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MSFR-GCN: A Multi-Scale Feature
Reconstruction Graph Convolutional Network for
EEG Emotion and Cognition Recognition

Deng Pan*, Haohao Zheng", Feifan Xu"’, Yu Ouyang, Zhe Jia, Chu Wang",

and Hong Zeng

Abstract— Graph Convolutional Network (GCN) excels
at EEG recognition by capturing brain connections, but
previous studies neglect the important EEG feature itself.
In this study, we propose MSFR-GCN, a multi-scale feature
reconstruction GCN for recognizing emotion and cogni-
tion tasks. Specifically, MSFR-GCN includes the MSFR
and feature-pool characteristically, with the MSFR con-
sisting of two sub-modules, multi-scale Squeeze-and-
Excitation (MSSE) and multi-scale sample re-weighting
(MSSR). MSSE assigns weights to channels and frequency
bands based on their separate statistical information, while
MSSR assigns sample weights based on combined channel
and frequency information. The feature-pool, which pools
across the feature dimension, is applied after GCN to retain
EEG channel information. The MSFR-GCN achieves excel-
lent results in emotion recognition when first tested on two
public datasets, SEED and SEED-IV. Than the MSFR-GCN
is tested on our self-collected Emotion and Cognition EEG
dataset (ECED) for both emotion and cognition classifi-
cation tasks. The results show MSFR-GCN’s good perfor-
mance in emotion and cognition classification tasks and
reveal the implicit relationship between the two, which may
provide aid in the rehabilitation of people with cognitive
impairments from an emotional perspective.

Index Terms— EEG emotion recognition, EEG cognition
recognition, graph convolutional network, SE attention,
graph pool.
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[. INTRODUCTION

MOTION is vital in our lives, but aging and declining

health can reduce cognitive ability and sensitivity to
emotion. Generally, emotional behavior patterns partly reflect
cognitive ability, which also affects emotional response [1].
The cognitive theory suggests that emotions have cognitive
components and a lack of emotional balance can cause various
mental disorders, from neuroses to psychoses [2]. Recognizing
emotion correctly and understanding the emotional-cognitive
interaction are crucial not only to understanding the mind but
also to revealing the causes of cognitive disorders [3].

Neuroscience researches argue that physiological signals,
which are difficult to disguise and hide [4], are more repre-
sentative of describing emotion than behavioral signals [5].
EEG is a physiological signal that directly and accurately
reflects human brain activity, and with the rapid development
of non-invasive and inexpensive EEG recording devices, EEG-
based emotion recognition has received increasing attention
[6].

Research on EEG-based emotion recognition involves two
main aspects, namely, EEG discriminant feature extraction and
emotion classification. Basically, the extracted EEG features
can be classified into two types: time domain feature type
(e.g., Hjorth feature [7], fractal dimension feature [8]) and
frequency domain feature type (e.g., difference entropy [9]).
Several researches [10] have indicated that distinct frequency
bands play an vital role in human emotional behavior. Further-
more, certain EEG-based emotion detection study [11] have
demonstrated the usefulness of frequency domain features in
emotion recognition. To obtain frequency domain information,
most researchers divide EEG signals into multiple frequency
bands, e.g., 6 band (1)-3 Hz), 6 band (4)-7 Hz), « band (8)-13
Hz), B band (14-30 Hz) and y band (31-50 Hz) [12], and then
extract distinct features separately.

CNN-based deep learning methods have become popular
in many fields in recent years and can extract local features
on regular grid data using convolutional kernels. However,
EEG signals are irregular due to electrode placement on an
irregular grid. Some studies [13], [14] that use CNNs and
RNNs have effectively transformed continuous EEG signals
into a regular grid for convolution, but their methods require
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Fig. 1. Our model uses MSFR to reconstruct EEG features (V) and
demonstrates the simultaneous use of E and V' for better results, while
others rely on E.

a 2D representation of the EEG channels on the scalp, which
leads to a loss of spatial information in these channels.
Representing a collection of EEG channels (V) and brain
connections (£) through graphs (denoted as G = (V, £)) is an
effective method. We characterize V as structure-independent
information, while £ are seen as structure-dependent informa-
tion. Due to GNNs’ superiority in irregular data, further EEG
signal topology studies using GNNs are underway in EEG
emotion recognition. Zhang et al. [15] designed Graph Convo-
lutional Broad Network (GCB-net) to explore the deeper-level
information of graph-structured data. Regularized graph neural
network (RGNN) was introduced by Zhong et al. [16] to
capture local and global interactions between EEG channels.
Song et al. [17] proposed an instance-adaptive graph neural
network (IAG) to model the relationships between EEG
channels more reasonable. Ye et al. [18] proposed hierarchi-
cal dynamic GCN (HD-GCN) to explore dynamic multilevel
spatial information among EEG channels.

Despite GNN’s superiority over CNN for EEG emotion
recognition, it still has two significant limitations. Firstly,
most GNN-based emotion models construct brain connections
from EEG channel associations, then use Message-Passing
[19] in GNN to learn more about the connection and EEG
feature. However, it appears that prior studies are dependent on
brain connections overly in EEG emotion recognition, lacking
proper utilization of EEG features (V), as shown in Fig. 1.
According to certain study [20], each frequency band and
channel has a crucial role in emotional responses and should
be assigned varying levels of importance. The aforementioned
GNN-based emotion detection models often use pre-processed
EEG features to generate graphs directly; all channels and
frequency bands share the same importance for EEG emotion
recognition, which results in an inappropriate graph represen-
tation. In brief, previous approaches undervalued EEG feature
and treated all channels/frequency bands equally. Secondly,
past researches have used simple pool methods (average or
sum) that are applied across the node dimension after GCN,
which is not ideal for EEG applications. GCN’s output (i.e.,
Z e R”Xd/) has channel-wise and feature-wise dimensions, but
the latter is artificially designated and doesn’t directly corre-
spond to realistic meaning. Pooling across the node dimension
leads to loss of specific and crucial channel information for
EEG task.

Aside from limitations in model design, the previously
used emotion datasets also have areas for improvement. Pre-
vious datasets explored the task of recognizing emotions
across subjects and sessions, producing findings to improve
our understanding of brain activity patterns. However, these

datasets were limited to young, healthy subjects. Cognitive
ability remains stable in a short session but can change with
age and disease (e.g., Alzheimer’s disease). Exploring the
emotional responsiveness of the elderly and the interaction
between emotion and cognition is difficult but rewarding,
and it may aid in the rehabilitation of people with cognitive
impairment.

Previous GNN-based models’ shortcomings are addressed
by our multi-scale feature reconstruction GCN (MSFR-GCN)
for EEG emotion recognition. The MSFR combines with a
feature-adaptive graph connections module [21] to enhance
the utilization of structure-independent and structural infor-
mation, respectively. Channel-SE and frequency-SE of MSSE,
based on designed variant of SE attention, explores what
channel and band weight reconstruction achieves the overall
optimum on the dataset. And the MSSR module integrates
channel and frequency domain information to assign variable
importance to samples. When GCN has enough structure
and structure-independent information, we use a reasonable
feature-pool across feature dimension to extract powerful
representation. Finally, we conduct subject-dependent and
subject-independent experiments on two widely used EEG
emotion datasets (SEED [11] and SEED-IV [22]). Addition-
ally, we introduce a dataset to explore the link between
emotion and cognition. Specifically, a group of elderly indi-
viduals, who experience cognitive problems, in different
cognitive stages were recruited from hospital and subjected
to experiments that induced joyful, neutral, and sad emotions.
On that emotion and cognition EEG dataset (ECED), we per-
form subject-independent emotion and cognition classification
experiments and analyze the results.

In summary, the contributions of this work can be outlined
as:

o We propose the MSFR module to enhance GCN’s learn-
ing of structure-independent information by assigning
weights to channels, frequency bands, and samples,
resulting in a more integrated and focused representation.
After GCN, we use the feature-pool to extract powerful
representation, and we get our MSFR-GCN.

o On two public EEG datasets, we conducte comprehensive
tests in both subject-dependent and subject-independent
classification conditions. The results show that our pro-
posed model is effective, and structure-independent infor-
mation is valuable. Moreover, our MSFR-GCN model
outperforms the competitive models in most experimental
conditions.

o We design an experimental paradigm that can simulta-
neously reflect the emotional and cognitive state of the
subjects and then perform subject-independent emotion
classification and cognition identification tests using our
self-collected EEG dataset. The findings suggest that
strong emotion can help with cognition recognition,
whereas low cognitive competence leads to decreased
sensitivity to emotion stimuli.

The remainder of this article is organized as follows.
Section II describes the proposed method in detail. Section III
introduces the details of our ECED and two public datasets,
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Fig. 2.

(a) The pipeline of the proposed MSFR-GCN. (b) The MSFR branch is provided to learn more structure-independent information. The

channel-SE, frequency-SE, and MSSR modules calculate the weights of various channels, frequency bands, and samples based on statistical
information from different perspectives, and then reconstruct the DE features individually. Finally, we concatenate these three modules to obtain the
final output of MSFR. (c) By comparing and visualizing the sum pool across different dimensions, we find that the feature-pool (sum across feature
dimensions) better maintains channel information. The detailed MSFR-GCN are described in Section Il.

and presents experimental results and analysis of all three
datasets. Section IV does ablation experiments, visualization
of the MSSE, and joint parameter sensitivity analysis for the
MSSE. Finally, Section V summarizes this study.

IIl. METHOD
A. Overview

In this section, we first introduce the attribute graph for
EEG features. Then we present the details of the proposed
MSFR-GCN model.

The framework of the proposed MSFR-GCN for EEG
emotion recognition is shown in Fig. 2. In MSFR-GCN, the
feature-adaptive branch is used to learn dynamic brain con-
nections. The MSFR branch examines the impact of assigning
varying weights to channels, frequency bands, and samples on
emotion detection and concatenates the scaled EEG features to
produce the final node features (). And those two branches
provide graph input to GCN, and after two layers, we sum the
graph via feature-pool to create the final EEG graph represen-
tation in MSFR-GCN. The final EEG graph representation is
then connected to a fully connected layer, and the predicted
labels are obtained through a softmax layer.

B. Attribute Graph for EEG Signals

Generally, we use EEG energy features X € R™? (n
and d are the number of EEG channels and frequency bands,
respectively) from five frequency bands (§: 1-4 Hz, 6: 4-8 Hz,

a: 8-14 Hz, B: 14-30 Hz, and y: 30-50 Hz) as input. A graph is
defined as G = (V, &), where V = {v;}!_, is the set of nodes,
E € R™" is the set of edges. Generally, we describe £ and V
in terms of the adjacency matrix A and X. A; ; represents the
connection between source node v; and destination node v;.
v; and v; are not connected if A; ; = 0, otherwise A; ; #0 .

The graph Fourier transform (GFT) [23] is a common
example of spectral graph filtering, or graph convolution.
To describe node connections, GFT uses the Laplacian matrix
L = D — A or the normalized Laplacian matrix:

L=I-D 14D 2 1)
where [ is the n-th order identity matrix and D is the diagonal
degree matrix of A. Given that Lisa symmetric positive
semi-definite matrix, it can be decomposed into L =UAU T,
where U is the orthonormal eigenvector matrix of L and
A = diag(rq, A A A, An) is a diagonal matrix.

For a given feature matrix X, its graph fourier transform is
X = UTX, and the corresponding inverse fourier transform
is X = UX. The graph convolution operation *g between the
input X and the filter G can be expressed as:

Y=XxG=U(U'X)0 (U'G) =UGU"X (2)

where © is the element-wise Hadamard product, and G is
the convolution kernel in the spectral domain. Finally, the
convolution theorem from classical signal processing has been
extended to graphic frequency representation.
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C. Feature-Adaptive Graph Connection

The adjacency matrix A € R"*" describes EEG channels’
topology and is crucial for learning graph representation.
Our model doesn’t aim to find a better method for building
channel connections, but an efficient strategy is still necessary.
Jia et al. [21] provided an adaptive graph learning approach
that learns the graph structure dynamically rather than being
formed by prior information or artificial means. A;; =
g(xi,xj) G, j € {1,2,---, N}) represents the connection
between node x; and x; based on the input feature matrix
X=((x1,x2,..., xn)T e R"™4 and g(+) is defined as:

exp (ReLU (w” |x; — x/|))
> 01 exp (ReLU (w |x; — x;1))

where w is a learnable vector. The approach described above
subtracts x; from x;, then normalizes them with the softmax
operation to obtain the connection weights A; ;.

g (xixj) = (3)

D. Multi-Scale Feature Reconstruction

1) Multi-Scale SE: Since different channels and frequence
bands contribute unequally for emotion recognition, so adap-
tive assignment of varying importance to them is necessary.
The Squeeze-and-Excitation(SE) [24] attention is able to
recalibrate channel-wise feature responses by explicitly mod-
eling interdependencies between channels. However, original
SE attention is biased towards image-like data (i.e., U €
RAXWXCY For a graph feature map X € R"*? with only
two dimensions, we cannot use SE directly because it only
evaluates channel-wise descriptors for image-like data. Due to
the importance of spatial and frequency information in human
emotion recognition, we propose a multi-scale SE (MSSE)
unit for graph-like data to highlight the most informative
features for EEG tasks. The MSSE is composed of two variants
of the SE attention, channel-SE and frequency-SE, which
obtain weights based on the spatial and frequency perspectives,
respectively.

Fig. 2b depicts the structure of the MSFR block, with
the first two branches representing the MSSE. EEG features
are passed through channel-squeeze and frequency-squeeze
operations to obtain the channel and frequency descriptors,
respectively, by calculating the mean across their spatial (d)
and frequency dimensions (n). The two descriptors enable the
embedding of global channel-wise and frequency-wise feature
responses, giving all network layers access to global receptive
field information. That aggregation is followed by an excitation
operation, taking the form of a self-gating mechanism, and
outputting per-channel and per-frequency modulation weights.

Specifically, both channel-squeeze and frequency-squeeze
are done via 1D global-average pooling to generate
channel-wise and frequency-wise statistic features. Formally,
the statistic output calculated by global average pooling is
defined as:

1 d
Zesg = Fesg(X) = 2 > X(n,) )
=1
l n
2ysg = Frsg(X) =~ > X(t,d) (5)
t=1

where X is the EEG feature. The squeeze operation (i.e., Z¢sq
and z rs) generates global statistical features for both channel
and frequency information, followed by an excitation operation
(Feyx) that fully utilizes their dependencies through two fully
connected (FC) layers. Excitation operation generates weights
for channels and frequency bands, which are multiplied by
input X to generate reconstructed features from various scales.
The outputs of the channel-SE and frequency-SE operations
are denoted by:

Z. = Fex(chq)X =0 (W28 (Wlchq)) X (6)
Zf = Fex(Zfsq)X =0 (W48 (W3Zfsq)) X (7N

where W; refers to the weight of FC layers, §(-) is the RELU
function, o(-) is the Sigmoid function, Z. and Z; are the
results of the channel-SE and frequency-SE operation. Among
the F,, operation, there is a reduced dimension r (i.e., W] €
R"*¢ and W, € R*") and that hyperparameter settings will
be discussed in Section IV.

2) Multi-Scale Sample Re-Weighting: Although channel and
frequency branches do not interflow information, they can
be viewed as a set of local descriptors whose statistics are
informative for the entire input EEG feature [24]. Therefore,
feature reconstruction should be jointly recalibrated across
multiple domains. Additionally, DNNs tend to overfit to
biased training data with class imbalance [25], and sample
re-weighting strategies are commonly used to mitigate this
issue.

To address the concerns, we propose MSSR, a multi-scale
sample re-weighting unit that learns an adaptive weighting
function from both a spatial and a frequency perspective. The
MSSR’s input is a concatenation of channel descriptor (z¢sq)
and frequency descriptor (z rs4). The weighting function is an
MLP with one hidden layer, enabling the approach to fit a
variety of weighting functions. The formula of MSSR is as
follows:

Z;=SX=0 (W68 (Ws(chq”Zfsq))) X ®)

where W; refers to the parameters of the MLP, S represents
the weight of the sample, and || is the concatenating operator.
Based on the descriptors from different scales and MLP,
we finally get re-weighting samples as Zj.

To make rational and efficient use of the reconstructed
features (Z¢, Zy and Zjy), the output of the MSFR module
is designed as:

Xre = (ZflIZN Zs) (€))

E. Graph Construction and Graph Convolution Network

From the above two subsections, we obtain matrix A
describing the brain connections and the reconstructed EEG
features X, as the input for GCN.

Kipf and Welling [26] presented an efficient variant of
CNNs operating directly on graphs. They made a localized
first-order approximation to ChebNet [27], and formulated a
2-layer GCN as follows:

Z = softmax (i ReLU (IZX,eW“)) W(2>) (10)
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The normalized laplacian matrix L prevents the value in
the feature matrix from getting too large. Finally, the graph
pool is used to resize the features to a fixed size before graph
classification. It’s worth noting that the global-add pool is
performed across the feature dimension instead of the channel
dimension [16], and we refer to it as feature-pool. And the
final graph represention of MSFR-GCN is defined as:

d
g = Z Z(n,t)
=1

where Z is the output of GCN, and g is the input of
classification net.

11

F. Algorithm For MSFR-GCN

We iteratively update network parameters using backpropa-
gation (BP) until optimal results are achieved. We establish a
cross-entropy loss function with the following form:

Loss = crossentropy (l, lp) + |82 (12)

where 1 and 1P denote the training data’s actual and predicted
label vectors, ® denote all of the model’s parameters, o
denote the trade-off regularization weight, and || - || denote
the I, — norm. We employ cross entropy loss to quantify
the dissimilarity between predicted and real labels, as well as
regularization «||®| to prevent overfitting of model parameters
learning and limit adjacency matrices A.

The Algorithm 1 summarizes the training procedures of the
proposed MSFR-GCN on EEG-based emotion and cognition
recognition.

Algorithm 1 The Training Procedure of MSFR-GCN
Require: X, Y: EEG features associated with multiple fre-
quency bands and the corresponding labels; n: The learn-
ing rate for backward updating parameters; 7: number of
epochs; B: batch size; «: The hype-parameter of the L2
regularization; r: The reduced dimension of the MSSE
unit
Ensure: The learned model parameters in MSFR-GCN;
1: Randomly initialize model parameters in MSFR-GCN
using Xavier initialization [28];
2. fori=1:T do

3 repeat

4: Draw one batch of training samples;

5 Calculate the adjacency matrix A using (3);

6 Calculate the output (X,.) of MSFR using (6), (7),

(8) and (9);

Calculate GCN’s output (Z) using (10);

Do feature-pool(11) after GCN;

: Calculate the result (g) of the classification net;

10: Calculate the loss function using (12);

11: Update parameters in the MSFR-GCN model with

gradient descent;

12:  until the iterations satisfies the predefined algorithm
convergence condition.

13: end for

® 3

IIl. EXPERIMENTS
In this section, we verify our model’s performance on one

private dataset and two widely used EEG emotion datasets
(ECED, SEED, and SEED IV) and analyze the results.

A. Protocol of the ECED

To better use emotional stimuli to help determine cognitive
states, we chose the more established Oddball paradigm for
better cognitive judgment [29]. Specifically, there are three
emotion pictures used to elicit happy, neutral and sad emotion,
and squares and circles (representing standard and target
stimuli) are used to facilitate cognitive activities. The partic-
ipants belonged to three main cognitive states: Alzheimer’s
disease (AD), mild cognitive impairment (MCI), and healthy
control (HC). AD is a progressive neurodegenerative disorder
characterized by cognitive, and functional changes and its
prevalence escalates with age [30]. MCI subjects display
memory impairment beyond their age expectations but do not
meet the criteria for dementia diagnosis. HC refers to elderly
subjects without cognitive impairment.

All participants were informed about the study protocol
and the groups had a homogeneous age (mean: 66.24, std:
7.10) and gender (14 males and 19 females). EEG data were
recorded from 33 subjects: 11 AD patients, 11 MCI patients,
and 11 HC subjects. All subjects completed Montreal Cogni-
tive Assessment (MoCA) [31], Cognitive Abilities Screening
Instrument (CASI) [32]. The hospitalists assess the subject’s
overall cognition and complete the Clinical Dementia Rating
(CDR) [33] based on the subject’s questionnaire performance.

Subjects sat 100 cm from a computer screen in a dimly lit
room. Each cognition group viewed three randomly ordered
emotional scenarios, and the test flow is shown in Fig. 3. After
each experiment, the participants rated their corresponding
emotional response to the experiment based on their actual
feelings (0-10, with O indicating no emotional response).
Self-measurement scores for neutral, happy, and sad were
as follows: AD (6.55/7.00/6.97), MCI (7.73/7.82/6.82), and
HC (8.27/8.63/8.18). Individuals with more severe cognitive
deterioration show lower sensitivity to emotional stimuli and
record lower self-assessment scores.

According to the international 10-20 system, the 32-channel
EEG signals were recorded using g.Nautilus Research EEG
cap at a sampling rate of 250 Hz. Additionally, the signals
were band-pass filtered between 0.1 and 30 Hz. After that,
ICA [34] was adopted to remove eye blinking artifacts.

B. Brief Description of Datasets

To assist identification, we directly employ pre-computed
DE features smoothed by linear dynamic systems [11] to
establish a fair comparison with prior works.

1) SEED and SEED-IV: For SEED and SEED-IV, DE fea-
tures are pre-computed over five frequency bands (delta, theta,
alpha, beta, and gamma) for each second of EEG signals
(without overlapping) in each channel.

There are 15 subjects and 3 sessions per subject in the
SEED dataset. Each session included 15 film clips, five for
each mood, evoking three types of emotions: positive, neutral,
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and negative. Each person had 15 trials per session, with 185-
238 samples per trial, resulting in a total of approximately
3400 samples. SEED-IV is an extension of the SEED dataset,
which includes four emotions: happy, neutral, sad, and fear,
each with six film clips. Each session has 24 trials with 12-64
samples, totaling approximately 830 samples.

2) ECED: One-second sliding window was applied to seg-
ment EEG signals, and the DE features were extracted from
four frequency bands (8, 6, «, and B band). Therefore, for
33 subjects, an average of 3600 samples could be obtained for
each subject, and each sample had 32 dimensional features.

C. Experimental Protocol

To evaluate our model, two types of experiments are used:
subject-dependent and subject-independent. The training and
testing data for the subject-dependent task are obtained from
different trials of the same individual, whereas for the subject-
independent task, they are obtained from different subjects.

1) SEED and SEED-IV: The same protocol as in [16], [35],
and [36] is used for the subject-dependent experiment. In par-
ticular, we train our model on each subject in the SEED dataset
using the first 9 trials for training and the remaining 6 trials
for testing in two sessions. For the SEED-IV dataset, we train
our model on the first 16 trials and test it on the remaining
8 trials, which cover all emotions (two trials per emotion class)
in three sessions.

For the subject-independent experiment, we use the leave-
one-subject-out (LOSO) cross-validation strategy as in [37],
where one subject’s EEG emotion data is used for testing
and the remaining subjects’ data for training. Specifically,
we evaluate the model’s performance across all test subjects
in one session for SEED and three sessions for SEED-IV.

2) ECED: We conduct subject-independent emotion and
cognition classification experiments. For emotion classification
on the ECED, we use the LOSO strategy across three cognitive
groups (HC-group, MCI-group, and AD-group) and evaluate
model performance by averaging accuracy across the three
groups.

Direct subject-independent cognition classification is not
possible for the ECED, as a person cannot be in all three
cognitive states simultaneously. We categorize the experimen-
tal data into three emotion groups (happy group, neutral group,
and sad group) based on their emotional states. Fig. 4 displays
three groups in the same emotional state, but belonging to
different cognitive states. To create a “subject” with three
cognitive states in one emotion states, we choose one subject
sequentially from each set of cognitive states. For cognition
classification, we perform experiments using data from all
three emotion groups.

D. Setup of the Experiments

In the experiments, the size of the input X is n x f and the
output dimension of each electrode is 20. In particular, MSFR-
GCN is implemented using PyTorch on a Nvidia 3070 laptop
GPU and trained using the Adam optimizer with batch size
128, learning rate 0.005, and weight decay rate 2e-5. The mean
accuracy (ACC) and standard deviation (STD) are employed
as evaluation criteria in all datasets.

E. Experimental Resluts and Analysis for ECED

Table I show the results of two experiments (cognition task
and cognition task) conducted on the ECED.

To verify the validity of MSFR-GCN on the ECED,
we select the baseline model, which combines GCN and a
feature-adaptive graph connections module, along with EEG-
Net [38] as the comparative method. The former serves as the
baseline for our model, while the latter represents a typical
application of the convolutional model in the EEG domain.
The comparison results with baseline show the significant
effectiveness of our designed MSFR and feature-pool on two
cross-subject tasks, and the comparison results with EEG-
Net demonstrate the superior performance of our designed
MSFR-GCN than convolutional network. Next, we reanalyzed
the results in terms of group. Firstly, the results of all models
show that low cognitive group(AD,MCI) will lead to worse
emotion recognition, and happy emotion can obviously help
to identify the cognitive state. Secondly, our model narrows
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TABLE |
SUBJECT-INDEPENDENT EMOTION CLASSIFICATION ACCURACY
(MEAN/STD) ON ECED

Model(Cognition Task) Sad-group Neutral-group Happy-group  Average
EEGNet 45.89/12.60  46.22/15.67  48.48/12.81 46.86/14.03
baseline 48.76/11.01 48.53/13.48  51.97/11.21 49.75/12.06

MSFR-GCN 63.87/08.29  63.65/11.35  64.77/07.53 64.10/08.92

Model(Emotion Task) HC-group ~ MCI-group AD-group Average
EEGNet 43.59/09.50  41.78/10.85  40.54/08.46 41.57/09.82
baseline 46.05/09.61  45.39/09.37  43.22/07.72 44.88/09.06

MSFR-GCN 57.98/08.67 56.72/09.88  55.93/05.44 56.88/08.00
TABLE Il

SUBJECT-DEPENDENT AND SUBJECT-INDEPENDENT CLASSIFICATION
ACCURACY (MEAN/STD) ON SEED AND SEED-IV

Model SEED SEED-IV
dependent independent dependent independent
SVM 83.99/09.72  56.73/16.29  56.61/20.05  37.99/12.52
DGCNN 90.40/08.49  79.95/09.02  69.88/16.29  52.82/09.23
BiDANN 92.38/07.04  83.28/09.60  70.29/12.63  65.59/10.39
RGNN 94.24/05.95  85.30/06.72  79.37/10.54  73.84/08.02

IAG 95.44/05.48  86.30/06.91 — —

GMSS 96.48/04.63  86.52/06.22  86.37/11.45  73.48/07.41
RGNN w/o DA — 81.92/09.35 — 71.65/09.34
MSFR-GCN 96.63/04.60  86.78/05.40  89.02/11.31  73.43/07.32

“w/o DA” means removing node-wise domain adversarial training component.

the gap between groups and has better robustness. Specifically,
the maximum difference of cognition task between groups
decreased from 3.44%(baseline) to 1.12%(MSFR-GCN), and
the maximum difference of emotion tasks decreased from
3.05%(EEGNet) to 2.05%(MSFR-CGN). Lastly, the cognition
task results of all models showed that the neutral-group has a
significantly larger standard deviation, and the AD-group has
a significantly smaller standard deviation in the emotion task.
This proves that neutral emotion do not have stable patterns
that help cognitive recognition, and AD-group have consis-
tently poor performance in emotional responses, reflecting less
complex and more consistent brain activity.

The finding is consistent with the notion that cognitive
abilities can influence emotional reactions and strong emotion
help to distinguish cognition [1], [3]. Though emotion task are
challenging due to issues with the Oddball paradigm and single
emotional picture stimuli, our model has great performance
improvement and stability improvement on both cognitive and
emotional tasks.

F. Experimental Resluts and Analysis for SEED and
SEED-1V

To compare MSFR-GCN'’s benefits, similar experiments
were carried out as with other methods such as linear support
vector machine (SVM) [39], dynamical graph convolutional
neural network (DGCNN) [40], bi-hemisphere domain adver-
sarial neural network (BiDANN) [36], regularized graph neural
network (RGNN) [16], instance-adaptive graph method (IAG)
[17], and graph-based multi-task self-supervised(GMSS) [41].
These approaches represent earlier studies on emotion recog-
nition, and their outcomes are directly cited from the literature
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to ensure a compelling comparison with the proposed method.
The experiments results are summarized in Table II.

In subject-dependent experiments on two public EEG emo-
tional datasets, MSFR-GCN outperforms all other mentioned
methods, including four GNN-based models. MSFR-GCN per-
forms 2.65% better than the most advanced approach, GMSS,
on SEED-IV, indicating its superior discriminating ability in
subject-dependent experiments.

Subject-independent experiments were conducted, and
MSFR-GCN achieved the best performance on SEED, surpass-
ing the previous best method, GMSS, by 0.26%. Our model
also outperforms RGNN and BiDANN on the SEED dataset,
which incorporate domain adversarial structure, by 1.48% and
3.50%. Meanwhile, MSFR-GCN performs similarly to RGNN
and GMSS on SEED-IV, achieving 73.43%, 73.84%, and
73.48% accuracy, respectively. Removing RGNN’s domain
adversarial training component (RGNN w/o DA) designed
for subject-independent tasks resulted in a 1.83% decrease
in accuracy compared to MSFR-GCN. Compared to GMSS,
MSFR-GCN exhibited competitive performance and improved
stability, achieving slightly lower result but with a lower stan-
dard deviation. Additionally, MSFR-GCN achieves the lowest
standard deviation when compared to all tasks, confirming its
superior discriminating and generalization abilities.

Using our designed MSFR and feature pool, MSFR-GCN
reconstructs EEG features by incorporating information from
multiple scales, generating a more suitable graph representa-
tion for EEG tasks, resulting in positive outcomes on diverse
datasets and tasks.

G. Confusion Matrix for SEED and SEED-IV
In Fig. 5, we present the confusion matrices of the EEG

emotion recognition results using the proposed MSFR-GCN
model on SEED and SEED-IV. In both subject-dependent and
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TABLE lII
ABLATION STUDY FOR SUBJECT-DEPENDENT AND
SUBJECT-INDEPENDENT CLASSIFICATION ACCURACY (MEAN/STD) ON
SEED AND SEED-IV

Model SEEI? SEED-'IV
dependent independent dependent independent
MSFR-GCN 96.63/04.60  86.78/05.40  89.02/11.31  73.43/07.32
w/o MSSE 95.13/05.38  83.73/05.87  86.41/11.50  69.75/08.37
w/o MSSR 95.97/05.18  83.98/06.92  87.63/10.70  72.30/09.32
w/o feature-pool  93.05/06.20  83.08/06.51  84.18/11.15  70.52/09.17
w/ MSSE 92.67/06.73  82.58/05.64  83.31/12.20  71.38/08.64
w/ feature-pool  91.34/07.94  81.86/05.30  80.81/12.24  64.22/09.56
baseline 89.91/07.60  71.70/13.10  74.35/14.09  58.62/07.23

subject-independent experiments on SEED, happy emotions
are easiest to distinguish, while sad emotions are the hardest,
consistent with previous works [41]. And also, we find that sad
and neutral emotions are frequently misidentified to each other
by the model, suggesting that they share some similarities.

For the SEED-IV dataset, neutral and sad emotions
are easier to recognize than happy and fear emotions in
both subject-dependent and subject-independent experiments.
Notably, sad and neutral emotions have the highest accuracy
(94.45% and 79.94%, respectively) in both subject-dependent
and subject-independent experiments. This suggests that EEG
patterns generated from neutral movies may share more sim-
ilarities among people, while fear is the most challenging
emotion to identify in both tasks. In subject-independent
experiments, sad, fearful, and happy emotions are commonly
misidentified as neutral emotions.

Due to the individual differences, subject-dependent exper-
iments achieve higher classification accuracy than subject-
independent experiments. While MSFR-GCN proves effective
in emotion recognition, emotional activity patterns can vary
significantly among individuals, so a fully general paradigm
for frequency and channel perspectives still needs to be
explored, and our model requires further improvement.

IV. DISCUSSION

This section investigates the proposed method and includes
the ablation study of MSFR-GCN, the visualization of MSSE,
and a joint parameter sensitivity analysis for MSSE.

A. Ablation Study

In this section, we perform an ablation study on
subject-dependent and subject-independent experiments on
SEED and SEED-IV to validate the effectiveness of each
module in our method. As depicted in Table III, the notation
“w/” indicates the combination of the baseline model with the
subsequent component, while “w/0” indicates the removal of
the component.

Compared to the baseline model, all other configurations
show better performance, demonstrating the efficacy of the
proposed modules (MSSE, MSSR, and feature-pool). Further-
more, the highest accuracy is attained when all three modules
are combined for all tasks. A simple feature-pool design
that only adjusts the dimension of the pool sum leads to
improved results on all tests, highlighting the efficacy and
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Fig. 6. Weights of frequency bands on SEED and SEED-IV.

rationality of the feature-pool approach for emotion recogni-
tion tasks. Although our module achieved good results on the
subject-dependent task in the SEED dataset, the improvement
in performance was less significant compared to the subject-
dependent condition. Results suggest that MSFR-GCN excels
at challenging tasks such as subject-independent classification
and recognition of more emotions. Removing the MSSR mod-
ule has a small effect on performance compared to removing
the other two modules. When comparing the two experimental
setups, w/ MSSE and w/ feature-pool, it is apparent that the
more complicated and targeted design, w/ MSSE, performs
better on all tasks.

B. The Visualization of the Learned Weight in
Multi-Scale SE

To explore suitable weight reconstruction, we visualize the
weights of channels and frequency bands for SEED and
SEED-IV datasets (Fig. 6 and Fig. 7). The weights were
collected from test samples of all participants. From Fig. 6a,
we observe consistent results with previous studies [11], [20],
showing that the 8 and y bands have higher weights, while
the o band has intermediate weights. This aligns with the
higher classification accuracy observed for happy and neutral
emotions in the confusion matrix.

SEED-IV includes fear emotion, and negative and neutral
emotion account for about a quarter of the data. According
to research [11], [20], the B and y bands are associated with
good emotions, while the o band is associated with neutral
emotions. Therefore the overall effect will be bad if the high
frequency band is overemphasized. Knyazev et al. [42] found
that explicit anxiety is associated with reduced theta band
synchronization and higher alpha band de-synchronization in
subjects experiencing high anxiety. Ertl et al. [43] found a
positive correlation between EEG oscillations in the theta
range and successful use of cognitive reappraisal in order
to decrease negative emotions. Lesting et al. [44] claimed
that theta activity thus seems to constitute an integrative
mechanism for coordination of activity in the fear memory
network. Tortella-Feliu et al. [45] thought higher spontaneous
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frontal alpha activity was the predictor of faster recovery from
discomfort elicited by normative neutral pictures. We argue
that Alpha responses corresponded to participants’ perception
of neutral stimuli. Theta activity was observed during the
processing of sad and fear stimuli, which can trigger fear
memories and generate anxiety. Positive emotions were linked
to enhanced beta and gamma responses. In order to achieve
good global results, our model assigns more weight to theta
and alpha in Fig. 6b, which is consistent with previous phys-
iological studies.

As shown in Fig. 7a, channel weights on the SEED have
high and asymmetric activation in the frontal and temporal
lobes, which is consistent with studies on SEED [11], [20].
The results on SEED-IV datasets highlight the importance of
the prefrontal and temporal lobes, as well as the involvement
of the occipital and parietal lobes. Zheng et al. [20] reported
that positive emotions activate more lateral temporal areas than
negative emotions, neutral emotions elicit stronger responses
at parietal and occipital sites, and negative emotions result in
higher responses at parietal and occipital sites and prefrontal
sites. Our findings in SEED-IV is consistent with above
conclusion. Moreover, Zhong’s [16] analysis of important
brain regions on SEED-IV was consistent with ours. When
there are more kinds of emotions, the brain’s workings become
more complex.

C. Sensitivity Analysis for Multi-Scale SE

Hu et al. [24] proposed the SE module, which utilizes an
excitation operation with a reduction ratio that affects the
model’s performance and complexity. Since the number of
EEG channels (62) and frequency bands (5) are not easily
divisible by an integer, we introduce the reduced dimension
without changing the core idea of the “excitation operation”.
Then we conduct a combined sensitivity analysis of the MSSE.
Actually, we perform subject-dependent sensitivity analysis of
reduced dimension on SEED and SEED-IV, and the results are
shown in Fig. 8.

The model achieved the highest accuracy (96.63% and
89.01%) for subject-dependent experiments on SEED and
SEED-IV with 4 x 2 and 8 x 4 reduced dimensions for
channel-SE and frequency-SE, respectively. Furthermore, the
model achieves the lowest accuracy (95.66% and 87.34%)
when the reduction dimension is 31 x 3 and 4 x 2. In general,
the results in Fig. 8a and Fig. 8b indicate that performance

enn@A$€ @5\)& ”ns./_5€ ?260@6

(a) SEED (b) SEED-1V
Fig. 8. Parameter sensitivity joint analysis of MSSE on SEED and
SEED-IV.

is robust for a range of reduced dimension combinations, and
increasing complexity does not consistently improve perfor-
mance.

Notably, given the robust performance of the SE mecha-
nism, we did not explore all parameter combinations to achieve
the highest accuracy in subsequent subject-independent exper-
iments on SEED, SEED-IV, and ECED. We just chose suitable
parameter combinations for multi-scale SE, using 8 x 3 for
two public datasets and 8 x 2 for ECED. And the results also
tell that the parameters used above can achieve competitive
performance across the subject-independent task.

V. CONCLUSION

In this paper, a MSFR-GCN model is proposed for EEG
emotion and cognition recognition. Different from earlier
research that has focused on brain connections, we propose
the MSFR to emphasize the value of structure-independent
information in EEG data. Meanwhile, we adopt a more
suitable feature-pool to get EEG graph representation. Exten-
sive experiments on two public datasets demonstrate the
superior performance of our model over the state-of-the-art
GMSS in most experimental settings, and the visualization
of channel weights and frequency band weights has proven
that our MSFR can assign different and valid weights in
most situations. We also do joint parameter analysis for the
MSSE module and verify its robust performance. To address
the limitation of the previous dataset, we introduce ECED
and perform two subject-independent experiments on it. The
results of ECED show that emotion and cognition can impact
one another to some extent. In future work, better joint use
of structural and unstructured information will be further
investigated to explore how to further improve EEG emotion
recognition.
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