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Abstract— Biometric-based  personal identification
models are generally considered to be accurate and
secure because biological signals are too complex
and person-specific to be fabricated, and EMG signals,
in particular, have been used as biological identification
tokens due to their high dimension and non-linearity.
We investigate the possibility of effectively attacking
EMG-based identification models with adversarial
biological input via a novel EMG signal individual-style
transformer based on a generative adversarial network and
tiny leaked data segments. Since two same EMG segments
do not exist in nature; the leaked data can’t be used to
attack the model directly or it will be easily detected.
Therefore, it is necessary to extract the style with the
leaked personal signals and generate the attack signals
with different contents. With our proposed method and tiny
leaked personal EMG fragments, humerous EMG signals
with different content can be generated in that person’s
style. EMG hand gesture data from eighteen subjects and
three well-recognized deep EMG classifiers were used
to demonstrate the effectiveness of the proposed attack
methods. The proposed methods achieved an average of
99.41% success rate on confusing identification models
and an average of 91.51% success rate on manipulating
identification models. These results demonstrate that EMG
classifiers based on deep neural networks can be vulnera-
ble to synthetic data attacks. The proof-of-concept results
reveal that synthetic EMG biological signals must be con-
sidered in biological identification system design across a
vast array of relevant biometric systems to ensure personal
identification security for individuals and institutions.

Index Terms— EMG, synthetic biological signal, genera-
tive adversarial network, identification.
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[. INTRODUCTION

LECTROMYOGRAPHY (EMG)-based hand gesture
Erecognition is a representative application of
human-machine interface technology [I1], [2]. Due to
the high information related to neural activities and high time
resolution, EMG-based hand gesture recognition methods have
played vital roles in prosthetic control, VR/AR interaction,
user verification, and identification [3], [4].

Since the EMG signals are high-dimensional and generated
from complex physiological structures, the EMG signals of
the same hand gesture have significant differences between
individuals. These individual differences will pose technical
challenges for applications, including prosthetic control, but,
in turn, hold potential to be reliable tokens for personal
identification. With the help of machine learning or deep
learning recognition models, EMG-based user identification
systems can achieve an averaged equal error rate of 1% to 4%
using multi-channel EMG bands or high-dimensional EMG
systems [5], [6].

These research studies show that EMG-based user identi-
fication systems are highly functional, and since biological
signals are high dimensional and complex, biometric-based
identification systems are usually considered to be highly
secured. However, in recent years, many attack methods
have been proposed and received intensive attention; these
methods usually add designed small perturbations into the
input data to manipulate models’ output or make models
confused [7]. A brief literature review on attacking biologic
recognition models will also be provided in the next section.
Among these models, the most notable is the deployment
of generative neural networks in image synthesis [8]. These
synthetic images successfully cheated the most state-of-the-art
identification models and caused huge security risks. However,
for attacking EMG-based identification models using synthetic
EMBG signals, there are few related studies, but these attacks
may cause huge security problems and potentially inevitable
losses to users.

Therefore, we proposed two assumptions in this paper:
first, an individual’s EMG style can be learned by a neural
network; second, with the learned EMG style, synthetic EMG
signals with the same style can be generated and used to
attack EMG-based identification models. To validate these
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Fig. 1. Suppose that an identification model based on a deep con-

volutional neural network (CNN) uses EMG hand gesture signals input
from a 128-channel high-density EMG armband as tokens. However, if a
user's EMG signals were leaked due to various reasons, his personal
EMG style can be extracted from them and used as a target style to
generate synthetic EMG signals via a generative adversarial network.
With these synthetic EMG signals, attackers can effectively hack the
identification system and manipulate its outputs, which may cause huge
risks to personal privacy and information security.

assumptions, we built an EMG signal style transformer based
on the cycle generative adversarial network to learn an indi-
vidual’s EMG hand gesture signal style and generate other
individuals’ synthetic EMG hand gesture signals in the same
style (Fig. 1). Experiments on three deep identification models
and eight hand gestures of eighteen subjects validated that
the artificial synthetic EMG signals can effectively cheat deep
identification models and manipulate them to achieve the
attacker’s desired outcome. It is worth mentioning that, due
to the high dimension and non-linearity of EMG signals,
no two EMG segments should be the same; otherwise, they
will be easily identified as synthetic attacks by the security
system. In addition, when encountering identification systems
requiring long-time sampling, few leaked data will soon run
out, so attackers will be forced to use repeated data and
thus be detected. Therefore, using leaked data to directly
attack identification systems is not practical and deep fake
data generation methods are necessary. In addition, the focus
of this paper lies in exploring the possibilities of potential
attacks from the biological perspective instead of from the
mathematical perspective that aim at the working principle of
identification models.

The contributions of this paper are as follows: (1) We
proposed an attack method based on the generative strategy,
which can generate style-transferred synthetic EMG hand
gesture signals while keeping the content the same. (2) We
demonstrated that synthetic EMG signals are capable of cheat-
ing the personal identification systems which imply that the
synthetic biological signals must be taken into consideration
in biological identification systems, design. Our methods hold
the potential to be used to guide the design of millions of iden-
tification devices to protect people’s privacy and information
safety.

This paper was organized as follows: in Section II, a brief
literature review on related studies is presented. In Section III,
the problem formulation and structure of the proposed syn-
thetic signal generation methods are introduced. In Section IV,
experimental protocol, validation protocol, and results are

introduced. Finally, in Section V, discussion on our attack
methods and results is presented.

I[l. BACKGROUND RESEARCH
A. EMG-Based User Identification

Recently, various novel identification technologies based
on biometric technologies have been reported by worldwide
researchers. Since the gesture-recognition-based identification
technologies using EMG signals can be collected during
human hand activity and are similar to the process of
traditional identification methods (e.g., entering passwords
by hand), they have been intensively explored by various
researchers. Yamaba et al. [9] proposed the idea of utilizing
EMG signals for user identification and achieved promising
results using a support vector machine (SVM) classifier.
Jiang et al. [10] utilized HD-sEMG signals of common daily
hand gestures as identification inputs and proposed a cance-
lable HD-sEMG-based biometrics system to protect personal
information security. Pradhan et al. [11] designed a series
of experiments on the effect of different feature extraction
methods and the number of channels to the EMG-based
identification system and systematically investigated the per-
formance of sixteen static wrist and hand gestures.

Compared with other biometric identification systems (e.g.,
gait-based [12], electrocardiograph (ECG)-based [13], and
electroencephalograph (EEG)-based [14]), the EMG-based
methods show advantages on high information security, high
signal-to-noise ratio, high recognition accuracy, and more
convenient acquisition [5].

B. Attacks on Biological Classifiers

Artificial intelligence models represented by deep learning
models achieved remarkable success in various recognition
tasks, but their vulnerability to interference or attacks also
drew great attention [15]. There are three kinds of attack
methods according to how deep the attacker can get access
to the target models: white-box attacks, gray-box attacks, and
black-box attacks. The black-box attacks are most practical
because they only need to know the input and output of
the target models. Su et al. [16] successfully cheated image
classifiers by changing a single pixel of the input. Recently, the
famous Open Al lab announced a simple but highly effective
method called the typographic attack: simply pasting a tag with
a note on the object can mislead the state-of-the-art recognition
models [17]. With a similar strategy, researchers broke the
state-of-the-art Face ID system with a printed sticker [18].
Attacks on the brain-computer interface (BCI) were also
investigated. Zhang et al. [19] achieved effective attacks on
EEG-based BClIs and proved the vulnerability of convolutional
neural network (CNN) classifiers under small deliberate per-
turbations. Liu et al. [20] proposed a total loss minimization
approach to generate universal adversarial perturbations to
attack EEG-based BCIs and successfully manipulated the
output of the models. Zhang et al. [21] and Bian et al. [22]
conducted intensive studies on the attack on EEG-based BCI
spellers, and the results showed that the BCI spellers can
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be easily manipulated and may cause serious problems like
medical misdiagnose.

C. Synthetic Biological Signals

The generative neural network is a kind of artificial intel-
ligence model that can generate synthetic images or data,
and the generative adversarial network (GAN) is the most
representative [23]. GAN is a deep learning frame that consists
of a generator and a discriminator. The generator is used
to generate synthetic data, and the discriminator is used to
discriminate between the synthetic data and real data, therefore
helping the generator to generate more realistic synthetic data.

In addition, GAN also provides a new way to generate syn-
thetic biological signals which were considered too complex
to generate synthetically. Jiao et al. [24] utilized Wasserstein
GAN generated EEG and EOG signals to expand the dataset
and improve classifier performance in driver sleepiness detec-
tion. Other research also reports the contribution of Wasser-
stein GAN in emotion recognition [25]. Access to personal
ECGs is restricted because of privacy concerns, but building
automated computer-aided diagnosis systems requires vast
amounts of data. Nankani et al. [26] proposed an approach
for generating irregular beats (e.g., supraventricular ectopic,
ventricular ectopic, and normal beats) with a conditional GAN
to generate synthetic ECG data for diagnosis systems’ datasets.
Ding et al. [27] proposed a log-spectral matching GAN to
generate PPG signals for atrial fibrillation detection.

Generated synthetic EMG data also received attention from
the neuroscience community. Anicet et al. [28] utilized deep
convolutional generative adversarial networks and style trans-
fer to generate Parkinson’s disease EMG signals to reduce
the displeasure and pain of patients to collect lots of data.
Campbell et al. [29] validated the feasibility of generating
EMG signals with hand motions information using a deep
generative model called sinGAN. Bird et al. [30] utilized a
generative model called the generative pre-trained transformer
to generate synthetic EMG signals of three gestures, including
hand open, hand closed, and at rest, and demonstrated the
synthetic data in a prosthetic hand control application.

To our best knowledge, there were no studies focused on
EMG style transferring between individuals using generative
methods or studies that tried to disclose the security risk of
synthetic data in EMG-based identification systems. This work
indicated that the resistance to synthetic biological signals and
data protection or encryption must be taken into consideration
in biological identification systems design. We hope our work
can draw researchers’ attention to the potential threat of
synthetic biological signals to personal information security
and property security.

Ill. METHODS
A. Problem Formulation and Overview

Suppose a biometric-based identification model can accu-
rately recognize a type of EMG hand gesture signals as
subject A:

Yo =ID(X,) (D

TABLE |
GENERATOR STRUCTURE

Layer Details

Input
ReflectionPad2d

Conv2d (64, (7x7), stride=1, padding=3)
InstanceNorm2d 64

ReLLU

Conv2d (128, (3x3), stride=2, padding=1)
InstanceNorm2d 128

ReLLU

Conv2d (128, (3x3), stride=2, padding=1)
InstanceNorm2d 128

ReLLU
Residual Blocks x4

Upsample scale factor=2

Conv2d (64, (3x3), stride=1, padding=1)
InstanceNorm2d 64

ReLU

Upsample scale factor=2

Conv2d (64, (3x3), stride=1, padding=1)
InstanceNorm2d 64

ReLU
ReflectionPad2d

Conv2d (1, (7x7))

Tanh

Output

where ID is the identification model, X, is the data input
from subject A, and Y4 is the identification result of the
identification model. Due to the individual differences in EMG
signals between two individuals, if the same model received
signals from other subjects, for instance, attacker B, then the
system will recognize this subject is not A.

However, if subject A’s EMG data was leaked due to various
reasons, this data might be used to attack the identification
model. With this leaked data, we proposed a generative adver-
sarial EMG signal transformer to generate synthetic EMG
signals to manipulate the identification model’s outputs:

Y4 = ID(T(Xp)) )

where T is the generative adversarial EMG signal transformer
we proposed. and X, is the data input from attacker B. In a
real-life scenario, if the transformer model was embedded into
an identification system, by transferring the input data into
synthetic data, the attacker could manipulate the identification
system’s outputs in real time.

Our proposed signal transformer’s network architecture
(Table. I) from top to bottom is a reflection padding layer,
three convolutional layers (kernel sizes are seven, three, three),
four residual blocks, two convolutional layers (kernel size
is three) with an up-sample function (scale factor is two),
a reflection padding layer, and a convolutional layer (kernel
size is seven) (Fig. 3). The input is 128 ms of EMG signal of
128 channels, and the output size is the same.

B. EMG Signal Transformer Training Process

Since two same EMG signal segments do not exist, it is
necessary to extract the style with the leaked personal signals
and generate the attack signals with different contents. The
attack signals are generated by the transformer with attacker
subject B’s data. During the transformer’s training process,
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Fig. 2. The training process of the proposed signal transformer from B’s (attacker) view. Suppose there are two subjects: A and B. To train a signal

transformer that can generate subject B's EMG signal in subject A’s style,

the transformer should be optimized in the gradient descent direction of

the sum of the generative adversarial loss, cycle consistency loss, and identity loss. The aim and function of the three kinds of loss are defined and
introduced in the Methods section. The figure on the right shows a visualized demo of the style transfer algorithm. After the training is finished, new
data from B can be transferred into A’s style and be used in the attack on personal identification models.
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Fig. 8. The network architecture of the transformer. The input is a
128 ms of EMG signal of 128 channels, and the output is the same
size synthetic EMG signal.

three kinds of loss were used to guide the optimization
direction of the parameters of the transformer.

First, to improve the quality of the synthetic signal, we uti-
lized the idea of generative adversarial networks and designed
a discriminator (Table. II) for the training of the signal trans-
former [31]. The network architecture of the discriminator
consists of four convolutional layers (kernel size is four),
a zero-padding layer, and a convolutional layer (kernel size
is four). During the training process, the synthetic signals
generated by the transformer will be scored by the discrim-
inator. The discriminator will give higher scores to synthetic
signals that are similar to the leaked data from subject A and
give lower scores to synthetic signals that are less similar to
the leaked data from subject A. During the training process,
the transformer and discriminator will both be trained, and
therefore, can continually force the transformer to generate

TABLE Il
DISCRIMINATOR STRUCTURE
Layer Details
Input
Conv2d (64, (4x4), stride=2, padding=1)
LeakyReLU 0.2)
Conv2d (128, (4x4), stride=2, padding=1)
InstanceNorm2d 128
LeakyReLU (0.2)
Conv2d (256, (4x4), stride=2, padding=1)
InstanceNorm2d 256
LeakyReLU 0.2)
Conv2d (512, (4x4), padding=1)
InstanceNorm2d 512
LeakyReLU 0.2)
ZeroPad2d (1,0,1,0)
Conv2d (1, (4x4), padding=1)
Output

high-quality synthetic signals. The loss used in this process
was defined as the generative adversarial loss:
Lossga
= LGa(Tp, Dp, A, B)
+ La(Ta, Da, A, B)
= Eb~pyara () [l0g D (D)]
+ Ea~pyaa@1 —logDpTp((a))]
+ Eadiam(a) [logDa(a)]

+ Eb~pyarav) [1 = 10g DaTa((D))] 3)
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where A is the subject whose data was leaked, B is the
attacker, a and b are data samples from A or B, T4 is
the transformer that transform B’s data into A’s style, Ty is
the transformer that transform A’s data into B’s style, D4 and
Dpg are discriminators that calculate the difference between
real data and synthetic data, E is the expected value, and
a ~ pdata(a) and b ~ pga:4(b) represent data distribution.

Second, in order to transform the data style and keep the
content unchanged, we adapted ideas from sentence translation
and cycle generative adversarial networks to add an additional
constraint condition into the training process of the signal
transformer [32]. In sentence translation, the goal is to keep
the original meaning but translate the sentence into a different
language. To make sure the translated meaning is correct,
translators always adopt a cycle strategy that translates the
translated sentence back to the original language and compares
its meaning with the original untranslated sentence, and tries
to make the difference as small as possible. We defined this
type of loss as cycle loss. The aim of the Losscyce is to force
the transformer to generate synthetic data only different from
the real data in the style aspect and was defined by:

Losscycle = Eadiam(a)[”TATB((a)) - a”l]
+ Eb~poara ) UITBTA((D)) = bl|;] 4)

Third, due to the high dimensionality and nonlinearity of
EMG signals, no two EMG segments should be the same;
otherwise, they will easily be identified as synthetic attacks by
the security system. To prevent the transformer from just cheat-
ing the discriminator by directly outputting subject A’s leaked
data as the transformed B’s synthetic signal, in which case the
transformation process would be meaningless, we utilized an
identity loss as an additional constraint. The working principle
of the Lossigensiry is that, if a transformer can generate data
in A style and if input data is already in A style, then the
synthetic data should stay the same:

Lossidentity = Ea'vpdam(a)[”TA (@) —all]
+ Ep~paara I T (D) — b1{] &)

Therefore, the loss of the training process of the generative
adversarial EMG signal transformer was given by:

Loss = Lossga + LoSscycie + LOSSigentity (6)

Moreover, since the training of the transformer and discrim-
inator is adversarial, when training the transformer, parameters
of Dy and Dp should be frozen, and when training the
discriminator, parameters of T4, Tp and one of the two
discriminators should be frozen. Therefore, the optimization
objective of the transformer was:

Min Lossga
= Min  Eq-pju@ll — 10gDpG ((@))]
+Min  Eppy.)[1 —1ogDaG 4((b))
=Max E4<p,.llogDpGp((a))]
+ Max  Ep~py,.i»)logDaGa((b))] @)
This optimization objective means optimizing parameters of

T4 and Tp to get higher scores from D4 and Dp and to force
T4 and Tp to generate more realistic synthetic data.

In addition, the discriminator should try to prioritize real
data (maximize D4(a)) and try to minimize synthetic data
(minimize D4 (G,(b))). Therefore, the optimization objective
of one discriminator (e.g., D4) was:

Max Lossga = Max GA(Ta, Dy, A, B)
=Max E4 py,.)llogDa(a)]
+Max Eppy.[l —1ogDaTA((D))]
= Max  Eu~pyy,@llogDa(a)]
+ Min  Ep~py.llogDaTa((D))] (8)

After the transformer was trained, new data from attacker B
can be transformed into subject A’s style, and in the next
section, we will validate the feasibility of attacking the iden-
tification system with the synthetic subject A’s data.

IV. EXPERIMENTS AND RESULTS
A. Dataset and Experimental Protocol

CapgMyo dataset A was chosen to validate our proposed
methods [33]. The CapgMyo A is a public dataset consisting of
eight hand gestures” HD-EMG records (8 x 16 electrode array)
of 18 participants. Eight hand gestures were included in the
dataset: 1. Thumb up (TU); 2. Extension of index and middle,
flexion of the others (EIM); 3. Flexion of the ring and little
finger, the extension of the others (FRL); 4. Thumb opposing
base of the little finger (TO); 5. Abduction of all fingers
(AA); 6. Fingers flexed together in the first (FF); 7. Pointing
index (PI); 8. Adduction of extended fingers (AE). The signals
were sampled at 1,000 Hz, filtered with a band-pass filter at
20-380Hz, and normalized to the [-1, 1] range, corresponding
to the voltage of [-2.5 mV, 2.5 mV]. Each gesture of each
subject had ten trials. To ensure the reliability of experiment
results, the odd-numbered trials of each subject were used
as the training dataset and the even-numbered trials of each
subject were used as the testing dataset.

B. Identification Models and Baseline Benchmark

It is vital to select powerful identification models as attack
targets; otherwise, the results can’t prove the effectiveness
of the attack methods because good attack results might be
caused by weak baseline models. Therefore, for the reliability
of our proposed methods, we selected three well-recognized
deep EMG classification models to use as identification models
and target with attacks: GengNet [33], EMGNet [34], and
VGG16Net [35]. These models have been validated on mul-
tiple datasets and the exact parameters or structure of these
models can be found in the above references. We followed
these references and rebuild these models.

To make sure that our result is robust to different hand
gestures and that individual differences are the sole variable
in the experiment, for each gesture, we trained three different
structured identification models. If not specifically mentioned,
all the results present in the following are the mean values of
all eight gestures.

In total, we trained 24 identification models, each eight of
them belonging to one model structure, and each one of them
is trained and tested on one gesture category with 18 subjects’
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Fig. 4. Evolution of the synthetic signals during the training process. When the training started, the synthetic signals were basically irregular noises.
As the training proceeded, the synthetic signals learned features from the original signals but still had major defects in some areas. After a certain
number of iterations, the synthetic signals became indistinguishable from the original signals, and the value of the loss function almost stopped

decreasing at which point the training could be considered finished.

data. Each model’s input data consists of a specific gesture’s
data performed by 18 individuals, the output is the labels
representing individuals (18-class classification). The training
dataset is the odd-numbered trials’ data of 18 individuals’ one
certain gesture. In the training dataset, we separated 10% of
the data to act as the validation dataset. The testing dataset
is the even-numbered trials’ data of one certain gesture of
18 individuals and the labels are the subject numbers. This
experimental paradigm is to make sure that, in each trial,
individual differences are the sole variable in the experiment
and prove that the proposed style transfer can learn and
reproduce these differences.

To evaluate the identification performance, we utilized
the rank-k identification rate as the evaluation metric and
generated the cumulative match characteristic (CMC) curve.
These results demonstrated that our models exhibited excel-
lent individual recognition capability. The rank-k index is a
performance metric commonly used to evaluate identification
or recognition tasks. It measures the accuracy of identifying
the correct label within the top-k-ranked predictions. In the
context of this study, the Rank-k index assesses the ability of
the model to correctly identify the intended person among the
top-k predictions. As the commonly used metrics, the values of
rank-1 and rank-5 were also listed, and the confusion matrixes
were provided. These evaluation metrics are representative
and well-recognized quantification methods for evaluating
biometric-based identification models.

The test results of three identification models were shown as
follows: the rank-1 and rank-5 results showed that our models
have strong identification ability (Table. III), the CMC curve
showed that identification systems based on these models
will have reliable identification ability in a real-life scenario
(Fig. 6), and the confusion matrixes showed that our identifi-
cation models have good robustness among different subjects
(Fig. 5). These results demonstrated that our identification
models are powerful and qualified to be attack targets.

C. Synthetic Signal Generation and Attack on
Identification Models

Due to the characteristics of EMG signals, two same EMG
segments do not exist in nature, so it iS necessary to extract
the style with the leaked personal signals and generate the

TABLE IlI
RANK-1 AND RANK-5
Gesture GengNet EMGNet VGGI16Net

Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5
TU 99.21 100 86.98 98.89 93.81 100
EIM 96.03 100 88.25 98.25 94.76 98.73
FRL 98.57 100 93.34 99.83 91.27 97.78
TO 97.78 100 91.43 99.05 96.98 99.37
AA 98.41 99.84 89.37 97.78 93.02 99.21
FFF 97.30 100 93.33 100 96.03 100
PI 99.37 100 95.71 100 95.40 99.84
AE 98.25 100 92.86 99.05 96.83 99.52

attack signals with different contents. The leaked data can’t
be used to attack the model directly, Otherwise, it will be
easily detected. For better result presentation, two adjacent
individuals were paired, with one acting as the data leaker
and the other as the attacker, to validate the proposed EMG
signal transform attack methods. Therefore, nine pairs (eigh-
teen individuals) were tested for each experimental condition.
For better understanding, odd-numbered subjects were named
subject A, and even-numbered subjects were named subject
B. Worth mentioning this pair setup is only for better result
presentation and is not necessary for real applications.

During the training process, 90% of odd-numbered trials’
data of subjects A and B were used as training data for
the transformers, and the other 10% of odd-numbered trials’
data were used as validation data to calculate the loss of the
transformers. The training process repeated until the validation
loss met the requirement. After the training was finished,
we used subject A’s and subject B’s even-numbered trials’ data
separately to generate subject A’s EMG signals in B’s style and
subject B’s EMG signals in A’s style. We also visualized the
signal generation result of transformers at different training
stages as shown in Fig. 4.

After the synthetic signals were generated, we tested the
identification models with synthetic EMG signals (style trans-
ferred between neighboring subjects) to simulate potential
attacks. Results showed that the artificial synthetic EMG
signals can efficiently cheat the three kinds of identification
models in all eight gestures and mislead them to make
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Fig. 5. The data were averaged across eight hand gestures, and the user identification accuracy of three different models was evaluated using either
real signals or synthetic data as input. In the case of across-subject validation for hand gesture recognition, the average recognition accuracy of the
three models was found to be 42.86%. (a) Confusion matrix for eighteen subjects’ identification when testing on original data using the GengNet.
(b) Confusion matrix for eighteen subjects’ identification when testing on synthetic data using the GengNet. (c) Confusion matrix for eighteen
subjects’ identification when testing on original data using the EMGNet. (d) Confusion matrix for eighteen subjects’ identification when testing on
synthetic data using the EMGNet. (e) Confusion matrix for eighteen subjects’ identification when testing on original data using the VGG16Net.
(f) Confusion matrix for eighteen subjects’ identification when testing on synthetic data using the VGG16Net. (a), (c), and (e) confusion matrices
aim to validate the strong identification ability of the GengNet, EMGNet, and VGG16Net. (b), (d), and (f) confusion matrices aim to demonstrate the
effectiveness of attacking GengNet, EMGNet, and VGG16Net with synthetic data.



3282

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING

, VOL. 31, 2023

Fig. 6.

CMC Curve CMC Curve CMC Curve
100 100
99
98
g % 2 2
51 < 96 51
~ — TU ~ — TU ~
on on on
g 9 EIM g EIM g
El bl bl
] FRL S o FRL E
= — T0 = — T0 =
— AA — AA
— FF B — FF
* PI PI
— AE — AE —_—
94 90 90
2 4 6 8 10 12 14 16 2 4 6 8 0 12 14 16 2 4 6 8 0 12 14 16
Rank Rank Rank

(a)

(b) ©

The data are averaged across eighteen subjects. These figures showed that our identification models are powerful and qualified to be
attack targets. (a) CMC curves for each gesture of the GengNet-based identification model. (b) CMC curves for each gesture of the EMGNet-based
identification model. (c) CMC curves for each gesture of the VGG16Net-based identification model.

TABLE IV
HIT RATE AND CONFUSION RATE
Gesture GengNet EMGNet VGG16Net
Hit Confusion Hit Confusion Hit Confusion
TU 99.20 99.61 94.16 100 97.27 100
EIM 93.82 100 89.58 99.31 100 100
FRL 83.84 100 88.04 96.43 96.61 100
TO 98.29 100 82.66 100 98.81 100
AA 76.62 97.22 88.43 97.42 99.37 100
FFF 80.88 97.23 90.89 100 95.67 100
PI 95.66 100 84.74 98.77 95.64 100
AE 98.84 100 90.68 100 99.38 100
The data are averaged across eighteen subjects, and all the values are
percentages.

judgments as we designed. To quantifiably evaluate the pro-
posed attack methods, we defined two evaluation metrics
called hit rate and confusion rate, which represent the success
rate of using synthetic EMG signals on attacking identification
models and the chance of identification models being confused
by the synthetic EMG signals:

HitRate = Attacker Wanted Outputs/Total Attacks (9)

ConfusionRate = Wrong Outputs/Total Attacks  (10)

Wrong outputs included outputs that were what the attacker
wanted and outputs that were not what the attacker wanted but
were still not correct.

Under attacks of the synthetic EMG signals, identification
models’ rank-1 and rank-5 evaluation metrics dropped close
to zero, which means that these identification models were
disabled. The hit rate of the attack methods on three different
identification models (GengNet, EMGNet, and VGG16Net)
were 89.34%, 87.94%, and 97.24%, respectively. The confu-
sion rate of the attack methods on three different identification
models (GengNet, EMGNet, and VGG16Net) were 99.06%,
99.17%, and 100%, respectively. These results showed that
our attack methods can effectively manipulate and confuse the
state-of-the-art identification models (Table 1V).

Using the same training and testing conditions, of all the
models the GengNet had the strongest identification ability.
Compared with the other two identification models, the
GengNet has two conventional layers whose kernel size is

one and much fewer channel numbers. This result shows that
with a smaller kernel size identification models can obtain
stronger recognition ability with fewer channels. However,
smaller kernel-size models will require a significantly longer
time and more computing resources to train. Therefore, if the
accuracy has already met the requirement, a lightweight model
might also be an option. In addition, results also showed
that the anti-attack ability has no direct relationship with the
identification ability. Three models with different structures
show no significant difference (Tukey’s test based on analysis
of variance, p < 0.05) in confusion rate, which indicated that
our attack methods have strong universality.

V. DiscUssSION

In this paper, we proposed a novel personal identification
model attack method based on the EMG signal transformer.
Experiments on eighteen subjects and three strong identifica-
tion models proved its feasibility and reliability. Our methods
achieved an average of 99.41% success rate on confusing
identification models and an average of 91.51% success rate on
manipulating identification models. These results demonstrate
that our methods hold the potential to be used to guide the
design of millions of identification devices to protect people’s
privacy and information safety.

Compared with other popular GAN methods including
PairGAN or WGAN, our method demonstrates practical
advantages. PairGAN lacks the cycle loss and identification
loss employed in our method. Consequently, it fails to ensure
content preservation during the signal style transfer process,
making it unsuitable for attacking a biometric identification
system. On the other hand, despitt WGAN achieving low
training losses, the generated signal quality remains inade-
quate. This drawback arises from the absence of the identifi-
cation loss utilized in our method, which causes the generator
to adopt a cheating-like strategy to deceive the discriminator,
leading to a rapid decrease in loss without emphasizing the
actual quality of the generated signals. Therefore, our method
proves to be more suitable for this specific task.

Although there are limited research works in related EMG-
attack fields, the attack on EEG systems has gained attention
from researchers. Previous studies have explored methods such
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as contaminating the original signals by adding attack elements
(e.g., square wave signals [22] or narrow period pulses [36])
or using adversarial attacks [19]to target brain-machine inter-
faces. These approaches have successfully deceived the models
of brain-machine interfaces in tasks like motion image classi-
fication, driver fatigue estimation, or spelling tasks, revealing
the vulnerability of biometric identification models [21].
In comparison to these works, our generative approach does
not require fine-tuning for different target systems or prior
knowledge of the target. Therefore, it exhibits more universal-
ity. Additionally, our generated attack signals possess greater
diversity, enhancing their stealthiness in attacks.

We also conducted experiments with varying channel num-
bers, including 8, 16, 32, 64, and 128 channels. The results
revealed a decrease in model recognition accuracy as the
number of channels decreased. As the recognition model itself
becomes less accurate (98.12% to 77.96%), the ability of
the attack signal to manipulate the recognition model also
diminishes (89.34% to 48.96%). However, the attack signal
still proves effective in confusing the recognition model.
In addition, the phenomenon of different models exhibiting
varying resistance to attacks can be attributed to their differ-
ent generalization abilities. Models with high generalization
ability tend to have a lower hit rate, while models with
low generalization ability exhibit a higher hit rate. Therefore,
we believe that enhancing the generalization ability of iden-
tification models may improve their ability to resist targeted
attacks, although they may still be susceptible to confusion.
These results suggest that in order to enhance the anti-attack
capability of identification systems, it is necessary not only to
develop more robust identification models but also to consider
the identification system from a broader perspective.

Applying advanced biometric methods such as brain stripe
recognition technology can be an effective way to enhance
the anti-attack capability. Brain stripe recognition technol-
ogy offers unique advantages, including resistance to theft,
forgery, and damage. Moreover, it requires in vivo detection,
making it a more secure biometric identification method
for identity recognition. It can be considered as a highly
secure next-generation password. In addition, implementing
advanced security strategies such as cancelable algorithms [37]
or user-tailored algorithms [38] can also enhance the security
of biometric identification systems. Employing more complex
encoding strategies or adopting sensor fusion technologies
may also yield better results in terms of security. Furthermore,
it is crucial to protect the original data from leakage. Some
studies have proposed using encrypted data to improve data
security, highlighting the importance of safeguarding sensitive
information.

For style-transferred signal generating, generative models
are height unconstrained and very difficult to train. During
the training process, the loss will randomly uprush, and the
time consumption is also larger than training a normal neural
network. In addition, the signal transformer has multiple
solutions, and any transformers that meet loss requirements
can be used. Therefore, setting an appropriate loss threshold
will accelerate the training process. However, there is no
clear standard on the loss value. A recommended method is

to visualize synthetic data during the training process and
choose an appropriate loss threshold with multiple experi-
ments. Additionally, the training approach of the generator
network is worth discussing. There are two approaches: one
involves using a single network to generate signals of different
categories, while the other involves setting up multiple net-
works, with each network responsible for generating data of
one category. The first approach is more straightforward, but
the latter typically yields better generation results. Therefore,
using novel generative methods and combining the advantages
of both strategies (e.g., conditional diffusion models) may
potentially lead to improved results.

There exist certain limitations in this paper as the field of
generative models is still rapidly evolving. Firstly, the quality
of the generated signals may not be optimal. However, due to
the requirement of transferring signal styles while keeping the
content unchanged, we did not make significant adjustments to
the structure of the generative models. In the future, it would
be necessary to develop higher-quality generative models that
can also control the content. Additionally, generative models
require substantial computational resources, and optimizing
their use in real-time systems on edge devices is a challenge.
Further research is needed to explore how to reduce compu-
tational requirements while ensuring high-quality generation.
Moreover, as this work serves as an initial proof-of-concept
study, its stability and robustness need further investigation.
For example, the influence of population attributes such as
gender, age, and health status on the experimental outcomes
requires study. Lastly, the impact of additional security mea-
sures or specially designed models with specific training
strategies to maximize user-specific information needs further
exploration.

Our proposed EMG signal transferring and generating meth-
ods can also be applied in other areas. Since our methods can
significantly reduce the individual difference between subjects,
it can also be applied in hand gesture recognition or prosthetic
control to improve the robustness and recognition accuracy.
It can also provide a new solution to improve the capability
of the human-computer interface apart from self-adaptation
algorithms, transfer learning algorithms, and sensor fusion
algorithms.

VI. CONCLUSION

This paper is the first work that focused on EMG hand
gesture style transferring between individuals and the potential
risk of synthetic data in personal identification systems. Rigor-
ous experiments proved the feasibility of the cycle generative
adversarial network based EMG style transformer and the
vulnerability of deep EMG classifiers. The result demonstrated
that synthetic biological signals must be taken into consid-
eration in any biological identification system design, and
the protection of biological signals, including EMG signals,
is vital for personal privacy and security.
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