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A Temporal Dependency Learning CNN With
Attention Mechanism for MI-EEG Decoding
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Abstract— Deep learning methods have been widely
explored in motor imagery (MI)-based brain computer
interface (BCI) systems to decode electroencephalog-
raphy (EEG) signals. However, most studies fail to
fully explore temporal dependencies among MI-related
patterns generated in different stages during MI tasks,
resulting in limited MI-EEG decoding performance. Apart
from feature extraction, learning temporal dependencies
is equally important to develop a subject-specific MI-
based BCI because every subject has their own way
of performing MI tasks. In this paper, a novel temporal
dependency learning convolutional neural network (CNN)
with attention mechanism is proposed to address MI-EEG
decoding. The network first learns spatial and spectral
information from multi-view EEG data via the spatial
convolution block. Then, a series of non-overlapped time
windows is employed to segment the output data, and
the discriminative feature is further extracted from each
time window to capture MI-related patterns generated
in different stages. Furthermore, to explore temporal
dependencies among discriminative features in different
time windows, we design a temporal attention module
that assigns different weights to features in various time
windows and fuses them into more discriminative features.
The experimental results on the BCI Competition IV-2a
(BCIC-IV-2a) and OpenBMI datasets show that our proposed
network outperforms the state-of-the-art algorithms and
achieves the average accuracy of 79.48%, improved by
2.30% on the BCIC-IV-2a dataset. We demonstrate that
learning temporal dependencies effectively improves MI-
EEG decoding performance. The code is available at
https://github.com/Ma-Xinzhi/LightConvNet
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I. INTRODUCTION

BRAIN computer interface (BCI) systems provide new
ways for users to communicate with computers by

translating brain signals into useful commands in real time [1].
In recent years, BCI technologies have gradually played
an efficient role in providing assistance and preventive
care to people paralyzed by chronic neuromuscular disor-
ders [2], [3], [4]. In BCI systems, electroencephalography
(EEG) signals are widely used to record brain activity
because of their minimal risk and the relative convenience of
conducting studies [1].

Many types of neurophysiological patterns have been
applied to EEG-based BCI systems, such as steady-state visual
evoked potential (SSVEP) [5], P300 event-related potential
(ERP) [6] and motor imagery (MI) [7]. Among these EEG
measurements, MI has been gaining more attention because it
allows users to generate corresponding signals actively without
any external stimuli. MI can be seen as mental rehearsal of
a motor act and results in event-related desynchronization or
synchronization (ERD/ERS) by activating substantial related
neurons within the sensorimotor area of cerebral cortex [8].
MI-based BCI systems are demonstrated as assistive tools for
paralyzed patients, thereby facilitating motor rehabilitation [9]
and external device control [7]. Therefore, decoding MI-
EEG signals with high accuracy is critical to the application
of MI-based BCI system. However, non-stationary MI-EEG
signals with noise, individual differences of subjects, and the
scarcity of training data make MI-EEG decoding much more
intractable than it appears [10].

In earlier studies, researchers attempt to extract neurophys-
iological features from MI-EEG data and employ classical
machine learning methods to classify them. Common spatial
pattern (CSP) [11], which maximizes the variance difference
between two classes of MI-EEG signals, is one of most
commonly used features in MI-based BCI systems. A series of
variant methods based on CSP has been proposed to improve
the discrimination of extracted features. Filter bank common
spatial pattern (FBCSP) [12] extracted CSP features from
multiple frequency bands instead of a specific band. Sparse
filter band common spatial pattern (SFBCSP) [13] was further
proposed to optimize the spatial patterns by exploiting sparse
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regression for automatic band selection. In recent years, Das
and Pachori [14] proposed to use combination of multivariate
iterative filtering (MIF) and CSP to automatically select
optimal frequency bands. Jin et al. [15] designed a new feature
selection method based on an improved objective function
to select optimal features in the feature space used within
CSP.

Besides CSP-based methods, some methods based on other
feature extraction algorithms also performed well on MI-EEG
decoding tasks. Bhaleraoa and Pachori [16] proposed a
swarm decomposition (SWD) based classification framework
to decompose and find significant oscillatory components
related to the MI-EEG signal. In the Riemannian geometry
based classification framework, the covariance structure of
EEG data was exploited as the feature of interest [17], [18].
In terms of classifiers, linear discriminant analysis (LDA)
and support vector machine (SVM) are commonly used to
classify extracted features. Although these attempts have
achieved good performance for MI-EEG decoding, they have
a high dependency on handcrafted features. In general, above
methods employ two-stage pipelines, namely, a handcrafted
feature extractor and a classifier. Due to the definite
subjectivity of handcrafted feature extractor, the global
optimization of algorithm can not be carried out to further
improve MI-EEG decoding performance.

Recently, many studies have introduced various end-to-end
deep learning networks into MI-EEG decoding without the
need for handcrafted features. Furthermore, many advanced
deep learning architectures are designed to compensate
for the defect of conventional BCI systems and improve
MI-EEG decoding performance [19]. Among these deep
learning architectures, convolutional neural network (CNN)
has been widely applied in MI-EEG decoding because of its
ability to learn potential information from the given dataset
effectively [20], [21], [22]. Although these methods have
outperformed classical machine learning methods, temporal or
spatial features are not fully explored, and their improvements
are limited.

More recently, some well-designed deep learning archi-
tectures have been proposed to fully utilize multi-domain
information of MI-EEG signals and enhance decoding
performance. Zhao et al. [23] presented a 3D representation
for MI-EEG data, which preserved the spatial information
of sampling electrodes, and designed a multi-branch 3D
convolutional neural network for the new data representation.
In 2021, a temporal-spectral-based squeeze-and-excitation
feature fusion network (TS-SEFFNet) was proposed to fuse
the temporal-spectral features and improve the MI-EEG
decoding accuracy [24]. However, these networks use a
fixed time window of MI-EEG signals to extract features
without considering the importance of MI-related patterns
in different time periods, resulting in limited decoding
performance. Recent FBCNet [25] proposed a variance layer
to effectively extract features from different time windows
of the time series and achieved excellent performance on
public datasets. Nevertheless, FBCNet investigates features
in different time windows independently without exploring

temporal dependencies among them, which is not enough for
discriminative feature extraction.

During one MI task, every subject reacts to the correspond-
ing movement cue and completes the task at their own pace.
We find that temporal dependencies among MI-related patterns
in different stages during MI tasks are essential to improve the
MI-EEG decoding performance. The similar idea was applied
to SSVEP detection, which introduced the temporally local
weighting into the objective function [26]. Therefore, we aim
to build bridges between features extracted from different
time periods. In recent years, attention mechanism has been
widely used to build generative models for natural language
processing [27] and image recognition [28]. It effectively
learns dependencies among context elements by assigning
them attention weights which define a weighted sum over
context representations. Considering the scarcity of EEG
training data, inspired by the attention-based lightweight
convolution [29], a novel temporal dependency learning CNN
with attention mechanism is proposed for MI-EEG decoding
in this paper. The proposed network first implements the
spatial convolution to learn spatial and spectral information
from multi-view EEG data, which is preprocessed with a
filter bank. Then, we employ a series of non-overlapped time
windows to segment the output time series. The discriminative
feature from each time window is further extracted using
a temporal variance layer to capture MI-related patterns in
different stages during MI tasks. Moreover, we design a
novel temporal attention module to further learn temporal
dependencies among discriminative features from different
time windows. The temporal attention module assigns different
weights to features in various time windows according to their
contribution to the final decoding performance, and fuses them
into more discriminative features. Finally, the fused features
are used for classification. We evaluate our proposed network
on two public datasets and demonstrate its better performance
for MI-EEG decoding compared with other state-of-the-art
algorithms.

The main contributions of this paper are summarized as
follows:

• We propose an end-to-end deep learning architecture
that effectively extracts discriminative features from
different time periods of MI-EEG data and learns
temporal dependencies among them. Particularly, a novel
temporal attention module is designed to capture temporal
dependencies between extracted features in different time
periods and generate more discriminative features for MI-
EEG decoding.

• To the best of our knowledge, this is the first deep
learning study that focuses on temporal dependencies
among discriminative features in different time periods
during MI tasks. The proposed method indicates the
potential of exploring temporal dependencies to improve
MI-EEG decoding performance.

• We demonstrate that our proposed method performs
better than the state-of-the-art algorithms on two
benchmark public datasets. Furthermore, investigation via
visualization of the learned features is carried out to
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Fig. 1. Overall architecture of the proposed network for MI-EEG decoding, where C represents the number of EEG channels, T represents the
number of sample points, and w represents the size of time window. The feature vectors that correspond to the same time window are represented
with the same color as the time window.

Fig. 2. Architecture of the proposed temporal attention module, where
all depthwise separable convolutions share the same weight.

interpret the superiority of the proposed method over
others.

The remainder of this paper is organized as follows.
Section II describes the input data representation and the
structure of the proposed network. Section III elaborated
the experiments. In Section IV and Section V, experimental
results of the proposed method are presented and discussed,
respectively. Finally, the paper is concluded in Section VI.

II. METHODOLOGY

In this section, we first describe the multi-view EEG data
representation based on a bank of bandpass filters. Then,
we present the proposed network for MI-EEG decoding in
detail, including spatial and spectral information learning,
temporal segmentation and feature extraction, temporal
attention module, and classification. Finally, we introduce
the training procedure of our proposed network. The overall
architecture of our proposed network is illustrated in Fig. 1.

TABLE I
DETAILED ARCHITECTURE OF THE PROPOSED NETWORK

A. Multi-View EEG Data Representation
Suppose a single-trial raw EEG data represented as

x ∈ RC×T and its corresponding label y ∈ {1, 2, . . . , Nc},
where C, T , and Nc represent the number of EEG channels,
sample points, and distinct classes, respectively.

ERD/ERS corresponds to variations in the synchrony
of the underlying neuronal populations. The presence of
ERD/ERS patterns is prominent in the alpha (8-13Hz) and
beta (14-26Hz) frequency bands during MI tasks [30]. Many
approaches [12], [25], [31] have employed a filter bank to
decompose EEG signal into multiple narrow-band signals and
achieved good performance on MI-EEG decoding. Therefore,
in our research, we preprocess the raw EEG data x ∈ RC×T

with a bank of bandpass filters F = { fi }
Nb
i=1 and build a multi-

view data representation x f b ∈ RNb×C×T by concatenating
the output filtered signals, where Nb represents the number
of bandpass filters. Moreover, each view represents a filtered
EEG signal in a specific narrow band.
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The filter bank F can be composed of any number of
filters with various frequency bands. In our study, following
the FBCSP algorithm [12], we construct the filter bank using
Nb = 9 filters with non-overlapping frequency bands, each
of 4 Hz bandwidth, in range of 4-40 Hz (4-8, 8-12, . . . ,
36-40 Hz). The design of bandpass filters is based on the
Chebyshev Type II filter with a transition bandwidth of 2 Hz
and a stopband ripple of 30 dB [25].

B. Proposed Network Architecture
In this section, we present a novel temporal dependency

learning CNN with the attention mechanism to decode MI-
EEG signals. The proposed network consists of four parts,
namely, spatial and spectral information learning, temporal
segmentation and feature extraction, temporal attention
module, and classification. The specifications of the proposed
network are listed in Table I in detail.

1) Spatial and Spectral Information Learning: Given that
EEG data is typically recorded by electrodes placed at
different brain regions, the spatial information learning aims
to encode spatial information from different channels of
EEG data. We employ a spatial convolution layer with m
output channels and the kernel size of (C, 1) to work as
m spatial filters over all channels. The convolution kernel
size is set to the number of channels for integrating different
information from all channels. In addition, as the input multi-
view data represents filtered EEG signals in multiple frequency
bands, the use of spatial convolution also contributes to the
integration of spectral information from all frequency bands.
A batch normalization layer [32] and an exponential linear unit
(ELU) [33] are further adopted after the spatial convolution
layer. Consequently, the whole process of spatial and spectral
information learning outputs m time series xsc ∈ Rm×1×T .

2) Temporal Segmentation and Feature Extraction: During
MI tasks, EEG signal is typically recorded over a period
of time to cover the whole process of task. EEG signals
in different time periods present various MI-related patterns
[31], [34]. Therefore, to capture MI-related patterns in
different time periods, we employ n non-overlapped time
windows of size w to segment the output xsc along the time
dimension and the discriminative feature is further extracted
from each time window, where n = ⌊

T
w

⌋. T represents the
number of sample points and ⌊·⌋ means the rounding-down
operation. Inspired by [25], due to the essential attribute of
ERD/ERS, we employ a temporal variance layer to extract the
discriminative feature from each time window. The temporal
variance layer computes the variance of i th time series in the
kth time window of size w along the time dimension as:

x (k)
t f (i, 1, 1) =

1
w

(k+1)×w−1∑
t=w×k

(
xsc(i, 1, t) − µ(i, 1, k)

)2
, (1)

where µ(i, 1, k) is the temporal mean of xsc(i, 1, t) within the
kth time window.

As a result, the application of time window and
temporal variance layer generates discriminative features
{x (1)

t f , x (2)
t f , · · · , x (n)

t f } in different time windows, where x (i)
t f ∈

Rm×1×1. Then, all features are passed through the logarithmic

computation and fed into the temporal attention module for
further feature extraction.

3) Temporal Attention Module: The aforementioned features
in different time windows are independent of one another.
Considering that every subject has their own way of
performing MI tasks, we find that temporal dependencies
among features in different time windows are essential to
improve MI-EEG decoding performance. Hence, as shown
in Fig. 2, a novel temporal attention module is designed to
address this issue. The temporal attention module captures
the importance of features in different windows with a set
of weights and aggregates them across the time dimension.
Instead of performing a single attention, multi-head attention
allows the model to jointly attend to information from different
representation subspaces at different positions by incorporating
multiple attention heads [27]. Therefore, we utilize a
depthwise separable convolution [35] with h output channels
to work as h parallel attention heads, which performs a
convolution independently over every channel. Moreover, the
weight of depthwise separable convolution is normalized along
the time dimension using a softmax operation.

As illustrated in Fig. 2, all features {x (1)
t f , x (2)

t f , · · · , x (n)
t f }

are first divided into m
h groups along the channel dimension,

each group with h channels. Then, the features in the same
groups are fed into the above-mentioned depthwise separable
convolution. To perform the multi-head attention, we share
the weight of depthwise separable convolution with different
groups. Finally, computed features in different groups are
concatenated to generate the output feature x f ∈ Rm×1×1.
In summary, the temporal attention module computes for the
output channel c, as follows:

x f (c, 1, 1) =

n∑
j=1

W ((c mod h), 1, j)x ( j)
t f (c, 1, 1), (2)

where W ∈ Rh×1×n represents the weight of depthwise sep-
arable convolution and ‘mod’ means the modulus operation.
The output feature x f is then used for the classification.

4) Classification: Based on the above feature extraction, the
classification is designed to provide the final decoding result.
The feature x f is first flattened into a 1-D feature vector. The
vector is then fed into a fully connected layer. Finally, the
label with the max value of output is considered as the final
result.

C. Training Procedure for the Proposed Network
Early stopping is a common procedure to improve the

training effect. This method has been widely adopted in the
EEG processing area [21], [24], [25]. Therefore, in our study,
we adopt a training procedure with early stopping during the
training phase. The original training data is split into training
and validation sets. The proposed network is first trained
only using the training set, and the validation set accuracy is
monitored. When the validation set accuracy does not increase
within the early stopping patience, the first stage of training
stops. After meeting the early stopping criteria, the network
parameters with the best validation set accuracy are saved.
Starting from the parameters saved in the first stage of training,
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the proposed network continues to be trained on the original
training data, which combines the training and validation sets.
The second stage of training ends when the number of training
epochs reaches up to the specified maximum. To avoid the
case of non-convergence, in our experiment, the maximum
number of training epochs is limited to 500 and 200 for the
first and second stages of training, respectively. Moreover,
the early stopping patience is set to 50 consecutive training
epochs, within which the accuracy on the validation set does
not increase.

In terms of network optimization, the model is trained by
minimizing the cross-entropy loss. Adam optimizer [36] at
default settings is adopted as the optimization method. The
initial value of the learning rate is set to 0.001. The learning
rate is decreased with a decay rate of 0.6, when the training
loss has no improvement for 20 consecutive epochs.

III. EXPERIMENTS

A. Evaluation Datasets
To demonstrate the effectiveness of our proposed network,

we evaluate it on two public MI-EEG datasets, namely, BCI
Competition IV 2a (BCIC-IV-2a) [37] and Korea University
EEG dataset (OpenBMI) [38].

1) BCIC-IV-2a Dataset: The BCIC-IV-2a dataset contains
EEG data from nine healthy subjects. This BCI paradigm is
cue based, including four different MI tasks (left hand, right
hand, feet, and tongue). The EEG signals were recorded at
a sampling rate of 250 Hz by 22 Ag/AgCl electrodes and
bandpass filtered between 0.5 and 100 Hz. Each subject has
two sessions, namely, the training session and the evaluation
session, recorded on different days. There are 288 trials (72
for each class) in each session, and each trial has 4 s duration.

2) OpenBMI Dataset: In the MI paradigm of the OpenBMI
dataset, 54 healthy subjects perform two different MI tasks
(left hand, right hand). Each subject has two sessions, and
each class has 100 trials per session. In other words, there
are 200 trials per session in total. Each trial also has
4 s duration. The EEG signals were originally collected
using 62 Ag/AgCl electrodes at a sampling rate of 1000 Hz.
In our research, as it is done in the original work [38],
we selected 20 electrodes in the motor cortex region for
MI-EEG decoding (FC-5/3/1/2/4/6, C-5/3/1/z/2/4/6, and CP-
5/3/1/z/2/4/6). Furthermore, we performed a downsampling
process using a factor of 4 to obtain signals at a sampling
rate of 250 Hz, the same as the BCIC-IV-2a dataset. Note that
the downsampling process is necessary, making it able to use a
unified hyperparameter configuration for the proposed model.

For both datasets, in our study, EEG data of each trial is
extracted using the same time window [0, 4] seconds relative to
the cue onset. We take each trial as a sample, and each sample
is represented as a 2D matrix of channels × sample points.

B. Evaluation Baselines
We compare the proposed network with four baseline

models, one CSP-based algorithm FBCSP [12]; two classical
CNN architectures, namely, Deep ConvNet [21] and EEGNet-
8,2 [20]; and one state-of-the-art deep learning approach

FBCNet [25]. All these models are retested on two datasets
in our experiment.

1) FBCSP: FBCSP was developed to employ the original
CSP algorithm on each sub-band of EEG signals and extract
distinguishable EEG features from multiple frequency bands.
In our experiment, we decomposed the raw EEG signal using
multiple bandpass filters and selected four most discriminative
CSP filters from each band. The raw EEG signal was then
filtered using selected CSP filters, and the log variance of the
filtered signal was extracted as the feature for classification.
Subsequently, a support vector machine (SVM) was trained to
classify the extracted feature. Finally, the SVM classifier with
optimal parameters was used for testing.

2) Deep ConvNet: As a deep learning model, the design of
the Deep ConvNet was based on classical CNN architectures
and proven to be effective for decoding MI-EEG signals. In our
experiment, the Deep ConvNet was configured in the optimal
way, as recommended in [21].

3) EEGNet-8,2: EEGNet-8,2 was proposed as a compact
deep learning model to address different BCI paradigms.
In our experiment, we reproduced EEGNet-8,2 to perform
a fair comparison and implemented the model following the
description in the original publication [20]. Furthermore, raw
EEG data was resampled at a sampling rate of 128 Hz before
decoding.

4) FBCNet: Influenced by FBCSP, FBCNet employed a
multi-view data representation and captured discriminative
features from multiple frequency bands of the EEG signals.
The model achieved state-of-the-art performance on several
public MI-EEG datasets. In our experiment, the multi-view
data representation of raw EEG data was constructed in the
same way as in [25]. FBCNet was implemented under optimal
conditions, as recommended in the original paper.

It’s worth nothing that FBCSP, FBCNet, and our proposed
method all employed the multi-view EEG data representation
and used the same filter bank to preprocess EEG data. In our
experiment, the filter bank consists of 9 narrow-band bandpass
Chebyshev Type II filters, each has 4 Hz bandwidth, spanning
from 4 to 40 Hz (4-8, 8-12, . . . , 36-40 Hz) with transition
bandwidth of 2 Hz and stopband ripple of 30 dB [25].

C. Experimental Methods
To demonstrate our proposed network as a generalized

MI-EEG decoding model, we conducted experiments for the
subject-specific analysis in the session-dependent and session-
independent settings on two benchmark datasets (Fig. 3). The
subject-specific analysis referred to training and test datasets
from the same subject. Accuracy and F1-score were used to
evaluate decoding performance of all considered methods.

The session-dependent experiment was conducted using a
10-fold cross validation to evaluate decoding performance
for each subject, with 9 folds being used for training and
1 fold for testing, as illustrated in Fig. 3(a). All folds were
constructed by a sequential and class-balanced allocation of
trials, and this allocation was maintained constant during the
entire evaluation process. The average decoding performance
was calculated from 10 evaluations and used to represent the
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Fig. 3. Illustration of the experimental methods for subject-specific analysis in (a) session-dependent and (b) session-independent settings.

overall performance for the given subject. For the BCIC-IV-2a
and OpenBMI datasets, we only used the data from Session
1 in the session-dependent setting to avoid the influence of
cross-session variability.

In the session-independent setting, we conducted a
cross-session experiment to understand the influence of cross-
session variability on the decoding performance. Fig. 3(b)
depicts an example of how we divided the training and test
sets in the session-independent setting. For the BCIC-IV-2a
and OpenBMI datasets, the entire data from Session 1 for the
given subject was used for training, and the resulting model
was tested on the entire data from Session 2.

In the default configuration of our proposed network, we set
the number of spatial filters m to 64 and the number of
attention heads h to 8. Given that the BCIC-IV-2a and
OpenBMI datasets contain trials of 4 s duration at a sampling
rate of 250 Hz, the time window size w was set to 250,
which was equal to sample points in the duration of time 1 s.
We carried out one-way repeated measures analysis of variance
(ANOVA) with Bonferroni correction to analyze significant
differences in decoding performance between our proposed
network and all baseline methods [39]. We further conducted
experiments for different hyperparameter combinations to
evaluate the effect of different values of m, h, and w.
The proposed deep learning network was implemented with
Pytorch [40], and the computation for the deep learning model
was implemented on NVIDIA GeForce GTX 1060 with 3 GB
memory.

IV. RESULTS

Our proposed method is a more competitive model in
the presence of effective feature extraction with the novel
temporal attention module. In this section, we present the
results and evaluations of our proposed method to validate its
effectiveness. The decoding performance of each evaluation
is presented as average accuracy and F1-score with standard
deviation (Accuracy ± Std and F1-score ± Std).

A. Overall Performance Comparison

Table II presents the complete decoding results of our
proposed method and four baseline methods across all subjects
in the session-dependent and session-independent settings
on both BCIC-IV-2a and OpenBMI datasets. As shown in
Table II, our method achieves the best performance in terms
of average accuracy and F1-score on both BCIC-IV-2a and
OpenBMI datasets. The significant decoding performance
improvement can be seen between our proposed method and
other baseline methods on the BCIC-IV-2a dataset. In the
session-dependent setting, our method reaches the highest
average accuracy and F1-score of 82.32% and 82.03% on
the BCIC-IV-2a dataset, which are significantly better than
those of other baseline methods (p < 0.05). Meanwhile,
in the session-independent setting, the average accuracy
improvement of our method is significant (p < 0.05) on the
BCIC-IV-2a dataset. Moreover, the average accuracy and F1-
score of our method is 4.29% and 4.42% higher than that of
FBCNet in the session-independent setting on the BCIC-IV-2a
dataset, indicating its ability in extracting discriminative
features under the use of temporal attention module.
Considering the OpenBMI dataset, significant differences are
seen between our method and other baseline methods in terms
of average accuracy and F1-score in the session-dependent
setting, p < 0.05. However, in the session-independent
setting, the overall decoding performance of FBCNet is close
to our method on the OpenBMI dataset. Furthermore, the
significant performance improvement of our method compared
to FBCNet is not found in the session-independent setting on
the OpenBMI dataset.

To further explore the influence of cross-session variability,
we compare the decoding performance of our proposed
network in different settings on both BCIC-IV-2a and
OpenBMI datasets. As illustrated in Fig. 4, the overall
performance in the session-independent setting is slightly
worse than the session-dependent setting. Even though our
proposed network still suffers from cross-session variability,
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TABLE II
COMPARATIVE DECODING PERFORMANCE (AVERAGE ACCURACY ± STD AND F1-SOCRE± STD) IN % IN THE SESSION-DEPENDENT

AND SESSION-INDEPENDENT SETTINGS ON THEBCIC-IV-2A AND OPEMBMI DATASETS

Fig. 4. Subject specific decoding accuracy comparison in the session-dependent and session-independent settings on the BCIC-IV-2a and
OpenBMI datasets.

it achieves satisfactory decoding performance on both public
datasets.

B. Evaluation of Temporal Attention Module
Our proposed network is based on an important module,

namely temporal attention module. The temporal attention
module assigns different weights to discriminative features
in different time windows according to their contribution
to the final classification results and fuses them into
more discriminative features. To evaluate its effectiveness,
we conducted ablation studies on the proposed network.
We also employed an ANOVA with Bonferroni correction
for statistical analysis to analyze significant differences in
decoding performance between the proposed network with and
without temporal attention module.

As shown in Table III, we compare the decoding
performance of the proposed network with and without
temporal attention module. It can be observed that the
addition of temporal attention module greatly improves the
performance of the proposed network in terms of average

accuracy and F1-score in the session-dependent and session-
independent settings on both BCIC-IV-2a and OpenBMI
datasets. Sepcifically, the significant improvement can be seen
between the proposed network with and without temporal
attention module in the session-independent setting on the
BCIC-IV-2a dataset, p < 0.05. As for the OpenBMI
dataset, our method achieves significantly better performance
than the method without temporal attention module in the
session-dependent setting (p < 0.05). Considering that the
decoding performance is more sensitive to these two different
networks in the session-independent setting, we further
analyze confusion matrices on the representative Subject 8 of
the BCIC-IV-2a dataset and Subject 2 of the OpenBMI dataset.
Fig. 5 illustrates the confusion matrices of the network with
and without temporal attention module on the BCIC-IV-2a
and OpenBMI datasets. According to Fig. 5(a), the temporal
attention module greatly improves the decoding performance
on foot and tongue MI tasks for the BCIC-IV-2a dataset. As for
the OpenBMI dataset, the left-hand MI task is identified with
higher accuracy because of the temporal attention module,
as shown in Fig. 5(b). Consequently, the above results indicate
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TABLE III
DECODING PERFORMANCE (AVERAGE ACCURACY ± STD AND

F1-SOCRE± STD) IN % COMPARISON BETWEEN OUR METHOD AND

OUR METHOD WITHOUT TEMPORALATTENTION MODULE (TAM)

Fig. 5. Confusion matrices of the proposed network with and without
temporal attention module (TAM) on (a) the BCIC-IV-2a dataset (subject
8) and (b) the OpenBMI dataset (subject 2) in the session-independent
setting.

that the temporal attention module is beneficial for extracting
discriminative features and improving the MI-EEG decoding
accuracy.

In addition, the time window size w and the number of
attention heads h also play important roles in the temporal
attention module to extract and fuse features, as presented
in (2). The parameter w is defined as sample points over a
specific time period and utilized to segment the time series
into different temporal segments along the time dimension.
Discriminative features are then extracted from different
temporal segments and inputted into the temporal attention
module. In other words, different values of w capture
different information from the time series, resulting in different
performances of the temporal attention module. Meanwhile,
the temporal attention module utilizes multi-head attention to
capture temporal dependencies. The parameter h is defined
as the number of attention heads accordingly. Each attention
head operates independently and learns to focus on different
parts of the input. To provide more quantitative information
for each parameter, we further examined the effect of w and
h on the overall decoding performance. In our experiment,

TABLE IV
DECODING PERFORMANCE (AVERAGE ACCURACY ± STD AND

F1-SOCRE± STD) IN % WITH DIFFERENT TIME WINDOW SIZES (w )
AND DIFFERENT NUMBERS OFATTENTION HEADS (h). THE BEST

PERFORMANCE IS HIGHLIGHTED IN BOLDFACE

EEG data from both BCIC-IV-2a and OpenBMI datasets is at
a sampling rate of 250 Hz and each trial has 4 s duration.
Therefore, the parameter search for w and h was carried
out in the set {125, 250, 500} and {4, 8, 16}, respectively. The
chosen set {125, 250, 500} for w represents sample points in
the duration of time 0.5 s, 1 s, and 2 s on both datasets,
respectively. Moreover, the selected number of time windows
is set to {2, 4, 8}. Table IV summarizes different decoding
performances when different values of the parameters w and
h are configured in the temporal attention module. It can be
observed that w has a greater influence on the final decoding
performances than h, especially on the BCIC-IV-2a dataset.
Given that ERD/ERS patterns associated with MI have a
duration of time 0.5 s to 1 s, our model benefits more from the
proper value of w [25]. The overall performance of the time
window size w = 250 and w = 125 outperforms other sizes in
the session-independent and session-dependent settings on the
BCIC-IV-2a and OpenBMI datasets, respectively. Moreover,
an extremely large time window size (w = 500) reduces
decoding accuracy. It indicates that the proposed network is
not able to fully explore temporal dependencies under the
use of a large time window size. When the time window
size w is configured, the number of attention heads h has
a noticeable impact on the final decoding performance in
the session-independent setting on the BCIC-IV-2a dataset.
However, on the OpenBMI dataset, only subtle differences are
seen among different values of h. To sum up, the parameter
h value of 8 contributes to the best decoding performance on
both BCIC-IV-2a and OpenBMI datasets.

C. Evaluation of Spatial Information Learning and
Parameter Sensitivity

The number of spatial filters m introduced in the spatial
information learning is a hyperparameter used to balance
the capacity and computational efficiency of the spatial
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Fig. 6. Influence of the number of spatial filters m on the number of trainable parameters, training accuracy, and test accuracy on the BCIC-IV-2a
and OpenBMI datasets.

TABLE V
DECODING PERFORMANCE (AVERAGE ACCURACY ± STD AND

F1-SOCRE± STD) IN % AND TRAINABLE PARAMETERS WITH

DIFFERENT NUMBERS OF SPATIAL FILTERS(m). THE BEST

PERFORMANCE IS HIGHLIGHTED IN BOLDFACE

convolution in the network. It controls the spatial and spectral
learning capacity of our model. In addition, as presented in
Table I, it determines the total number of trainable parameters
to a great extent. To investigate the trade-off between decoding
performance and computational efficiency, we examined the
effect of different values of m in the set {16, 32, 64, 128}.

Table V presents the comparison of decoding performance
with different values of m. It can be seen that the decoding
performance of the proposed network is fluctuant to the value
of m, and the value 64 results in the best performance on
both BCIC-IV-2a and OpenBMI datasets. In addition, the
parameter m plays a critial role in determining the total number
of trainable parameters of the proposed network, which can
be used to reduce energy consumption with less number
of operations and model size [41]. To further analyze the
parameter sensitivity of the proposed network, we explore
the relation between the total number of trainable parameters
and the decoding performance by increasing the number
of spatial filters m. As illustrated in Fig. 6, the parameter
curves show that the number of trainable parameters is
approximately linearly proportional to the number of spatial
filters. However, not only do incremental spatial filters not
improve the decoding performance monotonically, but they
also add complexity to the entire model, which makes the
model less cost-effective. The same phenomenon can be

Fig. 7. Results of decoding EEG signals extracted from time windows
[0.5s, 2.5s] (2 s) and [0s, 4s] (4 s) on the BCIC-IV-2a and OpenBMI
datasets, where * represents the significant difference between different
EEG signals for decoding, p < 0.05.

observed on both BCIC-IV-2a and OpenBMI datasets. This
is probably due to the heavy overfitting problem. To sum up,
m = 64 strikes a good balance between decoding performance
and computational efficiency.

D. Comparison of Decoding EEG Signals Extracted
From Different Time Periods

Decoding EEG signals involves analyzing and interpreting
the brain’s electrical activity recorded over a specific duration.
The choice of time period for decoding can impact the
information extracted from the EEG signal. To explore the
influence of the choice of time period, we further conducted
experiments on EEG signals extracted from different time
periods. Compared with the previous study (time window [0s,
4s]), we used a time window [0.5, 2.5] seconds post cue onset
(the same window which was used in [20] and [42]) to extract
EEG signals for decoding.

Fig. 7 illustrates the results of decoding EEG signals
extracted from different time periods on both BCIC-IV-2a and
OpenBMI datasets. It can be seen that our proposed network
achieves better performance when decoding EEG signals
extracted from the time window [0s, 4s] than [0.5s, 2.5s].
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TABLE VI
TIME CONSUMPTION OF TRAINING (Ttrain) AND PREDICTION (Ttest) IN

SECONDS PER EPOCHAND THE NUMBER OF TRAINABLE PARAMETERS

OF DIFFERENT DEEP LEARNING METHODS IN THE

SESSION-INDEPENDENTSETTING

Moreover, in a paired t-test, there are significant differences
in the average accuracy between the time window [0s, 4s] and
[0.5s, 2.5s], p < 0.05. Although decoding short time periods
allows for capturing rapid changes in brain activity, short
time periods may not capture long-term trends or sustained
brain activity. Our proposed network is designed to capture
temporal dependencies between features in different time
periods. Therefore, EEG signals over long time periods are
more suitable for our proposed network.

V. DISCUSSION

A. Analysis of the Proposed Method
Recently, deep learning has become popular in BCI due to

its capability of effectively learning the brain activity patterns
from EEG data. A deep learning model is expected to have
as fewer trainable parameters as possible to ensure its robust
generalizability because of the scarcity of EEG training data.
To further evaluate the feasibility of our model, we compare
the number of model parameters and time computation of
model training and testing with baseline deep learning models.
The results are listed in Table VI. Note that the measurement
is carried out in the session-independent setting for ease of
representation. The training time is defined as the duration
time of each training epoch, whereas the test time is defined
as the duration time for classifying all test trials from another
session.

According to Table VI, the training time of our proposed
model is 0.242 s and 0.169 s on the BCIC-IV-2a dataset and
the OpenBMI dataset, respectively. Although our proposed
model has more parameters than the similar model FBCNet,
it consumes less time when training. Except for the compact
model EEGNet, which has the least trainable parameters,
the test time difference among other three models is not
significant. The compactness of our proposed model highly
relies on the use of temporal attention module, which has
fewer parameters and efficiently fuses features in different time
windows into more discriminative features. In addition, the use
of time window and temporal variance layer greatly reduces
the feature vector dimension by extracting relevant features
from different time windows.

To give insight into the training process of the proposed
network, we demonstrate the trend of training loss and test

Fig. 8. Training loss and test accuracy during training of the proposed
network.

accuracy during training, as shown in Fig. 8. Due to our
training procedure with early stopping, when the first stage of
training stops, the proposed network continues to be trained
on the original training data which combines the training
and validation sets. Therefore, the training loss has a sudden
increase after meeting the early stopping criteria. In addition,
it can be observed that the whole training process is stable
under the use of temporal attention module. These findings
suggest that the proposed model achieves an appropriate trade-
off between complexity and decoding performance.

B. Comparison of Different Decoding Methods
Our proposed model aims to focus on features in different

time periods during MI tasks by incorporating a novel
temporal attention module. The results in Table II strongly
support the efficacy of our model, wherein our model has
achieved the best decoding performance across two public
datasets. To further validate the performance of our model,
we compare the decoding results reported by recent studies
on the BCIC-IV-2a dataset. Notably, for the OpenBMI dataset,
most studies [43], [44] reported their MI-EEG decoding results
using different evaluation methods, making it difficult for a
fair comparison. Therefore, the performance comparison on
the OpenBMI dataset is not provided in our study.

Table VII presents the decoding results reported by recent
studies on the BCIC-IV-2a dataset. All these studies train their
models on Session 1 and test on Session 2 for each subject,
namely the session-independent setting in our experiment.
As shown in Table VII, our proposed model achieves the
best decoding performance among these models on the BCIC-
IV-2a dataset. In contrast to the models in [22] and [45],
our model directly learns spatial and spectral information
from the multi-view EEG data without the need to initially
process raw EEG signals with spatial filters based on FBCSP,
hence gaining the accuracy increase of 5.02% and 7.48%,
respectively. Studies [24], [46], and [47] concentrate on
exploring different domain information to extract features with
deep and complex network architectures. However, they all
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TABLE VII
COMPARISON WITH EXISTING METHODS

ON THE BCIC-IV-2A DATASET

ignore the variability of features in different time periods
and use a fixed time window to extract features, resulting in
limited decoding performance. In addition, it spends a longer
time training those models because they all have a larger
amount of parameters. Recent MI-BMInet [48] proposed an
automatic EEG channel selection method based on spatial
filters to select the most relevant EEG channels for MI-EEG
decoding. By contrast, our method emphasizes the importance
of temporal dependencies between features in different time
periods and achieves 2.3% higher than MI-BMInet in terms
of average accuracy. These evidences imply that learning
temporal dependencies among features in different time
periods can help our network capture discriminative features
and improve MI-EEG decoding performance.

C. Effectiveness of Temporal Attention Module
The temporal attention module plays the most important role

in our proposed network. It is designed to capture temporal
dependencies among features in different time periods because
every subject has their own way of performing MI tasks.
The experimental results in Table III have confirmed the
effectiveness of the temporal attention module. To further
investigate the role of temporal attention module in extracting
features, the t-SNE [49] method is used to visualize the learned
features. Fig. 9 illustrates the t-SNE projection of the learned
features with and without the temporal attention module on the
BCIC-IV-2a dataset. The extracted features with the temporal
attention module are clustered toward a more compact form in
each class. By comparison, the extracted features without the
temporal attention module appear to be dispersed throughout
the projection space. This finding suggests that the temporal
attention module contributes to enhancing the discrimination
of the learned features among different classes.

D. Influence of Hyperparameter Selection
Our proposed model has three important hyperparameters,

the number of spatial filters (m), the time window size (w),
and the number of attention heads (h). The selection of these
three hyperparameters can significantly impact the decoding
performance and generalization ability of our model. Among
these three hyperparameters, the value of m plays the most
important role in our model. According to Table I, it can be
found that the parameter m has a great impact on the total
number of trainable parameters. In addition, the parameter m

Fig. 9. Features extracted by our proposed network with and without
temporal attention module (TAM) for Subject 3 of the BCIC-IV-2a dataset
in the session-independent setting. The extracted features are projected
into the two-dimensional embedding space by the t-SNE method.

impacts the model’s capacity to learn complex patterns and
representations. As shown in Table V, m = 64 strikes the best
balance between decoding performance and computational
efficiency in the set {16, 32, 64, 128}. Moreover, too large
value of m leads to reduced accuracy for MI-EEG decoding,
which is probably due to the heavy overfitting problem,
as illustrated in Fig. 6.

The parameters w and h influence the temporal dependency
learning ability of the temporal attention module. The
parameter w is defined as sample points over a period of
time and utilized to segment the time series along the time
dimension. Discriminative features are extracted from different
temporal segments and then inputted into the temporal
attention module. The selection of w is to select a proper time
period in which the model is able to extract discriminative
features and build bridges between them. In our experiment,
sample points in the time period 0.5 s, 1 s and 2 s were
chosen for the parameter w. Meanwhile, the temporal attention
module utilizes multi-head attention to weigh the importance
of different features and the parameter h is defined as the
number of attention heads accordingly. Different attention
heads operate independently and focus on different parts of
the input, enabling the temporal attention module to capture
diverse relationships and dependencies. Compared with the
parameter h, as shown in Table IV, the parameter w has a
greater impact on final decoding results than h. It indicates
that the model’s ability to effectively attend to and capture the
relevant information is more critical than the exact positions
in the sequence that receive high attention weights. In other
words, the model’s understanding of the content and its
ability to extract the relevant information are more important
than the specific position of the tokens in the sequence.
To sum up, proper selection of these hyperparameters through
experimentation and validation is necessary to achieve the best
possible results for MI-EEG decoding.

E. Visualization of Learned Features
To further investigate the capacity of different deep learning

methods to extract highly discriminative features, we employ
the t-SNE method to visualize different learned features. The
t-SNE method is applied to the input of the last fully connected
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Fig. 10. Visualization of features learned by different deep learning methods on the BCIC-IV-2a dataset using two-dimensional t-SNE projection.
The learned features are picked from Subject 3 in the session-independent setting for visualization purposes.

layer in all different trained models. The learned features
are further projected into the two-dimensional embedding
space. According to Fig. 10, compared with Deep ConvNet,
EEGNet, and FBCNet, the features learned by our method
appear to be more compact in each class and can be
easily classified. By contrast, the features learned by other
methods are relatively ambiguous, leading to reduced decoding
accuracy. This finding indicates that our method extracts
the most discriminative features among these deep learning
methods and consequently achieves the best MI-EEG decoding
performance.

F. Limitations and Future Directions
Although the proposed network achieves promising decod-

ing results, there are still several limitations. Firstly, the filter
bank and EEG electrods are selected manually, which may
leads to the suboptimal decoding performance. Many studies
have focused on different selection methods to enhance the
decoding performance [50], [51], [52]. Thus, in the future
study, we will focus on incorporating adaptively-selecting
method into our proposed network. Secondly, the designed
temporal attention module is based on depthwise convolution,
however, the transformer module has been widely used
to extract global dependency [53], [54]. Therefore, the
transformer module will be considered in our future work
to improve temporal dependency learning. Thirdly, we can
explore our proposed network on other EEG measurements,
such as SSVEP and ERP. Finally, although subject-specific
experiments shows the superiority of the proposed method,
the proposed method can not be used for cross-subject tasks
directly. Therefore, the transfer learning [44], [55] will be
explored to improve the generalization capability of our model
in the future.

VI. CONCLUSION

This paper proposes a novel temporal dependency learning
CNN architecture with attention mechanism to decode MI-
EEG signals. In this architecture, a novel temporal attention
module is designed to capture temporal dependencies among
discriminative features in different time windows. Moreover,
the temporal attention module assigns different weights to
features in different time windows and fuses them into features
with high discrimination. Experiments are conducted on two
public MI-EEG datasets to evaluate the effectiveness of the
proposed method. The experimental results reveal that our

method achieves significantly better decoding performance
than other compared methods. With interpretability analysis,
we demonstrate that the improved performance is driven by
efficiently capturing temporal dependencies among discrimina-
tive features in different time windows. This finding indicates
that learning temporal dependencies can be regarded as a
potential approach to improve the performance of MI-EEG
based BCI systems.
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