marked by an abrupt increase in the resistance called “catch” at
a relatively consistent angle within the range of motion (ROM)
and followed by a quick drop of resistance called “release” [4].

B. Current Medical Teaching Methods and Challenges
Clinical assessment for these behaviors is done by passively

moving the joint at various speeds to stretch the affected
muscle. Based on the resistance felt, the clinician will
diagnose the type and severity level of the behavior.
To classify different severity levels of spasticity or rigidity,
the examiner relies on qualitative assessment tools such as
clinical scales, e.g., Modified Ashworth Scale (MAS) or
motor portion of the Unified Parkinson’s Disease Rating Scale
(UPDRS) respectively. A score of 0 indicates the absence
of spasticity/rigidity (i.e., healthy), whereas higher scores
indicate increasing severity of the spasticity/rigidity condition.
Due to the qualitative and ambiguous nature of using
these scales, it is frequently reported that clinical diagnosis
often leads to subjective interpretations and introduces inter-
rater reliability issues across different clinicians,such as
in [5], [6], and [7].

Given the subtlety and variation observed within and
between different abnormal muscle behaviors, accurate
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Fig. 1. Conceptual schematics comparing lead-pipe rigidity, cogwheel
rigidity, and spasticity muscle tones during a passive stretch test
(dashed green line: healthy muscle behavior).

diagnosis is built upon a good understanding of these
behaviors and repetitive hands-on practice. However, for
current clinical/medical learners, the training opportunity and
consistency is often limited by the availability and small
number of practice patients [8]. One promising approach to
address these training challenges is to deploy robotic task
trainers to provide realistic and easily accessible practice
opportunities for medical trainees [7], [9], [10].

C. Review of Existing Robotic Task Trainers
Robotic task trainers potentially render a relatively realistic,

consistent, and scalable training environment for students,
allowing learners to gain hands-on experience without the
presence of real patients, but only a few task trainers have
been proposed in the past [8], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21]. These designs usually take the
form of human-sized artificial robotic limbs with an actuated
haptic joint (e.g., active [11] or passive [16]) that mimic a
patient’s joint affected by pathological muscle behaviors due
to the underlying neurologic conditions. Existing trainers have
targeted mimicking common abnormal muscle behaviors such
as spasticity [8], [11], [12], [13], [16], [17], [18], [19], rigidity
(cogwheel and lead-pipe) [8], [15], [21], and clonus [17],
[18], [20]. The simulated behaviors were modeled based on
clinical data [11], clinical expert tuning [8], or a combination
thereof [17].

To render the desired haptic feeling to the user, previous
designs have adopted various actuation and controls strategies.
Common actuation choices were direct drive [17], quasi-static
drive [11], [12], magnetorheological fluid brake/clutch [22],
and gearmotor [13], [18]. Direct and quasi-direct drives suffer
from their high operation current and heat dissipation, thus
compromising user safety in human-robot interaction, and the
low gear ratio resulting in bulky and nonergonomic joint
designs. An MRF brake/clutch was a promising option to
generate fast and smooth haptic feeling, but it had to be used in
parallel with active actuators to mimic active symptoms (e.g.,
clonus, tremor) [8]. In addition, off-the-shelf MRF products
are not easily available, and their sizes are often too bulky for
medical applications. Given these limitations about the form
factor, complexity, maintenance, or cost, to the best of the
authors’ knowledge, none of the previous research prototype
trainers were adopted by medical training institutions beyond
the authors’ home institutions.

In terms of controls strategies, some studies have simply
relied on the motor driver to perform open-loop torque control,
which would often be vulnerable to unmodeled dynamics in
the drivetrain [15], [18]. On the other hand, to achieve better

Fig. 2. A mock interaction between the learner and the task trainer.

torque tracking, others used closed-loop torque control via the
torque feedback from a six-axis force/torque sensor at the end
effector [11], [17]. However, the downside was the high cost
and mechanical frailty of the sensor. Similar to other robots
with physical interaction with human/environment (such as
prosthetics [23] and exoskeletons [24]), the accurate delivery
of interaction torque under disturbance (e.g., user’s motion,
environment contact) is a core control challenge for robotic
trainers. However, surprisingly there is a lack of discussion and
reporting of the control scheme as well as the torque tracking
performance in previous task trainers studies.

D. Study Overview
To overcome the design and control limitations of previous

task trainers, our research group previously developed a
robotic arm task trainer based on a series elastic actuator
(SEA) [21] (Fig. 2). The SEA introduces an elastic element
such as a mechanical spring in series with a high-impedance
actuator, which is used to estimate the interaction torque
from the trainee based on Hooke’s law for sensing and
closed-loop torque control. The use of SEA eliminates the
need for an expensive force/torque sensor, and lowers the
hardware cost, improves the impact tolerance, and enables
high-fidelity control performance [25]. The goal of this study
was to validate this task trainer in terms of mimicking three
target abnormal muscle behaviors (Fig. 1). In this work,
we proposed the mathematical modeling of each muscle
behavior and a control scheme that utilized cascaded feedback,
model-based feedforward, and disturbance observer, to enable
tracking of complex muscle torque profiles under strong
motion disturbance as the trainee performs stretch tests of the
robotic arm. A series of benchtop and clinical validation tests
were conducted to verify the trainer’s control performance as
well as clinical realism.

II. METHODS

A. Arm Trainer Mechatronic Design Overview
The robotic arm trainer used in this study is a 1-DOF

kinesthetic haptic torque display device that resembles a
human arm (Fig. 2). The dimensions of the limb were matched
with the anthropometric data of a 50th percentile European
American male [26]. The mass and inertia of the forearm
and hand (the moving segments) are lower than those of a
biological counterpart (Table I). The ROM was from 45◦ to
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Fig. 3. Muscle kinematics and tone (torque) profiles for healthy, lead-pipe rigidity, cogwheel rigidity, and spasticity across severity levels given the
mathematical model and control parameters. These profiles were generated when a passive stretch test was performed on the task trainer arm.
Only biceps spasticity results are shown. Triceps spasticity has similar profiles and are omitted for clarity.

TABLE I
MASS AND INERTIA OF TRAINER (T)

AND HUMAN ARM (H)

150◦. The actuation was provided by a brushless DC motor
with an integrated two-stage 19:1 planetary gearbox (M3508,
DJI, China), which could operate at 150 W of continuous
power and 5 Nm of peak torque with the integrated motor drive
(C620, DJI, China). A drivetrain consisting of a 2:1 bevel gear
set (A1M3MYZ2030A, SDP-SI, USA) and a 2.5:1 timing belt
drive (MR5, Misumi, Japan) was used to transmit the motor
torque to the elbow joint. A crank slider mechanism at the
elbow converted the motor rotation into a linear motion to
compress the die springs (9588K32, McMaster, USA) inside
the spring cage at the forearm. The deflection of springs
(stiffness of 114.9 N/mm) created the actuation torque around
the elbow joint to move the forearm and provide resistive
torque. More design details about this SEA mechanism can
be found in [21].

B. Mathematical Modeling of Lead-Pipe Rigidity,
Cogwheel Rigidity, and Spasticity

In this study, three target behaviors for the arm task trainer
were considered: lead-pipe rigidity, cogwheel rigidity, and
spasticity. The modeling of LR was inherited from [21],
and the modeling of CR and SP are proposed in this work.
In general, LR and CR are relatively simple to model, but SP
is more complex to model. This section describes how these
behaviors were mathematically modeled at different severity
levels and how their resulting resistive muscle tones (τmuscle)

were calculated based on the user input kinematics (Fig. 3).
For the healthy condition, τmuscle was set to zero. The highest
possible scores on the clinical scales (MAS 4 and UPDRS
4) were not simulated because the patient’s joint in these

TABLE II
SUMMARY OF RIGIDITY PARAMETERS

conditions are immovable and thus easy severity levels to
distinguish and not needed in the trainer.

1) Lead-Pipe Rigidity (LR): In lead-pipe rigidity, once the
clinician starts to move the patient’s arm, a uniformly elevated
muscle resistance will appear throughout the ROM and the
resistance level tends to increase with the UPDRS score.
To command this step response-like constant resistance,
a smooth transition of the muscle tone from zero torque to an
elevated torque level (at the UPDRS score being simulated)
was implemented using a hyperbolic tangent function

τmuscle = −τavgtanh(
θ̇E

ωthresh
) (1)

where θ̇E is the elbow angular velocity, τavg is the clinically-
derived average muscle tone, and ωthresh is a threshold
velocity constant. ωthresh determines the velocity at which
τmuscle will approach to the desired value of τavg [21].
To extract τavg for each UPDRS score, we initially referred
to the clinical data from [27] in the design phase and the
magnitudes of τavg were further iterated during a clinical
validation study with a group of 11 experienced clinicians [28].
Since gravity assists the stretch motion in extension, but resists
it in flexion, the values were adjusted to be higher for extension
to partially offset the effect of gravity. τavg in both flexion (F)
and extension (E) values were reported in Table II.

2) Cogwheel Rigidity (CR): To model cogwheel rigidity, the
simulated muscle tone generated by the proposed LR model
was turned on and off intermittently by a rectified sinusoidal
function with a tremor frequency of ω,

τmuscle = −τavgtanh(
θ̇E

ωthresh
) |sin(ωt)| (2)
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TABLE III
SUMMARY OF SPASTICITY PARAMETERS. θcatch AND H WERE

EXTRACTED FROM CLINICAL DATASETS [27], [29]. Q, θROM, AND

kpost WERE TUNED BY CLINICIANS. D WAS ADOPTED FROM [11]. FOR

ALL MAS SCORES: vL = 60 ◦ /S, bpost = 0.1 Nm/◦/s,
kROM = 0.3Nm/◦ , AND bROM = 0.05Nm/◦/s

Fig. 4. A sample extension trial to illustrate different phases of spasticity
muscle tone profile and definitions of key profile metrics.

where t is time. The tremor frequency ω for cogwheel rigidity
has been reported to vary between 6-9 Hz in the literature [3],
and we used ω = 6 Hz to model this behavior in our arm
trainer. For practical implementation, an exponential moving
average filter was used to smooth the commanded signal.

3) Spasticity (SP): We started with the spasticity model
proposed in Park et al.’s work [11] as the baseline model
since it is one of the few published works that modeled SP
mathematically. Park et al.’s piecewise model divided the SP
resistance response into three phases: a) pre-catch, b) catch,
and c) post-catch, where a separate governing equation was
used to model each phase (Fig. 4). The control parameters
were re-tuned based on our clinical data (Table III). For
controlling the trainer, τmuscle was set to the following torque
terms based on the phase.

a) Pre-catch phase: The pre-catch muscle tone (τpre)

was modeled as a mildly damped feeling added to the arm
dynamics,

τpre = bpreθ̇E (3)

where bpre is the pre-catch damping coefficient (0.1Nm/◦/s)
and θ̇E is the elbow joint angular velocity. This model

implies during pre-catch phase, minimal abnormal muscle tone
appears.

The pre-catch phase will transition to the catch phase when
the arm reaches a certain joint angle called the catch angle
(θcatch). θcatch is calculated in real time based on the average
joint angular velocity during the pre-catch phase. Note that
SP is a stretch-velocity dependent behavior, so if the arm is
moved very slowly (less than a certain threshold speed, vL),
θcatch will be set as an unreachable angle and no catch will
occur. Therefore, θcatch was expressed as

θcatch =

{
no catch if θ̇pre_avg < vL

θcatch_M AS if θ̇pre_avg ≥ vL
(4)

In this study, a constant catch angle for each MAS level
was assumed for simplicity. θ̇pre_avg is the average arm stretch
speed during the pre-catch phase.

b) Catch phase: The torque during the catch phase was
expressed as

τcatch = τpre_end + H θ̇catch_ini tδ(t)

with δ (t) =

{
1 if t − tcatch_ini t < 1Tcatch

Q (Q < 1) if t − tcatch_ini t ≥ 1Tcatch
(5)

where τpre_end is the torque at the end of the pre-catch
phase, θ̇catch_ini t is the elbow stretch speed at the beginning
of the catch phase, and H and Q are parameters that vary
across different MAS levels and determine the catch amplitude
(H θ̇catch_ini t ) and release amplitude (H θ̇catch_ini t Q), respec-
tively (Fig. 4). tcatch_ini t is the time when the catch phase
initiates, and 1Tcatch represents the catch duration and is given
by 1Tcatch =

D
θ̇pre_avg

, where D is a heuristically determined
constant that specifies the catch duration.

c) Post-catch phase: The post-catch torque was modeled
as an impedance with a virtual spring and a damper,

τpost−catch = kpost (θ E − θE,postini t ) + bpost θ̇E + τcatch−end

+ kRO M (θE − θRO M ) + bRO M θ̇E (6)

where kpost is the post-catch stiffness, bpost is the post-catch
damping coefficient, θE,post_ini t is the elbow angle at the
beginning of the post-catch phase, τcatch−end is the torque at
the end of the catch phase, and θRO M is the elbow angle at
the end of ROM for each MAS level. τcatch−end was included
as a torque continuity term between catch and post-catch
phases. Furthermore, if the user moved the elbow such that
the angle exceeded the prescribed ROM, a software bumper
was implemented in the controller as a very stiff impedance
control to limit the ROM for each MAS score.

Among the three abnormal muscle behaviors, SP had the
most complex model and the greatest number of control
parameters. For each MAS level, Park et al. identified the
spasticity parameters based on clinical data collected from
four child spasticity subjects. However, due to the relatively
small sample size and their age, we estimated spasticity
parameter from two clinical studies datasets of adults collected
by our research group [27], [29]. In parallel, two experienced
clinicians (both with 20+ years of experience) were invited
and asked to perform extension trials at their preferred speed
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Fig. 5. Control system block diagram and parameters of the arm trainer. The details of the block diagram of each controller are shown individually
with the corresponding inputs and outputs. FB: feedback, FF: feedforward, and DOB: disturbance observer. Symbols are defined in the text.

to provide expert tuning on SP parameters for each MAS score.
They evaluated the simulated SP behaviors and adjusted the
parameters on the fly. We started all test sessions using the
same values from [11] as the baseline, and iteratively and
incrementally tweaked the values in the Simulink interface
(MATLAB 2022a) until the clinician felt that the adjusted
values delivered the right haptic feeling based on their
prior clinical experience. Eventually, all three sources of
information were considered to finalize the control parameters
for spasticity simulation (TABLE III).

C. System Dynamic Modeling and Control Design
The proposed control system consisted of high-level and

low-level control schemes (Fig. 5). To replicate the target
abnormal muscle behavior and patient’s arm dynamics,
the high-level controller calculated the desired reference
interaction torque felt by the user (τ d

user )

τ d
user = τmuscle + τdyn (7)

where τmuscle is the simulated muscle tone for a selected
behavior, and τdyn is the simulated torque due to the patient’s
arm dynamics calculated based on the 50th percentile human
forearm inertia and gravity when driven by the user’s input
motion. This desired torque command was then input to
the low-level control, which consisted of three controllers:
a cascaded PI feedback controller (CF B), a model-based
feedforward controller (CF F ), and a disturbance observer
(CDO B). This low-level control was motivated by the
needs of compensating for the mass and inertia mismatch
between robotic and real patient’s forearms, as well as
rejecting the external disturbance from user interaction. The
actual interaction torque between the arm trainer and the
user (τuser ) was estimated based on the torque measured
by the series springs in the SEA with corrections using
the knowledge of the robotic forearm mass and inertia
properties (τ̂user ). Throughout this section, superscript drefers
to desired/reference signal.

1) Feedback Controller: The initial control design started
with a cascaded PI feedback controller (innermost to outermost
loop: current, velocity, and torque control) (Fig. 5, CF B),
inherited from our previously developed ankle-foot robotic
task trainer [20].

Given the cascaded control scheme, the gain parameters
were tuned sequentially from inner to outer loop. The choice
of gain parameters followed the guidance proposed in [30],
e.g., for each loop, ki were chosen to be less 0.5kp, to ensure
stability, but also achieving the desired response. For the
velocity controller, the gains were set to kp = 0.25 and
ki = 0.1 to achieve a desired closed-loop bandwidth of
∼40 Hz. Next, the outer torque controller was tuned with the
forearm grounded. Initially, kp = 70 was selected to have a
closed-loop bandwidth of ∼4 Hz and later increased to 120
(closed-loop bandwidth of ∼7.5 Hz) with the addition of DOB
controller.

There were two control design considerations. First, tight
velocity feedback around the motor and gearbox helps
eliminate most of the friction, damping, and backlash because
it is much easier to control position/velocity than force/torque
through the drivetrain [25]. Essentially this middle velocity
loop takes care of these parasitic effects at the motor and
gearbox and masks the plant as a quite ideal velocity source to
the outer torque loop, which greatly simplifies the torque loop
design (for example no explicit friction compensation needed).
This implementation was similar to [30] and [31], which is
often referred to as velocity-sourced SEA control. Second, the
reference motor velocity (θ̇d

m) was calculated by summing the
measured motor velocity in the previous time step (θ̇m_prev)

with a desired change of velocity (1θ̇d
m) obtained in the

outer torque control loop based on the interaction torque
error (τe). Essentially, the torque control loop only specified
the change of motor velocity on top of the current velocity,
rather than commanding a completely new velocity setpoint.
This technique helped smooth out the reference velocity
trajectory and also effectively reduce the effect of external
motion disturbance from the user, in the same spirit of “load
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Fig. 6. Free body diagrams of the robotic task trainer.

motion compensation” suggested in [32]. However, given the
nonnegligible mass and inertia difference between the robotic
forearm and the human forearm, this controller alone was less
effective compared to its original implementation on the ankle-
foot trainer [20], so other controllers were introduced.

2) Feedforward Controller: To account for the mass and
inertia discrepancy between the real patient’s arm and arm
trainer, a 2-DOF dynamic model of the arm trainer was
established to guide the design of the components in a
feedforward control effort (Fig. 5, CF F and Fig. 6). For clarity
and without loss of generality, the drivetrain gear ratio was
ignored in the model (but was implemented in the actual
controller). Friction and damping at the motor gearbox and at
the elbow joint were not modeled and assumed to be mostly
removed by the feedback control. The equations of motion for
the motor output torque (τm) and the user’s applied torque, i.e.,
also the user felt torque (τuser ) were derived as:

τm = Im θ̈m + ks (θm − θF ) (8)

τuser = IT θ̈F + ks (θF − θm) + mT glcosθF (9)

where θF and θ̈F are the forearm segment angle and
acceleration, θm and θ̈m are the motor shaft angle and
acceleration, ks is the series spring stiffness, Im is the reflected
motor rotor inertia, mT and IT are the mass and moment of
inertia (around the elbow) of the task trainer’s forearm, and l
is the distance between the elbow and forearm center of mass
(Table I). By combining (8) and (9), the user felt torque was
obtained as

τuser = IT θ̈F + Im θ̈m − τm + mT glcosθF (10)

The torque due to simulated patient’s arm dynamics was
defined as

τdyn = IH θ̈F + m H glcosθF (11)

which consists of the torque due to the 50th percentile human
forearm inertia (IH θ̈F ) and gravity (m H glcosθF ) (Table I).

Considering that the mass and inertia of the task trainer’s
forearm were less than that of an actual human forearm, two
positive constant terms were defined as I1 = IH − IT and
m1 = m H − mT . Therefore, since the goal was to minimize
the error between the user felt torque (τuser ) and the desired
torque (τ d

user ) to achieve a good torque tracking performance,
by setting τuser = τ d

user , the feedforward torque command to
the motor was strategically chosen as

τm_ f f = −I1θ̈F − m1glcosθF + Im θ̈m − τmuscle. (12)

Equation (12) motivated the structure of the feedforward
controller. The following signals were fed forward: a) torques

used to render the gravity (−m1glcosθF ) and inertia (−I1θ̈F )

difference between the task trainer and the human forearms,
b) motor inertia compensation (Im θ̈m), and c) reference
muscle tone profile (τmuscle). To implement this feedforward
law practically, motor reference acceleration (θ̈d

m) was used
(instead of the actual motor acceleration θ̈m) for motor
inertia compensation. In addition, θF was approximated by
the absolute encoder reading on the actuator side and θ̈F
was obtained via double differentiation of θF . In addition
to these feedforward terms in (12), the spring torque in the
previous time step (τs_prev) was also fed forward to maintain
the current interaction torque, similar to the use of θ̇m_prev
described above. This approach also minimized the feedback
control effort to compress the spring [31]. Given the inevitable
unmodeled dynamics and model mismatch, the residual torque
error between τuser and τuser_d would always exist and were
dealt with by the feedback control. τm_ f f was then converted
to feedforward current command (i f f ) through the motor
torque constant (Kt ) (Fig. 5, CF F ).

3) Disturbance Observer: A disturbance observer (DOB) is
a simple and effective robust control scheme that has been
widely used in industrial motion control [33]. Since the SEA
converts the force control problem into a position control
problem by using the motor torque to modulate the spring
deflection, DOB has become a popular technique for SEA
control especially for the need to reject internal and external
disturbances [24], [34], [35], [36].

The implementation of a DOB involved specifying a
nominal plant (Pn) and a low-pass filter (QL P ) (Fig. 5,
CDO B). Intuitively, a DOB compares the reference motor
torque and the estimated motor torque, calculated using the
series spring torque and the inverse nominal plant, and
then compensates the difference due to various sources of
disturbance. The low-pass filter determines up to which
frequency the disturbance would be rejected and also makes
P−1

n QL P realizable [33]. To obtain the nominal plant transfer
function, a system identification process was conducted. The
forearm was fixed in a 90◦ joint angle configuration and the
motor was operated in a current-control mode given a chirp
current signal with an amplitude of 1 A and a frequency
changing from 0.1 – 10 Hz. The torque estimated by the series
spring was also recorded. The open-loop plant (Pol) was fitted
(System Identification Toolbox v9.13, MATLAB 2022a) with
a transfer function from the geared motor torque (Nτm , where
N = 5) to spring torque (τs) with mechanical efficiency (η <

100 %).

Pol(s) =
ητs (s)
Nτm(s)

=
η

N
Nω2

n

s2+ 2ωnζ s+ ω2
n

=
312.5

s2+9.945s+366.4
(13)

From (13), the system identification results suggested an open-
loop natural frequency (ωn) of ∼3 Hz and an efficiency of
∼85 %. To track a torque command up to 6 Hz (i.e., the case
of CR), DOB in the inner loop was implemented to shape
the existing plant into a faster plant to facilitate outer loop
control [33], [35]; thus, the nominal plant was selected to have
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a natural frequency of 8 Hz (14).

Pn(s) =
2524

s2 + 13s + 2524
(14)

The low-pass filter was designed to be a second-order
Butterworth filter with a cut-off frequency of 15 Hz, which
was the highest cut-off frequency allowed by the trainer
hardware.

QL P (s) =
8883

s2 + 133.3s + 8883
(15)

4) Interaction Torque Estimation: One advantage of the SEA
is the ability to use series spring deflection to estimate the
interaction force or torque, instead of using an expensive
external force/torque sensor. If rearranging (9), note that the
torque estimated by the series spring (τs) did not directly
measure the torque felt by the user due to the gravitational
and inertial torques of the trainer’s forearm (16).

τs = ks (θF − θm) = τuser − IT θ̈F − mT glcosθF (16)

τ̂user = τs + IT θ̈F + mT glcosθF (17)

As a result, instead of directly feeding the series
spring torque back as the measured interaction torque, the
estimated forearm’s gravitational and inertial torques were first
compensated based on the series spring torque to calculate
the estimated user felt torque (τ̂user ) as in (17) and then
the error between τ̂user and τ d

user was input to the feedback
controller.

D. Evaluation Protocol
1) Benchtop Evaluations: The proposed control system

was tested to evaluate its performance on delivering the
desired interaction torque to the user (τ d

user ). To understand
the effectiveness of each controller, an ablation study was
conducted to examine the tracking performance of four
controller settings: a) feedback control only (CF B), b) both
feedback and feedforward control (CF B + CF F ), c) feedback
control, feedforward control, and disturbance observer (CF B +

CF F + CDO B), and d) same as case c but with a higher
feedback gain (CF B +CF F +CDO B(H G)) (Table VI). In case
d, note that with the addition of the CF F andCDO B , the torque
loop P gain in CF B could be further increased. For each
setting, the investigator performed the passive stretch test by
mimicking the standard clinical technique (moving the arm
through the ROM within 1 s) on the arm trainer to assess
the simulated behavior for three trials. This procedure was
repeated for each behavior across severities (3 UDPRS scores
for LR, 3 UPDRS scores for CR, and 4 MAS scores for biceps
and triceps SP, shown in Fig. 2). For each trial, to verify
the torque tracking accuracy, the RMSE between τ d

user and
τ̂user was calculated throughout the ROM (extension only
for SP; both extension and flexion for LR and CR) and
then averaged across three trials with standard error (SE)
reported. Additionally, the percentage errors were calculated
as averaged RM SE

|maximumtorque| × 100%, where the maximum torque was
extracted from the red curve in Fig. 3.

TABLE IV
SUBJECT DEMOGRAPHIC INFORMATION

2) Clinical Evaluations:
a) Test protocol: To validate the realism of the task trainer

in mimicking the three behaviors, a validation evaluation
was conducted to get feedback from clinical experts in
spasticity and rigidity assessment. The study was approved
by the Institutional Review Board at University of Illinois
at Urbana-Champaign (#21703, approved on 4/19/2021) and
informed consent was obtained from all subjects. The study
was conducted in the Jump Simulation and Education Center
in Peoria, IL with a total of seven subjects (Table IV). To be
eligible for this study, the participant needed to: 1) hold
a medical, nursing, physical/occupational therapy degree,
2) have at least two years of experience with performing
passive stretch tests on patients with increased muscle tone,
and 3) be able to interpret the patient’s muscle tone based on
UPDRS and/or MAS.

The clinical evaluation consisted of a Classification Test
and a Disclosed Test. Before starting the study, written
descriptions of UPDRS and MAS scores were provided
to the subject. During the Classification Test, the trainer
was configured to replicate all 15 different conditions (i.e.,
healthy, LR UPDRS 1-3, CR UPDRS 1-3, biceps and triceps
SP MAS 1, 1+, 2, 3), one trial per condition and in
total 15 trials in a randomized sequence for each subject.
Without knowing the condition being simulated, the subject
was asked to assess each trial to classify the behavior and
evaluate its severity based on their prior clinical experience.
They were instructed to always start the passive stretch
test from the fully flexed joint position and to check both
biceps and triceps conditions. During the Disclosed Test,
the investigator guided the subject through all 15 simulated
conditions (disclosed to the subject). The subject provided
qualitative feedback on simulation realism of each replicated
behavior, and the potential of this device as a medical
education task trainer by answering multiple five-point Likert
questions (Table V).

b) Data analysis: For the Classification Test, the judge-
ments from subjects were plotted against the trainer’s setup
using a confusion matrix to determine if subjects could
distinguish the behaviors (LR, CR, and SP). Thus, entries
that fall closer to the diagonal of the matrix indicate how
well the clinician’s judgement matched the trainer’s setup.
The classification accuracy percentage was calculated as
#of classi f iedtrials

#of totaltrials ×100% for each behavior. For the Disclosed
Test, the mean and standard error were calculated for each
simulation aspect.
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TABLE V
DISCLOSED TEST FEEDBACK QUESTIONS. THE FIVE-POINT LIKERT

SCALE FOR 1) SIMULATION REALISM: 1-TOO LITTLE, 3-ABOUT RIGHT,
5-TOO MUCH; 2) GENERAL USEFULNESS: 1-STRONGLY DISAGREE,

3-NEUTRAL, 5-STRONGLY AGREE)

TABLE VI
TORQUE TRACKING ACCURACY TEST RESULTS. MEAN (SE) OF RMSE

FOR CONTROLLER SETTINGS ACROSS CONDITIONS. UNIT: Nm

III. RESULTS

A. Benchtop Validation
Four different controller settings, i.e., CF B only, CF B+CF F ,

CF B + CF F + CDO B , and CF B + CF F + CDO B (HG), were
tested. As more controller blocks were involved, the tracking
performance was significantly improved for all behaviors
(TABLE VI and Fig. 7). The incorporation of feedforward
control significantly improved the tracking performance by
17-49% from the baseline feedback controller (i.e.,CF B only).
Furthermore, the addition of DOB further reduced the tracking
error for SP and CR trials by 23-43% compared to CF B+CF F .
Eventually, with CF B + CF F + CDO B (HG), the tracking
performance was again improved by 16-36% compared to
CF B + CF F + CDO B . These results led us to use the
CF B + CF F + CDO B (HG) controller.

B. Clinical Expert Validation
During the Classification Test, it was noticed that Subjects

4 and 7 had different assessment patterns compared to others.
Specifically, Subject 4 tended to make very quick assessments
(i.e., often only performed a single passive stretch per trial and
then made a judgment), while other subjects usually performed
the stretch multiple times and took time to consider the
simulated muscle tone behavior and severity. Subject 7 used
a nonstandard technique, i.e., using one hand to casually
move the trainer’s arm without stabilizing the elbow/upper
arm with another hand. Based on these observations, these

Fig. 7. Sample tracking results for typical Healthy, LR, CR, and SP
behaviors using the CFB + CFF + CDOB(HG) controller.

Fig. 8. CT results in a confusion matrix. Red boxes indicate separate
behaviors (biceps-SP, triceps-SP, LR, CR, healthy) with classification
percentages (values in parentheses are without Subjects 4 and 7).

two subjects were marked as potential outliers in the data
analysis, and we calculated the classification percentages in the
Classification Test with and without Subjects 4 and 7. On the
other hand, during the Disclosed Test when these two subjects
carefully assessed the trainer using the same technique as other
subjects, their feedback were consistent with the rest of the
group, so their feedback were included in Disclosed Test data
analysis.

Based on Classification Test results, on average, subjects
were able to distinguish different behaviors with a mean
accuracy of 87% (or 92% if excluding Subjects 4 and 7)
(Fig. 8). These results suggest that the simulated SP, LR,
and CR behaviors were distinctive. Note that 10 out of
16 misclassified trials (i.e., the pink off-diagonal entries) were
found due to Subject 4 (6 trials) and Subject 7 (4 trials), and
the remaining six were scattered across the other five subjects.
For rigidity, severity agreement was in general satisfactory. For
spasticity, mild (MAS 1 and 1+) and severe (MAS 2 and 3)
SP trials were mostly separated, and some trials were mixed
within the severity group.

Disclosed Test results suggested that in general subjects
agreed with the trainer’s simulation (i.e., most aspects scored
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Fig. 9. Disclosed Test results on simulation aspects. A score of 3 was considered “about right”. Mean scores were reported. Error bar: standard
error.

close to 3) (Fig. 9). Additionally, the final Disclosed Test
question found that all subjects strongly agreed that the device
was useful as an educational tool for healthcare trainees
to learn spasticity and rigidity (average 4.9 ± 0.1). A few
responses that scored away from 3 were summarized and
later used to explain misclassifications in the Classification
Test in Section IV-B. For LR, subjects reported that the
resistance magnitude should be lower for UPDRS 1 and
higher for UPDRS 3. For CR, subjects indicated that the
cogwheel frequency was “about right” across levels, whereas
the cogwheel magnitude was higher than expected for UPDRS
1 and 2. For SP, subjects reported that the catch should occur
earlier in the ROM for MAS 1 and 3. They also indicated
that the catch tone should be lower for MAS 2. Furthermore,
there should be more release for MAS 1 and MAS 2 and the
post-catch tone should be lower for MAS 1, 2, and 3 (Fig. 9).

IV. DISCUSSION

A. Modeling, Control, and Benchtop Validation
In summary, three abnormal muscle tone behaviors at

different severity levels as well as the healthy behavior
(for a total of 15 conditions) were mathematically modeled,
and their corresponding torque profiles were tracked by a
proposed control system involving feedback, feedforward, and
disturbance observer control on the SEA-based task trainer.

We started with the feedback controller inherited from [20],
but since the mass and inertia of the trainer’s forearm were
lower than an actual human forearm, we incorporated a model-
based feedforward controller to compensate for the mismatch.
In the context of our SEA, the force sensor is the series
spring located between the elbow and forearm, so the mass
and inertia of the forearm mechanism and protective shrouds
were considered as post-sensor mass and inertia. It is known
that it is difficult to modulate the apparent post-sensor mass
and inertia with feedback force control algorithms and such
systems usually need to rely on feedforward control [37].
Other than rendering the trainer’s forearm with a higher mass
and inertia, the feedforward control also took over several tasks
from the feedback control (such as compressing the spring
and accelerating the motor), leaving the feedback control to
only address the remaining torque error due to unmodeled
dynamics.

This robotic task trainer is a typical application with force
control accuracy requirement under external disturbances.

The user’s input motion (i.e., moving the forearm to assess
the muscle tone) represents the motion disturbance that
constantly perturbs the end of the series spring connected to
the forearm and this motion disturbance should be rejected in
the perspective of the force control. In addition, as the user
holds onto the trainer’s forearm, the mass and inertia of the
user’s own arm is coupled with the robotic trainer’s dynamics,
causing model variation that degrades the performance of
model-based control schemes. Therefore, DOB control was
introduced in our control system, which is a simple and
effective robust control scheme widely used in the industrial
motion control [33]. We implemented the DOB with a nominal
plant only considering the robotic trainer model (ignoring
user’s interaction dynamics) to reduce the effect of internal and
external disturbance from user’s interaction in the innermost
current loop [35], and to facilitate the design of cascaded
feedback control (i.e., enable higher gains in the outer loop
controllers).

Overall, the proposed control system (CF B + CF F +

CDO B(H G)) was found effective in tracking all three
behaviors (Table VI and Fig. 7). Among the three behaviors,
as expected, the LR profile was the simplest to track, resulting
in the lowest RMSE (< 0.16 Nm even for just CF B only).
On the other hand, SP and CR profiles were more complex
and challenging due to an abruptly changing piecewise torque
trajectory and high frequency oscillations, respectively, so their
tracking errors were higher. For all behaviors, although the
amplitude of RMSE increased with MAS and UPDRS scores
due to higher torque command amplitudes associated with
higher severities, the error percentage remained about the same
across severities (small error percentages, i.e., < 2.5 % for LR,
< 2.8 % for CR, and < 2.3 % for SP).

B. Clinical Expert Validation
Classification Test results suggested that subjects were able

to distinguish the different behaviors with a good accuracy of
87% (92% excluding Subjects 4 and 7) (Fig. 8). Occasionally,
subjects identified some SP trials as LR or CR. For MAS 1
(both biceps and triceps), the catch occurred later than
expected in the ROM (Fig. 9)(scores of 3.7 and 3.3). Since
the release behavior was barely felt as it was too late (scores
of 2.5 and 2.7), subjects might have considered LR occurring
at the end of the ROM, thus rating the trial as mild LR
(UPDRS 1 or 2). Similarly, for severe SP trials (i.e., MAS
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2 and 3), the catch and post-catch resistance magnitudes were
quite higher than expected (scores > 3). It was difficult to push
the arm through the entire ROM and subjects might have felt
a constant high resistance for a large portion of the ROM,
therefore judging the trial as severe LR case (i.e., UPDRS
3). Additionally, Subjects 3 and 4 confused two of the SP
trials with CR, where Subject 4 commented that the vibrations
coming from the drivetrain could be the confusing factor (i.e.,
it felt similar to the tremor of CR), which might explain this
misclassification.

Some discrepancies in the Classification Test were observed
between the judgement and the actual simulated severity and
the Disclosed Test results might provide some explanations
(Fig. 9). For LR, the resistance magnitude was scored 3.5 for
UPDRS 1 and 2.3 for UPDRS 3, which could explain why
subjects misinterpreted UPDRS 1 as higher levels, or UPDRS
3 as lower levels. For CR, subjects mentioned that the
cogwheel magnitude should be lower for UPDRS 1 (a score
of 3.7), which suggests why this severity was confused with
UPDRS 2. For SP, subjects suggested more release and lower
post-catch tone amplitude should be implemented for MAS 1,
which may explain why they misidentified MAS 1 as MAS
1+ in some trials. They also indicated that the catch and post-
catch tone amplitudes were higher than their expectations for
MAS 2, which may explain why MAS 2 was confused with
MAS 3.

Overall, subjects strongly agreed that the device could be a
useful medical education training tool for healthcare learners
to practice both rigidity and spasticity assessment techniques
(score of 4.9). Three subjects specifically commented
that, in clinical setting, the ability to classify symptoms
and distinguish the general severity groups such as mild
(MAS 1 and 1+) or severe (MAS 2 and 3) to determine the
treatment plan is more useful than the exact identification of a
severity level. In this sense, our task trainer was quite effective
based on the classification results. Furthermore, during a
normal assessment, clinical signs from other parts of the body
(e.g., posture, hand positioning) usually also provide insights
regarding the patient’s neurologic conditions, not solely the
muscle tone. Therefore, the Classification Test in this study
was more difficult than during the clinician’s regular practice,
in the sense that it required rating the exact severity level
solely based on muscle tone information. Even in this strict
and challenging assessment scenario, it is quite promising to
see that subjects were generally able to distinguish across
behaviors and identify the severity group for each behavior.
This observation suggests that the simulation provided by our
task trainer captured the key characteristics of each behavior
and the design of each severity level mostly aligned with the
subjects’ previous experience.

C. Limitations and Future Work
In retrospect, some control complexity could have been

avoided if the control requirements were comprehensively
accounted in the mechanical design. The task trainer was
originally designed to only mimic LR with a slow-varying
torque profile, and the system natural frequency (determined

by spring stiffness, gear ratio, etc.) was ∼ 3 Hz, which posed
difficulties to track fast-varying profiles of CR and SP. This
limitation motivated us to also use DOB control with a faster
nominal plant to suppress the open-loop system resonance.

In this human-robot interaction scenario, the trainee’s
dynamics (or more generally, environment dynamics) are
coupled to the task trainer’s dynamics. It is known that
force control performance varies with different environment
dynamics [38]. Therefore, in this work, the environment
dynamics were considered as a source of disturbance, and we
attempted to reject it by a fixed-gain feedback controller and
a DOB scheme. In the context of medical training, trainees
with different body sizes (i.e., load mass), joint stiffness (i.e.,
load impedance) and techniques (i.e., load motion disturbance)
represented different possible environment dynamics to
interact with the task trainer. Therefore, a variable-gain
controller might be more suitable for this application and
potential controllers such as adaptive control, gain-scheduling
control, or optimization-based control could be explored.
Furthermore, the DOB controller (i.e., QL P cut-off frequency
and nominal plant) was designed empirically in this work.
The controller stability criterion for the choice of QL P
involved estimating the multiplicative model uncertainty
across the operating frequency range [35], [36]. In this context,
the magnitude of model uncertainty depends mainly on the
trainee interaction and the coupled dynamic characteristics as
mentioned before; therefore, future detailed analysis is needed
to ensure continued controller stability and performance.

Finally, valuable feedback was received from the clinical
validation study regarding the simulation fine-tuning. To fur-
ther enhance the fidelity, more simulation features could be
added in the future, such as nonlinear elbow joint stiffness.
As next steps, the device should be experimentally deployed
and incorporated into the curriculum for healthcare students
to further collect user feedback.

V. CONCLUSION

This study presented the modeling, control, and clinical
validation pipeline of a robotic arm task trainer to mimic
three abnormal muscle tone behaviors (lead-pipe rigidity,
cogwheel rigidity, and spasticity) at varied severities. The
SEA-based trainer together with the presented control system
was validated to be able to deliver accurate torque control
during user interaction. Based on the clinical results, this task
trainer can be a clinically useful and cost-effective medical
education tool to provide realistic and consistent practice
opportunities for clinical learners to become proficient with
rigidity and spasticity assessment techniques awhile reducing
the need for practice human patients.
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