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EEG Signal Epilepsy Detection With a Weighted
Neighbor Graph Representation and
Two-Stream Graph-Based Framework
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Abstract— Epilepsy is one of the most common neu-
rological diseases. Clinically, epileptic seizure detection
is usually performed by analyzing electroencephalogra-
phy (EEG) signals. At present, deep learning models have
been widely used for single-channel EEG signal epilepsy
detection, but this method is difficult to explain the clas-
sification results. Researchers have attempted to solve
interpretive problems by combining graph representation
of EEG signals with graph neural network models. Recently,
the combination of graph representations and graph neural
network (GNN) models has been increasingly applied to
single-channel epilepsy detection. By this methodology,
the raw EEG signal is transformed to its graph represen-
tation, and a GNN model is used to learn latent features
and classify whether the data indicates an epileptic seizure
episode. However, existing methods are faced with two
major challenges. First, existing graph representations
tend to have high time complexity as they generally require
each vertex to traverse all other vertices to construct
a graph structure. Some of them also have high space
complexity for being dense. Second, while separate graph
representations can be derived from a single-channel EEG
signal in both time and frequency domains, existing GNN
models for epilepsy detection can learn from a single graph
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representation, which makes it hard to let the information
from the two domains complement each other. For address-
ing these challenges, we propose a Weighted Neighbour
Graph (WNG) representation for EEG signals. Reducing
the redundant edges of the existing graph, WNG can be
both time and space-efficient, and as informative as its
less efficient counterparts. We then propose a two-stream
graph-based framework to simultaneously learn features
from WNG in both time and frequency domain. Extensive
experiments demonstrate the effectiveness and efficiency
of the proposed methods.

Index Terms— EEG signal, graph representation, graph
neural network, weighted neighbour graph, seizure
detection.

[. INTRODUCTION

PILEPSY is a common neurological disease. Clini-

cally, neurologists detect epilepsy by analyzing elec-
troencephalography (EEG) signals [1]. However, manual
epilepsy detection can often be time-consuming. Therefore,
machine learning-enabled automatic epilepsy detection meth-
ods have attracted growing attention from both researchers and
neurologists [2], [3], [4], [5].

Epilepsy detection is traditionally conducted by first extract-
ing handcrafted features from raw EEG signals [6], [7], and
then feeding these features into a classifier to determine
whether the given signal contains epileptic segments [8],
[9]. Such methods are suitable for cases which the different
classes can be relatively distinguished between. However,
EEG signals often come with complex waveforms with reach
underlying semantics that cannot be easily characterized by
handcrafted features [10]. With the development of deep
learning techniques, researchers resort to deep learning models
that can effectively learn complex features, especially when
large amounts of data are available [11], [12].

Recently, researchers have used deep learning models
directly to learn latent features from raw EEG signals [13],
[14]. However, these raw EEG signals are highly random and
heterogeneous. In particular, relationships of two or more data
points can be of great value for epilepsy classification [15].
That limits the performance of deep learning models without
explicit transformation of data representation [10], [16]. Using
such information can be hard for deep learning models to
interpret classification results from raw EEG signals.

To address this issue, researchers have turned to graph
representations [17], [18], such as Visibility Graph (VG) [19].
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For a given single-channel signal, each vertex in its corre-
sponding graph represents a data point in the signal, and each
edge represents the pairwise relationship between two data
points [20], and multiple edges represent the relationship of the
multiple vertices that are connected by them. This method pro-
vides a new feature for EEG signals, namely the relationship
feature between data points. Compared with the classic VG,
limited penetrable visibility graph (LPVG) [21], horizontal
visibility graph (HVG) [22], and limited penetrable horizontal
visibility graph (LPHVG) [23], the Overlook Graph (OG) and
Weighted Overlook Graph (WOG) have the weighted directed
edges and the distinguishing ability of different categories
have been significantly improved [24]. However, the time
complexity and memory requirements of these methods are
very large. It is only suitable for offline EEG classification
tasks.

Existing Graph-based methods suffer from the following
two problems.

1. High time and space complexity. For some existing
graph representations [19], [21], it is required that each vertex
traverse all other vertices to construct the graph structure,
which leads to O (n?) (n is the number of data points in the
raw signal) or high time complexity. Meanwhile, to maximally
retain semantic information, some existing graphs [24] resort
to dense graph representations that lead to high memory costs.

2. Inability to simultaneously learn from time and
frequency domain signals. Raw EEG signals reside in time
domain. However, a recent work [25] has highlighted the
need for learning from graphs built upon frequency domain
signals. While both time and frequency domain streams can be
derived from one to the other, their different forms indicate that
different semantic information can be better encoded in them.
Therefore, it can be assumed that simultaneously learning from
time and frequency domain graphs can lead to superior results.
However, there exist very few deep learning models that can
undertake this task.

In response to these problems, we make the following
contributions in this paper.

1. Weighted Neighbour Graph (WNG). We propose a
novel graph representation called Weighted Neighbour Graph
(WNG), which is essentially a lossy compression of a state-of-
the-art dense graph representation called Weighted Overlook
Graph (WOG) [24]. Reducing the redundant edges of the
WOG, WNG can strike a balance between the amount of
information retained. Moreover, unlike previous graphs with
high time and (or) space cost, WNG has both linear time and
space complexity.

2. A two-stream graph-based framework for time and
frequency domain graphs. Inspired by the two-stream con-
volutional neural network [26] for video analytics, we present
a novel two-stream graph-based framework, which utilizes
two parallel branches within a single GNN to simultaneously
learn from time and frequency domain graphs. Note that
this framework is generic. It is compatible with any graph
representation and any GNN model that can learn from this
representation.

3. Experimental evaluation. We conduct several real-world
experiments to demonstrate the effectiveness and efficiency of
the proposed methods.

For the rest of the paper, we introduce our WNG rep-
resentation and the two-stream graph-based framework in
Section II. Afterward, we report our experiments and results
in Section IIT and IV. We discuss our framework in Section V.
Finally, we conclude the paper in Section VL.

[l. METHOD

A. Preliminaries

We first introduce the preliminaries required in the section.
We denote an EEG signal with n data points as 7 =
f1,t,...,t,, where t; is the value of ith point in the signal.
A graph representation of 7 € R" can be written as a graph
G = (V, E), where V is the vertex set with n vertices, each
corresponding to a data point in 7. E is the edge set, in which
e; j € E denotes the edge connecting vertices v; and v;. e; ;
is the pairwise relationship between data points #; and ¢;.

Definition (Weighted Overlook Graph (WOG)): Given a
single-channel EEG signal T =11, 12, ..., t,, its WOG repre-
sentation can be written as a graph G = (V, E). Given two
arbitrary data points #; and ¢; in an EEG signal T, an weighted,
directed edge e; ; is created if it suffices that:

L >1j. (D

Let Ap = {a,-,j|i = 1,2,...,n,j = 1,2,...,n} be the
adjacency matrix of the time domain G, where

ti — l‘j

li — Jjl
0 otherwise

if e jexists;

2

aj =

In this paper, we restrict our discussion to directed graphs.
Hence, if a; j = *=2, then a;; = 4=
ML) = =g =TT

B. Graph Representation

The graph representation method for EEG signals has a very
large time complexity and memory requirements. The existing
graph representation method needs to traverse all other vertices
when building the graph structure, so its time complexity is
large. The existing graph representation methods also require
a large number of edges to represent the topology information
of signals. In fact, the information of some edges in these
graph structures can be inferred from the relationship between
other edges, which increases the memory requirements of the
graph (see 1I-B.2 for details). For example, the graph structure
generated by the WOG method with the highest classification
accuracy currently has a large number of redundant edges,
which also greatly increases the time complexity of graph
generation and memory requirements. Therefore, our goal
is to design a weighted directed graph representation that
can maintain the classification accuracy of EEG signals and
minimize time complexity and memory requirements.

1) Weighted Rand Graph (WRG): We design a random
probability p € [0, 1], which means that among n vertices
in the graph structure, p x n points will be reconnected
randomly [27].

WRG Connection Rule: Given one arbitrary data point ¢
in an EEG signal T € R a weighted, directed edge
eii+1 is created if it suffices that: #; > #;41. Where f,, =

Tristrys vy, points will be disconnected and reconnected.
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Fig. 1. We convert an EEG signal containing eight sampling points as
a Weight Random Graph (WRG). The vertex originally connected to the
neighbouring vertex will disconnect the original connection according
to the random probability and establish a connection relationship with
another vertex.
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Fig. 2. An example of an EEG signal containing eight sampling points,
construct a Weighted Neighbour Graph (WNG) representation structure
that only connects the neighbour vertices on the nearest two sides and
the corresponding adjacency matrix.

{ri|ai,i+] = O’ aj+1,i = 07 ajr = t — tr,'a Ay i = tr,- - tl} isa
random reconnected number of ith point.

For example, the vertex #;(i, ;) disconnects the original

connection (a;;+1 = 0 and a;4+1; = 0), randomly generates
a random connection (r; € [l,n] Nr; # i), and rebuilds
the connection (a;, = ti — t, and a,; = t, — ;) for

the vertex ¢, (i, t;). This representation do not increase edges,
but effectively reduces the characteristic path length between
vertices.

2) Weighted Neighbour Graph (WNG): In the extreme case
of the graph (p = 0), that is, each vertex only constructs edges
with vertices adjacent in the signal. We call it the Weighted
Neighbour Graph (WNG), as shown in Fig. 2.

WNG Connection Rule: Given one arbitrary data point #; in
an EEG signal T € R* 1 a weighted, directed edge e; ;4 is
created if it suffices that:

i > liy1. 3)
where the weight is a; ;41 = t; — tjy1 for vertex #;(i, t;).
It is worth noting that here a;y1; = tj+1 — t;, taking the

opposite number of the values of two vertices at a diagonally
symmetrical position along the adjacency matrix is a redundant
operation. This is for the vertex #;11(i + 1,t41) to also
aggregate the information of the vertex ¢; (i, t;). The concept
of positive or negative value means the direction of the edge
between vertices. We reduce the time complexity of the graph
representation method from 0% to O(n). This reduces
the time complexity of the graph generation. The memory
requirement of the generated graph is greatly reduced due to
the reduction of the edges.

We found the edge of WOG is a;; = %
i > j,a,; = S 1+ 900+ can be represented by
edges in a WNG by a ﬁnlte number of addition operations.
@j—1,i,Qi—2,i—1,---,aj j+1 are the adjacent edges of WNG.

where

Fig. 3. This process converts a single-channel time domain EEG signal
into the frequency domain graph representation.

When we get a; ; 1, we can represent all the edges of WOG.
The graph representation designed in this paper can effectively
represent the information of signal with fewer edges.

3) Frequency Domain Graph Representation: These graph
representation methods usually represent time domain signals
and rarely represent the frequency domain information of EEG
signals. There are many limitations in the time domain EEG
signals. For example, it is difficult to align the phase of the
signals, which results in a large variance of different EEG
signals of the same category. The frequency domain feature
can alleviate this problem as an essential signal feature [25],
[28]. In addition, frequency domain graphs can provide inter-
pretability for classification results (see V-B for details). The
signal can be converted to the frequency domain and aligned
strictly according to the frequency arrangement. The steps
of the frequency domain graph are: 1) convert the signal to
the frequency domain through Fast Fourier Transform (FFT);
2) represent the frequency domain signal into a graph structure.

We convert a time domain EEG signal into the frequency
domain graph' is shown in Fig. 3. First, we transform the
time domain EEG signal T =11, 7, ..., t, into the frequency
domain using FFT. The signal is |F| = | fil, | f2l, -, | fals
where

n
=S e k=1,2,....n). 4)

i=1

Each f; corresponds to the frequency k for all input time
domain signals as long as they have the same sampling rate
and length.

Then, we build the frequency domain graphs for the EEG
signals. Specifically, we create a vertex for each data point
in the signal and create edges based on some connection
rule. We use the connection rule of the graph representation
methods. However, we note that our frequency domain method
is compatible with other graphs. The connection rule of the
graph is as follows: For one data point | f;|, if it suffices that:
| fil > | fi+1]. We create an edge connecting the vertices for
| fi| and | fi4+1]. Each edge indicates the relationship between
two frequencies in the graph, which can be written as a n X n
adjacency matrix Af.

n this paper, we only use the real part of the frequency domain signals,

[Fl=1/1l,1f2ls s Ul
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Fig. 4. The two-stream architecture consists of two parts: time and frequency domain. We use different colors to represent the order of vertices.

Then for vertex i(i, | f;]) there is a; ; = | fil — | f;| (here
aji = |fjl —|fil, which is consistent with the time domain.)

C. Two-Stream Graph-Based Framework

We design a two-stream Graph-based framework to extract
features of the time and frequency domain graph representa-
tions.

The READOUT function of the graph neural network
uses vertex aggregation (such as sum, average, and max)
for graph classification [29], [30]. This is because there
is only a connection relationship between vertices in the
graph classification task, and there are no sequential features.
However, the graph of signals contains sequential features
between vertices. In addition, these graph neural network
models used for graph classification extract the topological
structure features of the graph by aggregating the features of
neighbour vertices. However, for all graphs in the WNG, the
topological structure of the chain structure is challenging to
distinguish the differences between different categories. To this
end, we designed a two-stream architecture based on deep
learning models that simultaneously extracts the sequential
features between the time and frequency domain graphs of
EEG signals.

For the existing graph classification methods of graph neural
networks, 1) multi-hop neighbourhood aggregation, 2) readout
aggregation at the graph part [30], [31]. Through multiple
iterations of the first step, the vertex obtains the characteristics
of neighbour vertices. Through the second part, to finally
get the characterization of the whole graph. However, the
current graph neural network cannot extract the sequential
information between the vertices in the graph. This feature will
cause the performance of the existing graph neural network
to deteriorate in classifying our graphs. Because there is
a sequence relationship between vertices in a graph, these
sequence features are essential and cannot be easily discarded.

For this reason, we propose a new graph-based framework.
The purpose is to preserve the sequential information between
the vertices in the graph while extracting the structure infor-
mation of the graph.

We first involved two identical aggregation operations for
the time and frequency domain graph structures, which have
been used to aggregate each vertex in the time and frequency
domain graph structures simultaneously. Specifically, the infor-
mation between vertices is aggregated K (1 < K) times.

After completing the aggregation of the vertices in the
time and frequency domain graph structures, respectively, the

learnable weight is used to extract the features of the vertices.
Because the graph structure in time and frequency domain
has sequential features, we still introduce the operation of
sequential graph convolution to extract the sequential features
of the vertices in time and frequency domain graph structures.

The time and frequency domain graph G = (V, E) con-
taining n vertices are input into the model respectively in
Fig. 4 (Input data), where n is the number of the time
and frequency domain sampling points. We perform vertex
aggregation operations on graphs in the time and frequency
domain, respectively, shown in Fig. 4 (vertex aggregation).
In this part, K-hop aggregation is performed on each vertex
of the graph, and K iterations are performed. Specifically,
for vertex vlf and vif , where Ni’ and Nif are its neighbour
vertex, hk, and hk are the feature values of the K iteration.

l

we 1n1tlahze ho, =1 (hO = 1) for all v/ € V' and vf ev/.

Then, in each 1terat10n 'k (1 < k < K), we perform the
following summation [30] for each U- and v; :

h h" 1+th !

5
hf_h" +th—1 ©®)

where u , € N[ U {v } and u e Nf U {vf} After repeatlng
k times, we get the feature Values hk, and h¥ of of vertices v}

and v . The feature vector of all vertices in the graph are
{h hK, hK} and HK = {hK hK . hKf}

where the sequence of the vertices is the same as t7he sequence
of the vertices in the input graph.

After the time and frequency domain graphs are aggregated,
the feature vectors corresponding to the time and frequency
domain graphs are input into the sequential convolution mod-
ule of the vertex. This operation aims to extract the sequential
features of the vertices of the feature vector through sequential
convolution. As is shown in Fig. 4 (vertex sequential convo-
lution), We first separately design time and frequency domain
initialization learnable parameters W = {wy, wa, ..., w,} to
weight each vertex of the feature vector.

oﬁ:wﬁhﬁ; ;
ofzu)l:f-hkf ©

L p
Vi

After completing the weighting of the time and frequency
domain feature vectors, respectively, we get the weighted
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Algorithm 1 Two-Stream Graph-Based Framework
Input: Data: T = t1,1,...,t,; TS-Model: {TS-MLP, TS-
GNN, TS-1DCNN, TS-SGCN};
Qutput: Labels: Y € [0, 1]
Graph Representation Step:
A7 = Connection Rule(Data);
Datar = FFT(Data)
A = Connection Rule(Datar);
Two-stream Graph-based Framework Traning Step:
for i=1 to epochs do
for batch to shuffle(A7, Ar) do
Labels = Softmax(Adam;,(batch, TS-Model));
end for
end for

feature vector O = {o1,07,...,0,}. We can feed O into
different deep learning models. The module contains forward
operations, which are mapped from O to y¢ € R".

n
i :a(Zwl’- ~0§+b’)
=1

/ )

n
yl-f=o(2wif~oif+bf)
i=1

We set w! and a)l.f € R™ as the weight parameter in the

time and frequency domain. The size of m is the kernel size
of the deep learning model, b" and b/ are the bias parameter in
the time and frequency domain, and o is the ReL.U activation
function [32]. The stride size of the kernel is 1. The kernel
size in the time domain and the frequency domain can be
set independently. The size of the kernel means the different
vertex information of the feature vector of the graph, and the
vertex sequential convolution operation is performed P times.

Then we get the feature vector y' and y/ € R, We flatten
the time and frequency domain data separately, and we fuse
the output of the time and frequency domain:

=10y} (8)

We fuse the output y’ and y/ as §, and then flatten
the § as the input y/¢ (1, widthxheightx2xchannel) to the
fully-connected layer. The corresponding fully-connected layer
output can be expressed as follows:

2n
&f":f(wac-y,f‘#bf"), ©)
i=1

where a);f “ and b/¢ are the trainable parameters (weight and
bias). The superscript fc indicates the fully-connected layer.
In this part of the model, the fully-connected layer can extract
the associated features of the time and the frequency domain
simultaneously. The fully connection layer is performed Q
times. Finally, we use Softmax [33] to obtain the classification
result Y € [0, 1], which means seizure or non-seizure.

The algorithm pseudocode is shown in Algorithm 1, and our
source code is available at https://github.com/anonymous2020-
source-code/WNG-TS-Model/.

I1l. EXPERIMENTS

In this section, we conduct experiments to demonstrate the
effectiveness and efficiency of the proposed methods.

A. Dataset

We use three epileptic EEG signal datasets in our experi-
ments.

The Bonn dataset is a classic epilepsy detection dataset
collected at the Bonn University [34]. It contains five subsets,
called Set A to Set E. Each subset consists of 100 EEG signals.
Each signal has 4097 data points and is sampled at 173.61Hz.
Among the five subsets, Sets A to D are epileptic-free EEG
signals collected under different conditions, of which only
subset E is the epileptic EEG signal. We set up the Bonn
dataset as four experiments (A vs. E, B vs. E, C vs. E, D vs.
E.) for comparison with existing methods. In our experiments,
each EEG signal is divided into 256 sampling points with
non-overlapping.

The SSW dataset is a special type of epilepsy, “absence
epilepsy”, which is a dataset without any convulsive symptoms
in clinical practice. It needs to be detected by identifying spike
and slow waves in the EEG signal. It is a dataset annotated
by neurologists from Xinhua Hospital affiliated to Shanghai
Jiaotong University. The sampling frequency is 200Hz. The
original signal is divided into segments. Each segment contains
200 sampling points, corresponding to 1 second of recording.
We choose this duration according to domain knowledge,
a full SSW usually lasts less than 1 second [35]. Neurolo-
gists manually screened and marked each segment, ensuring
that all segments marked positive contained at least one
intact SSW. The dataset includes 10473 positive samples and
10473 negative samples.

The CHB-MIT dataset is the EEG signals of epilepsy
patients collected at the Children’s Hospital Boston [36], from
23 subjects, with a total of 24 epilepsy records. The sampling
frequency of EEG signals is 256Hz, and each data usually
contains 23 channels of signals. The method studied in this
paper only uses single-channel EEG signals. We only use data
from the first channel. In the CHB-MIT dataset, we collected
the epileptic EEG signal of the first channel of each subject,
and selected a considerable amount of non-epileptic data from
it, and segmented the EEG signal into 256 sampling points in
length. Each segment corresponds to a 1-second recording.
This duration was chosen to use the same data preprocessing
scheme as the comparison method. In this paper, the dataset
includes 9255 positive samples and 12200 negative samples.
More details about the dataset can be found in [37].

For all datasets, we use the average of five-fold cross-
validation as the classification result. In addition, for WRG
experiments, we fix r; to ensure that the WRG in each
experiment adopts the same random reconnection.

B. Setting

In the experiment, we use the same indicators as other
methods for evaluation, namely Accuracy (Acc), Specificity
(Spe), and Sensitivity (Sen).

As parameter settings, in this paper, we use cross-entropy
loss function and Adam optimizer, epoch set to 100, and
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TABLE |
THE STRUCTURE OF DIFFERENT TWO-STREAM DEEP LEARNING MODELS
TS-MLP TS-GNN TS-IDCNN TS-SGCN
Time Frequency Time Frequency Time Frequency Time Frequency
Input IXnxn IxXnXxn IXnxn IxnXxn Input IxXnxn IXnxn IXnxn IXnxn
Aggregation 1x1xn 1x1xn Ix1xn 1x1xn Aggregation Ix1xn Ix1xn Ix1xn Ix1xn
layer 1 Ixn Ixn 1xn Ixn layer 1 8x1x3 8x1x3 8x1x3 8x1x3
layer 2 1x256 1x256 1x256 1x256 layer 2 8x1x3 8x1x3 8x1x3 8x1x3
layer 3 1x128 1x128 1x128 1x128 layer 3 16X1x9  16x1x9 | 16x1x9  16x1x9
layer 4 1x64 1x64 1x64 1x64 layer 4 32x1x9  32x1x9 | 32x1x9  32x1x9
layer 5 Tx64 Tx64 Tx64 Tx64 layer 5 X512 X512 X512 =512
layer 6 1x64 164 1x64 1x64 layer 6 1x128 1x128 1x128 1x128
learning trip to 0.005. The code is implemented using the [ CHB-MIT SSW AvsE BvsE CvsE D vsE|
PyTorch platform. All experiments are performed on Intel . IS-MLP TS-GNN
. . U 8 -
i7-6850K3 3.6Hz CPU and 4 NVIDIA Titan XP GPUs. = =]
. . . . o —_— e e e T——— o
We verify the scheme proposed in this paper in two parts: ~ £°% goo
. . 7 % 04
The first part is the performance evaluation of the graph & oo &

of the data. We will evaluate the performance of the time
complexity and memory requirement of the graph method of
EEG signals. In the performance evaluation section, we will
compare the performance of VG [19], HVG [22], LPVG [21],
LPHVG [23], OG, and WOG [24] on single-channel EEG
signals.

The second part is the classification performance evalua-
tion. We will verify different two-stream models (TS-MLP,
TS-GNN, TS-1DCNN, and TS-SGCN). We will also compare
the classification performance with the current best baseline
method.

TS-MLP: The TS-MLP model has no sequential convolu-
tion structure and only performs vertex aggregation once. It is
verified whether the sequential convolution operation and the
vertex aggregation produce gains for epilepsy detection tasks.

TS-GNN: The TS-GNN model has no sequential convolu-
tion structure. It is verified whether the sequential convolution
operation produces gains for epilepsy detection tasks.

TS-SGCN: The TS-SGCN includes vertex aggregation and
sequential convolution operation. A two-stream sequential
graph convolutional network model based on EEG signal
conversion in the time and frequency domain.

TS-1DCNN: The TS-1DCNN only performs vertex aggre-
gation once. To replace the vertex sequential convolution
operation in TS-SGCN, we directly perform one-dimensional
convolution on the adjacent matrix of the time and frequency
domain graph structure.

In order to make the results of the classifiers comparable, the
parameters of the same module of each model are consistent
with the parameter settings of the corresponding module of
TS-SGCN. For the deep learning model, the number of layers
is the same. For example, each model consists of 1 aggregation
layer and 6 layers in Table I. The number of aggregations K
is set to 2 in TS-GNN and TS-SGCN (set to 1 in TS-MLP
and TS-1DCNN). Note that all models have performed at least
graph vertex aggregation once. Therefore, all the above models
are graph neural networks.

IV. RESULTS
A. Analysis of the p Setting

Before starting the experiment, we need to determine the
value of the random probability parameter p in the WRG.
We select the range of p from 0-50% for experiments.
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Fig. 5. Accuracy does not correlate with increasing p.
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Fig. 6. Time complexity and memory requirement increases with the
increase of p.

It should be pointed out that when p is 0, it is a special case
of WNG.

We have carried out classification experiments under dif-
ferent p values. From the experimental results, we can find
that the classification accuracy of WRG is not affected as
the p value increases, as shown in Fig. 5. Even some of
the models have a decline in their classification results.
For example, in the TS-GNN experiment, with the increase
of p, the classification performance shows a decreasing
trend.

We further conduct experiments on the efficiency of WRG
when p goes to different values. As shown in Fig. 6, we can
clearly observe that the curve of time complexity and memory
requirement increases continuously with the increase of p.

Increasing p cannot improve classification performance,
but it will cause a drop in efficiency. Therefore, in the
classification task, we choose a smaller p value to reduce
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TABLE Il
TIME COMPLEXITY OF DIFFERENT GRAPH REPRESENTATION METHODS (S OF SINGLE GRAPH)
Methods CHB-MIT SSW Bonn
A vs.E B vs.E C vs.E D vs.E
T F T F T F T F T F T F
VG 0.19092  0.18706 | 0.11566  0.11791 0.33859  0.19137 | 0.30297  0.18688 | 0.31200  0.18569 | 0.30216  0.19269
LPVG 0.19287  0.19314 | 0.11849  0.11821 0.33876  0.19253 | 0.30834  0.19125 0.31082  0.19230 | 0.30108  0.19352
HVG 0.04285 0.03737 | 0.02515 0.02194 | 0.18331 0.03806 | 0.14820  0.03658 | 0.15997  0.03596 | 0.15410  0.03721
LPHVG 0.04375  0.03863 | 0.02661 0.02345 0.18498  0.03856 | 0.14939  0.03739 | 0.16126  0.03720 | 0.15535 0.03745
oG 0.13096  0.13123 | 0.07787  0.08023 0.13944  0.13340 | 0.12849  0.12864 | 0.12740  0.12927 | 0.12739  0.12844
WOG 0.25520  0.25173 | 0.15544  0.15288 | 0.56197  0.27258 | 0.48359  0.25146 | 0.50171 0.24772 | 0.49007  0.25018
WRG 0.00495  0.00438 | 0.00412  0.00409 | 0.00865  0.00641 0.00541 0.00416 | 0.00534  0.00414 | 0.00530  0.00413
WNG 0.00202  0.00200 | 0.00150  0.00152 | 0.00290  0.00200 | 0.00301 0.00205 | 0.00296  0.00203 | 0.00297  0.00208
TABLE Ill
MEMORY REQUIREMENT OF DIFFERENT GRAPH REPRESENTATION METHODS (KB OF SINGLE GRAPH)
Methods CHB-MIT SSwW Bonn
A vs.E B vs.E C vs.E D vs.E
T F T F T F T F T F T F
VG 6.347 8.003 4.287 5.856 6.008 8.467 5.980 8.482 6.226 8.822 6.273 8.858
LPVG 7.557 12.105 5.302 8.743 6.813 12.678 6.698 12.488 6.958 12.960 6.949 12.979
HVG 4.557 4.685 3.043 3.169 4.616 4.679 4.614 4.674 4.553 4.669 4.539 4.664
LPHVG 5.721 6.458 3.900 4434 5717 6.392 5.708 6.361 5.657 6.396 6.949 12.979
oG 10.963 13.902 6.432 8.615 12.947 12.650 13.332 12.384 11.516 12.868 11.474 12.732
WOG 347933  454.760 | 229.011 253.235 270.576  445.650 | 276.180 445950 | 270.098 445280 | 270972  445.323
WRG 6.155 7.253 4.736 5.112 4.807 7.243 4.842 7.245 4.774 7.239 4.775 7.240
WNG 5.662 6.736 4.306 4.679 4.474 6.745 4.506 6.750 4.431 6.739 4.430 6.740
[ —LPVG—HVG —LPHVG — OG --WRG — WNG]|

the consumption of computing resources. In the subsequent
experiments, we choose two smaller values of p, 0 (WNG)
and 10% (WRG).

B. The Performance of the Graph

The performance of graph representation consists of
time complexity, memory requirements, and classification
performance.

The time complexity of the EEG signal graph representation
is the time to transform the EEG signal into a graph. The
memory requirement of the EEG signal graph representation is
the size of the storage space occupied by the EEG signal graph.
In addition, we verify the classification performance. Our
purpose for testing classification performance is to evaluate the
optimal combination of graph representation and classification
model. The experiments are carried out on the Bonn, SSW, and
CHB-MIT datasets.

1. The time complexity of the graph representations.

We compare the graph representation method proposed in
this paper with other existing methods. As shown in Table II,
we only use one indicator (Seconds, S). The experiments are
all carried out in the same experimental environment. Each
graph representation method performs graph representation on
all samples in the dataset, then averages the total time to cal-
culate the generation time of each method for a single sample.
The method proposed in this paper has the shortest generation
time among all graph representations. WOG is a graph with
the highest classification accuracy for existing epileptic EEG
signals. Compared with WOG, WRG is 56 times faster than
WOG on the CHB-MIT dataset (WNG is 125 times), WRG
is 37 times faster than WOG on the SSW dataset (WNG is
100 times), and WRG is at least 42 times faster than WOG
on the Bonn dataset (WNG is at least 122 times). The time
complexity of both WRG and WNG methods is significantly
lower than other graph representation methods. This shows
that our method only needs less time to convert the EEG signal
into the graph representation.
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Fig. 7. The generation time (S) of graph representation in the different
EEG signal lengths.

To further verify the graph representation time efficiency,
we randomly selected from the epileptic EEG signal dataset
containing 256 sampling points as the unit of EEG signal
segments, and gradually increased the length of EEG signals,
and observed the graph representation methods of different
EEG signals in these EEG signals. A total of 16 EEG signal
lengths were set in the experiment, and EEG signal segments
ranged from 256 sampling points to 4096 sampling points.
Each graph representation method calculates 10 generation
times on each length of EEG signal segment, and takes the
average of these 10 generation times as the final result.

It can be seen from Fig. 7 that the generation time of
VG and LPVG is the largest, which is O(n®). The time
complexity of OG and WOG methods is O(n?). The time
complexity of HVG and LPHVG methods is O(nlogn). The
least time-consuming methods are WRG and WNG methods,
and the time complexity is O (n). This also intuitively verifies
the fact that the graph representation method proposed in this
paper has the least time complexity.

2. The memory requirements of the graph representations.

We compare the graph representation method proposed in
this paper with other existing methods. As shown in Table III,
we only use one unit (Kilobyte, KB). Each graph represen-
tation method is the total memory requirement obtained by
performing graph representation on all dataset samples. The
memory requirements of OG and WOG are large, which is
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TABLE IV
THE PERFORMANGE OF DEEP LEARNING MODELS IN DIFFERENT GRAPHS
Models Complex CHB-MIT SSW Bonn
Network A vs.E B vs.E C vs.E D vs.E
Acc Spe Sen FI Acc Spe Sen FI Acc Spe Sen F1 Acc Spe Sen F1 Acc Spe Sen FI Acc Spe Sen FI

VG 0706 0824 0549 0579 | 0.831 0858 0805 0.774 [ 0988 0986 0991 0981 [ 0983 0979 0987 0973 | 0948 0944 0952 0923 | 0947 0943 0951 0921
LPVG 0713 0816 0578 0592 | 0827 0865 0.790 0.771 0.98 0986 0986 0979 | 0.982 0976 0989 0971 | 0.943  0.941 0.945 0944 | 0946 0948 0944 0.942
HVG 0.628 0.866  0.314 0.408 | 0.560  0.653 0.467 0.453 0.837  0.865 0.808 0.781 0.836  0.871 0.801 0.781 0.837 0.906  0.769  0.791 0.847 0904 0790  0.802
TS-MLP LPHVG 0588 0825 0274 0351 | 0556 0730 0382 0426 | 0.828 0.837 0819 0765 | 0.832 0841 0.822 0769 | 0.840 0896 0.784 0793 | 0839 0881 0797 0.788
0G 0.694 0811 0540 0564 | 0.835 0837 0832 0771 | 0972 0974 0969 0960 | 0970 0961 0980 0952 | 0944 0949 0939 0941 | 0937 0945 0929 0911
WOG 0.908 0927 0.883  0.862 | 0970 0974 0966 0958 | 0993 0987 0997 0.986 | 0.995 0.990 0999 0990 | 0965 0.959 0971 0955 | 0.957 0.947  0.968  0.943
WRG 0.837 0.866  0.809 0.832 | 0.798 0.812 0779  0.769 0.948 0960  0.937 0.948 0.937 0.964 0909  0.935 0.925 0.952 0.897 0.922 | 0.905 0.930  0.881 0.903
WNG 0.787 0858  0.694 0.696 | 0.908 0.928 0.887 0.875 | 0.905 0912 0.898 0.867 | 0910 0918 0902 0874 | 0813 0809 0.813 0809 | 0816 0812 0819 0.746
VG 0.724  0.782 0.648 0.612 | 0.886  0.888  0.884  0.838 | 0.994 0992 099 0990 | 0990 0987  0.993 0.984 | 0.973 0.970 0976  0.959 | 0.959 0959 0958  0.940
LPVG 0.694 0772 0593 0573 | 0.884 0.886 0.883 0.836 | 0994 0991 0997 0989 | 0993 0991 0.994 0988 | 0975 0975 0976 0.964 | 0.960 0964 0955 0.943
HVG 0.640 0868 0340 0434 | 0.683 0761 0.605 0594 | 0851 0902 0799 0806 | 0.880 0904 0.856 0.838 | 0.836 0890 0.781 0.786 | 0.837 0899 0775  0.790
TS-GNN LPHVG | 0.633 0.736 0496 0491 | 0.661 0.829 0493 0558 | 0.848 0869 0827 0.794 | 0889 0911 0867 0850 | 0839 0917 0760 0795 | 0.843 0.889 0.797  0.795
0G 0.676  0.861 0.431 0.512 | 0.853 0.833 0.872 0.788 0.966  0.973 0.959  0.953 0.973 0978 0969  0.963 0940 0934 0946 0910 | 0924 0912 0936 0.885
WOG 0507 0.141 0989 0216 | 0562 0.125 0.999 0202 | 0.706 0421 0990 0.504 | 0.845 0701 0989 0.730 | 0.797 0.614 0.981 0.657 | 0.834 0719 0.949  0.730
WRG 0840 0863 0818 0837 | 0796 0836 0743 0758 | 0.876 0.821 0931 0882 [ 0.803 0.678 0927 0825 [ 0814 0.697 0931 0834 [ 0.796 0707 03884 0.812
WNG 0.825 0.818 0.833 0738 | 0.828 0.749 0907 0.737 | 0.842 0.826 0858 0.775 | 0.883 0.899 0.867 0839 | 0781 0711 0852 0.685 | 0.764 0.699 0.828  0.667
VG 0864 0876 0849 0796 [ 0919 0939 0899 0891 [ 0998 0.999 0998 0.998 [ 0998 0997 0.997 0997 [ 0993 0994 0991 0990 [ 0961 0966 0956 0.944
LPVG 0.866  0.891 0833 0801 | 0920 0944 0895 0894 | 0999 0997 1.000 0998 | 0998 0999 0997 0998 | 0993 0997 0.998 0.995 | 0963 0966 0959  0.956
HVG 0.707 0.864  0.499 0.568 | 0.812  0.860  0.765 0.754 | 0.944  0.965 0.923 0.927 0.953 0.972  0.934 0940 | 0919  0.963 0.876  0.900 | 0.922  0.951 0.892 0.898
TS-SGCN LPHVG 0.720  0.849  0.551 0.596 | 0.806  0.859  0.752 0.746 | 0.939 0958 0920 0919 | 0.952 0.966 0938 0936 | 0919 0970  0.869 0.902 | 0915 0.964  0.865 0.895
0G 0.859 0854 0864 0784 | 0916 0913 0920 0878 | 1.000 1.000 1.000 0993 | 1.000 1.000 1.000 1.000 | 0990 0994 0.986 0987 | 0.980 0987 0.973 0.974
WOG 0928 0947 0903 0.893 | 0959 0965 0954 0943 | 0997 0999 0999 0994 | 0997 0999 0996 0997 | 0985 0.990 0.981 0980 | 0967 0971 0963  0.953
WRG 0.845 0.950  0.739 0.826 | 0.800 0.902 0.666  0.742 0.968  0.997 0939 0967 0.955 0995 0916  0.953 0.944 0979 0.909 0942 | 0913 0.959  0.867 0.909
WNG 0.933 0975 0.879 0908 | 0.949 0.994 0904 0944 | 0994 0999 0989 0993 | 0988 0988 0.978 0986 | 0982 0997 0.967 0981 | 0967 0972 0963  0.954
VG 0.865 0903 0815 0803 | 0914 0953 0876  0.891 0999 1.000 0999 0999 | 0998 0998 0998 0997 | 0995 0997 0992 0993 | 0980 0986 0973 0973
LPVG 0.867 0.898 0.826  0.804 | 0.915 0.951 0.880  0.891 0.999 0999 0999  0.998 0.998 0.998 0997 0997 | 0994  0.995 0993 0992 | 0979 098 0970 0974
HVG 0722 0885 0506 0587 | 0.812 0872 0753 0756 | 0.948 0.966 0931 0932 | 0957 0964 0949 0940 | 0923 0954 0.892 0900 | 0919 0949 0888  0.894
TS-1DCNN LPHVG | 0731 0842 0583 0614 | 0.800 0.868 0732 0741 | 0940 0953 0927 0918 | 0955 0964 0946 0938 | 0926 0959 0892 0905 | 0913 0951 0875 0.889
oG 0.860  0.872 0.845 0.790 | 0916 0913 0.920  0.879 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1000 | 0989  0.992 0.986 0986 | 0982 0986 0.977 0.975
WOG 0932 0963 0890 0902 | 0.962 0972 0952 0.948 | 1.000 1.000 0999 1000 | 0.999 0.999 0.999 0998 | 0.999 1.000 0.998 0.999 | 0.997 0999 0.994  0.996
WRG 0.847 0956 0739 0828 | 0.805 0904 0.676 0750 [ 0970 0.996 0944 0969 [ 0958 0994 0923 0957 [ 0944 0979 0910 0942 [ 0913 0951 0.876 0910
WNG 0936 0966 0.897 0909 | 0958 0971 0944 0944 | 0999 0998 1.000 0.997 | 0999 0999 0999 0999 | 0998 1.000 0996 0.998 | 0.995 0.997 0.994  0.994

consistent with the hypothesis of this paper. These methods
build many edges. WOG occupies more memory requirements
than OG. WOG contains a huge number of edges, and each
edge has a weight, which takes up more space. However, it can
be found that the graph representation proposed in this paper
indicates that the memory requirement is significantly lower
than that of OG and WOG. WRG is also 51 times smaller
than WOG on the CHB-MIT dataset (WNG is 61 times),
WRG is also 48 times smaller than WOG on the SSW
dataset (WNG is 53 times), and WRG is at least 56 times
smaller than WOG on the Bonn data set (WNG is at least
60 times). The memory requirements of both WRG and WNG
methods are significantly reduced. Specifically, the graph rep-
resentation proposed in this paper indicates that the memory
requirements are between HVG and LPHVG. However, it is
worth pointing out that HVG and LPHVG are undirected and
unweighted graphs. With the same memory requirement, HVG
and LPHVG contain more redundant edges than WRG and
WNG.

3. The classification
representations.

In terms of classification performance, we use four
classification models: TS-MLP, TS-GNN, TS-1DCNN, and
TS-SGCN to compare the performance of different graph
representations in the time and frequency domains and also
evaluate the performance of the different models. The purpose
is to verify the classification performance of the graph repre-
sentation proposed in this paper and evaluate the classification
performance of the classification model proposed in this
paper.

As shown in Table IV, we can observe:

In the experiments of the same classification model, the
WRG and WNG proposed in this paper have achieved bet-
ter results in experiments with different datasets, except for
TS-GNN, which cannot effectively extract sequential features
of the vertices in WRG and WNG with the aforementioned
TS-GNN. This shows that the WRG and WNG contain impor-
tant information in the EEG signal and can effectively improve
the performance of the classification model.

performance of the graph

In the experiments with the same graph representation,
we find that the classification performance of the TS-1DCNN
is better than that of TS-MLP, TS-GNN, and TS-SGCN. This
result further demonstrates that our model can better extract
features from graph representations.

Through experiments, we found that WNG-TS-1DCNN is
the best-performing method at present.

C. Comparing With Time and Frequency Domain Graph
Representation Methods

To verify the effect of the two-stream structure, we con-
ducted experiments using only the time domain (T) or fre-
quency domain (F) model to compare with the two-stream
model (TS), as shown in Table V.

Compared with time and frequency domain, the classifica-
tion results of two-stream are better, indicating that extracting
time and frequency domain features is better than using only
time domain or frequency domain methods, which is also
intuitive. Except for A vs.E and SSW, WNG is more accurate
than WRG in almost all classification tasks.

D. Comparing With Exsiting Methods

To further verify the performance of the method proposed
in this paper, we compare our method with the existing
methods, and the experimental results are also very compet-
itive, as shown in Table VI. We use time complexity (TC),
memory requirement (MR), accuracy (Acc), specificity (Spe),
and sensitivity (Sen) as evaluation metrics.

In terms of classification results, the accuracy of our method
is comparable to or even better than the existing methods.

Compared with CT-LS-SVM [42], WNG-TS-1DCNN
achieves better classification results, which illustrates the
superiority of our method over traditional non-deep learning
methods in the classification task of epileptic EEG signals.
Compared with AdaBoost [40] in the SSW dataset and
NCOV [38] in CHB-MIT, the classification accuracy of WNG-
TS-1DCNN is also better than that of traditional non-deep
learning models.
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TABLE V TABLE VI
COMPARE WITH ONLY TIME OR FREQUENCY DOMAIN METHODS COMPARE WITH EXISTING METHODS
Dataset Method MR Acc Spe Sen Fl1 Dataset Method TC MR Acc Spe Sen
WRG-T-IDCNN 6.155 0925 0963 0876 0910 NCOV [38] - - 0918 1.000  0.836
WRG-F-IDCNN 7253 0927 0961 0878 0911 TE-CNN [39] . - 089 - -
WRG-TS-IDCNN 13408 0931 0942 0918 0895 CHB-MIT VG-SGCN [25] O(n®) 8003 0850 0834 0871
CHBMIT —gRGTIDONN 5662 0903 0963 0826  0.867 WOG2DCNN [24] _ O(n?) 347933 0911 0964 0343
WNG-F-IDCNN 6736 0922 0968 0862 0.892 WNG-TS-1DCNN O(n) 12398 0936 0966 0897
WNG-TS-IDCNN 12398 0.936  0.966  0.897  0.909 Mo ) : o e
WRG-T-IDCNN 4736 0943 0903 0984 0946 WNEG.SSGCNet [41]  O(n) i 0951 0084 0918
WRG-F-IDCNN 4679 0967 0946 0987  0.967 3
SSW VG-F-GIN [25] O3 5856 0824 0864 0783
WRG-TS-IDCNN 9415 0953 0961 0945 0935 3
SSW NG T DO 0940030990097 VG-SGCN [25] O(n®) 5856 0893 0911 0874
WNGFIDONN 4679 0953 0925 0983 0917 WOG-2DCNN [24]  O(n?) 229011 0965 0974  0.960
WNGTSIDONN 8985 0958 0971 0944  0.944 WNG-TS-TDCNN O(n) 8985 0958 0971 094
: : - : - CT-LS-SYM [42] - - 1.000 1000 1.000
WRG-T-IDCNN 4807 1.000 _ 1.000 _ 1.000 _ 1.000 LSTM [2] : _ 0970 0980  0.960
WRG-F-IDCNN  7.243  1.000  1.000 1.000  1.000 AMWCNN [11] - - 1000 1.000  1.000
A VvsE WRG-TS-1DCNN 12500 0999  0.999  1.000  0.999 A vsE DCT-FHE-SVM [43] - - 0.949 0943 0954
: WNG-T-IDCNN 4474 0997 1000 0993  0.997 Vs WNFG-SSGCNet [41] ~ O(n) - 0998 0997  1.000
WNG-F-IDCNN 6745 0994 1000 0988  0.994 VG-SVMKNN [9]  O(n®) 6008  1.000  1.000  1.000
WNG-TS-IDCNN 11219 0999 0998 1000  0.997 VG-F-GIN [25] O(n®) 8467 0968 0983 0953
WRG-T-IDCNN 4842 0995 0994 0997  0.995 VG-SGCN [25] O(n®) 8467 0998 0995  1.000
WRG-F-1DCNN 7245 0997 0997 0997  0.997 WOG-2DCNN [24] O(n?) 270576 0.999 0988  1.000
Bvsp __WRGTS-IDCNN 12087 0998  0.999 099  0.997 WNG-TS-1DCNN O(n) 11219 0999 0998  T.000
: WNG-T-IDCNN 4506 0995 1000 0990  0.995 CTLS-SVM [42] - E 0995 0992 0998
WNG-F-IDCNN 6750 0990 0997 0984  0.989 LSTM [2] - - 0925 0940 0910
WNG-TS-IDCNN  11.256  0.999  0.999  0.999  0.999 b CATMF\ZET\;T:IMIAI l[]m - - g)-ggg é'ggg éggg
WRG-T-IDCNN 4774 0991  1.000 0981  0.991 ; “FHE- - - - : :
WRG-F-IDCNN 7239 0991 0997 0984  0.991 BB WNFG-SSGONer [41) o - 1000 1000 1.000
WRG-TS-IDCNN  12.013 0993 0.999  0.987 0992 VG-SVMRNN 9] O(n) - 5980 0973 0952 0.995
€V —WNGTIDONN 4431 0997 1000 0.09% 0.097 VG-F-GIN [25] O(n) 8482 0925 0923 0928
WNG-F-IDCNN 6739  0.981  1.000 0963  0.981 VG-SGCN [25] O(n7) 8482 0995 0995 0995
WNG-TS-IDCNN 11170 0.998  1.000  0.996  0.998 WOG-2DCNN [24]  O(n”)  276.180 0991 0992  0.990
WRGTIDCNN 4775 0970 0972 0960 0.970 WNG-TS-IDCNN O(n) 11256 0999 0999 0999
WRG-F-IDCNN 7240 0969 0981 0956 0968 T : R S ot
Dysp _ WRGTS-IDCNN 12015 0986 0989 0982 0.981 AMWCNN [11] . i 0994 0984 0992
: WNG-T-IDCNN 4430 0992 0997 0988  0.991 . DCT.FHE-SVM [43] . i 0975 0970 0980
WNG-F-1DCNN 6.740 0967 0981 0953  0.957 S WNFG-SSGCNet [41] O(n) R 0988 0984  0.991
VG-F-GIN [25] O(n®) 882 0946 0913 0980
VG-SGCN [25] O(n®) 882 0985 0983 0988
WOG-2DCNN [24]  O(n?) 270098 0988 0990  0.985
. . WNG-TS-TDCNN O(n) _TLI70 0998 1.000 _0.9%
In the Bonn dataset, the -classification accuracy of CT-LS-SVM [42] - E 0940 0820 0940
: LSTM [2] - - 0.910 0.870 0.950
WNG-TS-1DCNN is better than that of LSTM [2] and AMWCNN [11] : i 0991 0994  0.989
AMWCNN [11], which further shows that the signal graph D vsE DCT-FHE-SVM [43] - - 0964 0962 0.965
. . . Vs WNFG-SSGCNet [41]  O(n) - 0977 0972 0981
representation method can promote the classification of deep VG-SVMKNN [9] Om®) 6273 0933 0963 0906
learning models. The experimental results show that our VG-F-GIN [25] O(n®) 8858 093¢ 0930 0934
hod perf b i classificati h hod . VG-SGCN [25] O(n®) 8858 0964 0960 0968
method performs better in classification than methods using WOG-2DCNN [24] Om?) 270972 0974 0976 0971
only deep learning model. Compared with SeizNet [13] in the WNGTS-IDCNN___ O(n) _ TLI70__ 0995 0.997 0.9%4
. . WOG-SVM [24 0 268998 0965 0953 0980
SSW dataset, and compared with TF-CNN [39] in CHB-MIT, CNN [10][ ! ) . 0887 0900 0950
the classification accuracy of WNG-TS-1DCNN is also better BvsDvsE  WOG2DCNN[24]  O(n®) 268998 0974 0958 0975
WNG-TS-TDCNN O(n) 4432 0968 0981 0972

than that of using only the deep learning model.

Compared with VG-F-GIN [25], WNG-TS-1DCNN
achieves better classification results, which indicates that
the proposed method is more effective than graph neural
networks using only graph aggregation. It should be pointed
out that GIN is only suitable for undirected graph structures,
we only use VG for the graph representation of EEG signal.

Compared with VG-SGCN [25], the classification accuracy
of WNG-TS-1DCNN is significantly improved, especially in
the SSW and CHB-MIT datasets experiments. The results
further verified that WNG-TS-1DCNN brought gains for
epilepsy classification. The memory requirement of WNG is
bigger than that of VG, but WNG is the sum of the memory
requirements represented in both time and frequency domains,
while VG is only the memory requirement of the frequency
domain.

Compared with WOG-2DCNN [24], WNG-TS-1DCNN has
comparable or even better classification accuracy. However,
it is worth pointing out that WNG is more lightweight
than WOG, and the number of parameters of TS-1DCNN is
much smaller than that of 2DCNN. With similar classification

accuracy, our framework time complexity and memory
requirements are significantly lower than WOG-2DCNN.

Compared with TF-CNN [39], WNG-TS-1DCNN has
higher classification accuracy. It is worth noting here that the
method proposed in this paper only uses the information of a
single-channel of CHB-MIT, while the TF-CNN method uses
23 channels of data. This further shows that the framework in
this paper can still maintain a high classification accuracy in
the case of limited information.

In summary, WNG-TS-IDCNN is a classification
graph-based framework for epileptic EEG signals that
combines accuracy, low time complexity, and low memory
requirements.

V. DISCUSSION

A. Critical Difference

In order to further illustrate the performance of our method
proposed, we analyze the performance of the EEG signal graph
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Fig. 8. Critical difference diagram (CDD) of all methods on all datasets.

representation and the two-stream graph-based framework.
We use the critical difference diagram (CDD) [44] (« = 0.05)
to compare the accuracies across all datasets. We use their
average accuracies over five runs.

We first evaluated the performance of different graph rep-
resentations. As shown in Fig. 8 (a), we find that WOG and
WNG are superior to all baseline methods with TS-1DCNN.
However, WOG contains a large number of redundant
edges, so WNG is comprehensively considered to be the
graph representation method of EEG signals taking into
account classification accuracy, time complexity, and memory
consumption.

We evaluate the performance of different two-stream graph-
based frameworks. As shown in Fig. 8 (b), we find that
WRG and WNG have the best classification performance with
TS-1DCNN. This also verifies that the two-stream graph-
based framework with only one aggregation and sequential
convolution is superior to other ablation baseline methods in
the graph representation of EEG signals.

We also evaluated the classification performance of WRG
and WNG in time domain, frequency domain, and simul-
taneous extraction time and frequency domain experiments.
As shown in Fig. 8 (c), we find that there is little difference
between the time domain, frequency domain, and the method
of extracting time and frequency domain simultaneously in
WRG. The best performance is the frequency domain WRG,
which shows that the random edges do not improve the
performance of the graph representation of EEG signals.
As shown in Fig. 8 (d), in WNG, simultaneous extraction of
time and frequency domain features is significantly better than
the other two methods, which also verifies the effectiveness
of simultaneous extraction of time and frequency domain
features.

B. Interpretability

We look into the interpretability of our method. As was
previously explained, our interpretability comes from the
vertex aggregation and learnable weight vector. Concretely,

Fig. 9.  Learnable weight vectors of the two-stream graph-based
framework on all datasets, which can be interpreted as the importance
of each frequency to epilepsy detection.

each weight corresponds to a specific frequency and can
be seen as the importance of that frequency to epilepsy
detection.

On the CHB-MIT dataset and the SSW dataset, we found
that the weight distribution is on the frequency bands 30Hz
and 60Hz (gamma rhythm), which is consistent with the
conclusions of the paper [45]. On the Bonn dataset, we found
that the weight distribution is between 3-4Hz (A vs. E, C vs.
E), 8-12Hz (D vs. E), and 30-100Hz (A vs. E, B vs. E,
C vs. E, D vs. E), which is consistent with the conclusions
of the paper [15], [45]. These conclusions further provide
explanatory evidence for the classification of epilepsy using
EEG signal graph representations and graph-based framework.

C. Robustness of Graph Representation

In order to illustrate the robustness of our graph represen-
tation, We analyze the training curve of each EEG signal
graph representation with different two-stream graph-based
frameworks. The experiment contains a total of five categories.
The tasks are CHB-MIT, SSW, A vs. E, B vs. E, C vs. E, and
D vs. E.

It can be seen from Fig. 10:

1. In the experiments of TS-MLP, TS-MLP has the weighted
feature extraction ability. Therefore, WOG and WRG have the
highest classification accuracy among all graphs. This shows
that WOG and WRG have better information representation
abilities.

2. In the experiments of TS-GNN, the stability of the
TS-GNN curve is poor, and the classification accuracy is
the lowest among the four models, especially in the SSW
and CHB-MIT datasets. This shows that the TS-GNN model
without sequential feature extraction capability has very lim-
ited classification capability for graph representations of EEG
signals.

3. In the experiment of TS-SGCN, the curve is stable, and
the classification accuracy converges higher, which further
verifies the importance of sequential feature extraction.

4. In the experiment of TS-1DCNN, the curve is stable,
and the classification accuracy converges the highest. After
the aggregation operation, compared with TS-SGCN, we find
that the graph has a further improvement, and TS-1DCNN
only uses vertex aggregation once.

Based on the above research, it can be known that the
graph representation method of EEG signals proposed in
this paper is the method with the least time complexity and
memory requirements at present, which greatly accelerates the
generation speed of graphs. It can be found from the training
curve experiment of the deep learning model that this graph
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Fig. 10. Training curves of the two-stream graph-based framework in three datasets. The graph representations used here are VG, LPVG, HVG,

LPHVG, OG, WOG, WRG, and WNG.

representation method can improve the classification accuracy
of the model. In addition, the TS-1DCNN has shown stable
performance in the classification task of the epileptic EEG
signals graph representation. In summary, it can be known that
the graph representation method proposed in this paper and the
designed two-stream graph-based framework have important
significance for the classification of the graph representation
of epileptic EEG signals.

It should be noted that the method proposed in this paper
is mainly used to optimize the epilepsy classification task of
single-channel EEG signals. In future work, we will design
a graph representation method based on multi-channel EEG
signals to complete the epilepsy classification task.

VI. CONCLUSION

In this paper, we propose a new graph representation method
to represent EEG signals and develop two-stream graph-based

frameworks to extract the time and frequency domain features
of graphs. The graph representation method we proposed
dramatically reduces the time complexity and memory require-
ments while retaining the information of the EEG signal. Our
two-stream graph-based framework can simultaneously extract
features in the time and frequency domain and extract the
sequence features of the vertices in the graph. We apply our
method to the classification task of epileptic EEG signal, and
the results show that the performance of the method proposed
in this paper is better than existing methods. We compare our
method with the state-of-the-art method. It turns out that our
graph representation method has the lowest time complexity
and the minor memory requirement. The classification results
of the two-stream graph-based framework surpass other meth-
ods in many experiments. These results prove that our method
is competitive for the epileptic EEG signal classification
task.
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