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Abstract— Objective: A brain-computer interface (BCI)
can be used to translate neuronal activity into commands
to control external devices. However, using noninvasive
BCI to control a robotic arm for movements in three-
dimensional (3D) environments and accomplish compli-
cated daily tasks, such as grasping and drinking, remains
a challenge. Approach: In this study, a shared robotic arm
control system based on hybrid asynchronous BCI and
computer vision was presented. The BCI model, which
combines steady-state visual evoked potentials (SSVEPs)
and blink-related electrooculography (EOG) signals, allows
users to freely choose from fifteen commands in an asyn-
chronous mode corresponding to robot actions in a 3D
workspace and reach targets with a wide movement range,
while computer vision can identify objects and assist
a robotic arm in completing more precise tasks, such
as grasping a target automatically. Results: Ten subjects
participated in the experiments and achieved an average
accuracy of more than 92% and a high trajectory efficiency
for robot movement. All subjects were able to perform
the reach-grasp-drink tasks successfully using the pro-
posed shared control method, with fewer error commands
and shorter completion time than with direct BCI control.
Significance: Our results demonstrated the feasibility and
efficiency of generating practical multidimensional control
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of an intuitive robotic arm by merging hybrid asynchronous
BCI and computer vision-based recognition.

Index Terms— Asynchronous brain-computer interface
(BCI), electroencephalography (EEG), electrooculography
(EOG), robotic arm, computer vision.

I. INTRODUCTION

INDIVIDUALS who suffer from severe neuromuscular dis-
orders or motor system impairments, such as amyotrophic

lateral sclerosis (ALS), brainstem stroke, or spinal cord injury
(SCI), typically experience a loss of upper limb function,
including the ability to perform daily activities such as reach-
ing and grasping objects. However, most individuals with
these conditions can still utilize their brain to control external
devices by producing function-related neural processes [1],
[2], [3], [4], [5], [6]. Robots, which are generally developed
as neuroprosthetic devices, have the potential to enhance the
efficiency of environmental interaction for these individu-
als [7], [8], [9]. Nonetheless, coordinating the high number
of degrees of freedom (DOFs) to achieve anthropomorphic
control remains a significant challenge for these severely
paralyzed patients.

Brain-computer interface (BCI) technology, which utilizes
several different input signals, has been developed in recent
years and may serve as the foundation for a new generation of
robotic control [10]. In 1999, Chapin et al. [11] first demon-
strated that a robotic manipulator could be controlled directly
by cortical neuron ensembles. Since then, numerous types of
studies have successfully converted animal or human motor
cortical activities into intentional movements of a mechanized
arm [12], [13], [14], [15]. Neuronal activities were recorded
from specific parts of cortical areas, such as the primary motor
(M1) cortex, ventrolateral (VL) thalamus, or posterior parietal
cortex (PPC). Although these invasive strategies provide neural
signals with high quality, they carry risks associated with inva-
sive surgical procedures. Therefore, noninvasive BCI through
recording tools, such as electroencephalography (EEG) or
magnetoencephalography (MEG), for visual arm or prosthetic
control remains a major research topic [16], [17], [18] because
of the short preparation time and its ability to be applied
without surgery.

EEG-based BCI models have been introduced to the inten-
sional manipulation of several kinds of robots, such as
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quadcopters with motor imagery (MI) [16], small humanoid
robots with P300 [19] or MI [20], and mobile robots [21],
[22] or wheelchairs with steady-state visual evoked poten-
tials (SSVEPs) [23], [24]. However, to our knowledge, few
studies have focused on noninvasive BCI-based robotic arm
control, which expanded the traditional robotic movement
from one-dimensional space to two- or even three-dimensional
(3D) space. The desired multidimensional movement for robot
arms can be generated by using a step-by-step strategy. For
example, Chen et al. [25] proposed an SSVEP-based robotic
arm control system in which the 3D trajectories for a task
were decomposed into a discrete sequence with each command
corresponding to a movement along one specific dimension
under the Cartesian coordinate system. The increase in control
dimensions may aggravate the users’ operational burden if they
have to switch frequently between intensional commands in
different dimensions to keep pace with the ongoing movement
of robotic arms. In addition, motor imagery-based BCIs may
hardly satisfy the high number of DOFs needed to handle
complicated scenarios with robotic actions such as grasping
and drinking [26]. Therefore, multiple commands with quicker
and more accurate manipulation should be provided by the
BCI-based robotic system.

Over the past two decades, SSVEPs have been attracting
increasing interest among researchers due to their high com-
munication rates and low user training requirements [27], [28],
[29]. SSVEPs can be evoked when a subject focuses on a
visual stimulus that flickers steadily on a screen at a specific
frequency [27], [30]. In typical SSVEP-based BCI, the flicker
frequency is unique for each object, and the target object
can be recognized by applying efficient methods, such as the
canonical correlation analysis (CCA)-based algorithm [31].
For example, Nakanishi et al. [32] achieved averaged informa-
tion transfer rates (ITRs) of 325.33 bits min−1 via an extended
CCA-based method [32]. However, for an EEG-based BCI
system, working in asynchronous mode is more necessary in
actual applications because subjects can decide the onset time
of sending a command by themselves. A hybrid strategy, such
as combining EEG signals with electrooculography (EOG)
signals, could be a possible solution to address this problem
because the latter is easier to detect and less fluctuant than
the former [33], [34], [35]. More importantly, eye movements
(e.g., blinking, changing in gaze direction, and fixating) are
usually performed intentionally and naturally.

In order to enhance the efficacy of BCI-based robotic arm
control, we proposed a novel control strategy that focused on
the integration of hybrid BCI and computer vision. Specif-
ically, the hybrid BCI model detected users’ manipulation
intentions in 3D space in an unknown environment and worked
in an asynchronous mode in which both recorded SSVEP
and EOG signals contributed to the final decision. The asyn-
chronous control approach allows subjects to move a robotic
arm at their own pace. When objects enter the camera’s field
of view, the computer vision module from the Intel RealSense
D435 camera helps the robotic arm make precise and efficient
movements for high-level tasks, such as grasping and drink-
ing. Both offline and online experiments were conducted to
demonstrate the practicability of the proposed system.

Fig. 1. Schematic of the BCI robot control system.

II. MATERIALS AND METHODS

A. System Description

As depicted in Fig 1, the proposed hybrid asynchronous
BCI-based robot control system is comprised of three sub-
systems: a hybrid asynchronous BCI model, a robotic arm,
and a computer vision model. The program of the hybrid
asynchronous BCI system was developed on one computer,
while the robotic arm subsystem and the computer vision
subsystem were deployed on the other computer. The two
computers worked independently of each other, and mutual
communication between them was accomplished over the
TCP/IP protocol.

1) Hybrid Asynchronous BCI: A fifteen-target hybrid BCI
subsystem combining SSVEPs and EOGs was developed and
run in an asynchronous mode to select one of these corre-
sponding commands to be acted upon by the robotic arm. The
main user interface was a 3 × 5 stimulation matrix containing
15 buttons, each corresponding to a command. As depicted
in Fig 2(a), a periodic sinusoidal stimulation paradigm was
employed, in which each button flickered with a specific
frequency and phase to evoke the SSVEPs. Therefore, the
amplitude of the stimuli was modulated accordingly [29], [36].
We also presented a cue for eye blinks to evoke EOG signals
by highlighting the buttons with their size transitorily reduced
in a random sequence, which maintained ongoing SSVEP
stimulation synchronously. To connect the BCI commands
with the robotic arm’s 3D movement, we designed a new
strategy called 3D vector synthesis, which is described below.
The three buttons in the first column (marked as “1”, “6”
and “11”) indicate the upward, centering, and downward
movements in the vertical direction of the end effector of
the robotic arm, respectively (abbreviated as “U”, “C”, and
“D”, respectively). Another eight buttons with different arrows
(marked as “2”, “3”, “4”, “7”, “9”, “12”, “13”, “14”) allowed
the robot to move toward eight corresponding directions along
the horizontal plane (namely, “left front”, “front”, “right
front”, “left”, “right”, “left back”, “back” and “right back”,
which were abbreviated as “LF”, “F”, “RF”, “L”, “R”, “LB”,
“B”, “RB”, respectively). To control the robotic arm movement
in 3D space, a participant should first determine its movement
trend (e.g., “U”) in the vertical direction and then choose one
of the eight movements in the horizontal plane. Therefore, the
command direction in 3D space is the synthetic vector of the
motion vector in the vertical direction and the motion vector
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Fig. 2. (a) The main user interface of the proposed system, with the
numbers next to the icons representing the indices corresponding to
each button. The values displayed on the interface indicate the frequen-
cies and phases used for each button during the SSVEP stimulation.
(b) Illustration of the relationship between the BCI commands and the
3D direction of the end-effector of the robotic arm.

in the horizontal plane, as described below.

−→v =
−→v0 +

−→v1 (1)

The additional four buttons including one of the third one in
the second row and the three in the last column (marked as 8,
5, 10, 15) indicate the following commands: drinking (Dk),
stopping the robot (Sp), moving the robot to the initial position
(Hm) and changing the control mode of the robot between step
movement and continuous movement (Ch). During the step
movement control, a robot would move toward an appointed
direction for 30 mm and stop to waiting for a next command,
while it would keep steady movement in a speed of 3 mm/s
toward a direction until receiving a next command during
the continuous movement control. The parameter of moving
speed was determined based on the average performance of
the subjects prior to their official participation in the online
test with the robotic arm.

2) Robotic Arm: A 7-DOF (i.e., each corresponding to a
joint actuator) human-like robotic arm named Gen3 (Kinova
Robotics Inc., Canada) with two fingers was used as the BCI
actuator for all subjects. The robotic arm workspace was a
cube with a 0.5-m side length and the hand orientation fixed
in Cartesian space towards the end-effector. Visual boundaries
were set for the workspace of the robotic arm as part of the
control software to avoid collision with the tabletop. The robot
was run on a platform of a robot operating system (ROS)
to receive control commands from the BCI subsystem. Note
that in order to ensure the independent display of the robotic
arm’s camera screen and the visual stimulation for the BCI and
for the sake of operational convenience, we chose to develop
the two subsystems on separate computers. This subsystem
realized three functions: BCI-guided control, pose recogni-
tion, and vision-guided control. BCI-guided control describes
when the robotic arm was moved with commands that were
issued by the subjects through the hybrid asynchronous BCI
subsystem. Vision-guided control describes when the robotic
arm automatically executed the predetermined actions (e.g.,
grasping a water cup and moving it near a subjects’ mouth)
once the coordinates of the target objects were determined by
the following computer vision subsystem.

3) Computer Vision: For perception data, RGB-D images of
resolution 640 × 480 were captured with an Intel RealSense
D435 camera statically mounted on the wrist of a robot

Fig. 3. (a) Illustration of FOV of camera for detecting the objects.
(b) A schematic representation of the ROS architecture and flowchart
for vision-guided robotic arm control.

arm. The camera streamed to a computer through USB 3.0.
After the robot successfully moved into the capture region of
the target under BCI-guided control, the camera detected the
quick response (QR) code, which is a type of matrix barcode
pasted on the target object, and then provided the location
information for the robotic arm subsystem. Fig. 3(a) depicts a
schematic representation illustrating the field of view (FOV)
for QR code recognition. The FOV was quantified as 69.4±3◦

horizontally and 42.5 ± 3◦ vertically. Notably, the precision
of depth perception was influenced by factors such as QR
code dimensions and ambient illumination. The most favorable
range for optimal recognition was empirically determined to
lie within 0.3 to 0.8 meters.

4) Shared Control: Shared control was achieved by integrat-
ing BCI-guided control and vision-guided control, especially
for complex manipulation tasks of the robotic arm. As shown
in Fig. 3(b), the control architecture for the robotic arm
sub-system in the ROS framework comprises several com-
ponents and modules that work together to enable robot
control and interaction. The control system initiation involves
defining the robot’s physical structure and accurate kinematics
using a URDF (Unified Robot Description Format) file for
robot description. Subsequently, the MoveIt! configuration
module was utilized to generate an SRDF (specify the robot
description file) file, which provided high-level information
such as groups, joint limits, and allowed collisions, enabling
customization of the MoveIt! package. The package incor-
porated different kinematics solver (e.g., the Kinematics and
Dynamics Library (KDL) was applied in this study), allowing
for both forward and inverse kinematics calculation, as well
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Fig. 4. Flowchart of data processing for EEG and EOG signals. At the end of each trial stimulation, these two different data are acquired, and
the corresponding processing procedures are executed simultaneously. An FBCCA method consists of a subband filter and a CCA process, and
blink-related waveform detection is implemented for the preprocessed SSVEP and EOG signals, respectively. With the selected buttons of the two
data types, decision making can be used to determine the final output.

as a planning interface for trajectory generation. Note that
the goal positions required for kinematics calculations can be
generated from either BCI detection for BCI-guided control
(refer to the forthcoming EEG and EOG Data Analysis section
for details) or vision recognition for vision-guided control.
These planned trajectories were then executed by commanding
the robotic arms joint positions or velocities in either Cartesian
space or joint space. Moreover, the resulting trajectories were
visualized in RViz, offering real-time monitoring and debug-
ging capabilities.

As for the vision-guided control component, the ArUco
detection library was ultilized to identify the track markers
with QR codes in the camera feed, allowing for precise
localization of objects of interest. Subsequently, the poses
of these markers were transformed from the camera frame
to the robots base frame, enabling their integration into the
MoveIt! motion planning pipeline. To achieve this, a ROS node
was implemented, which subscribed to the ArUco markers
associated with each target object. Furthermore, the recognized
objects can be visualized in RViz, providing real time feedback
to the subjects.

B. EEG and EOG Data Analysis
1) EEG Data Analysis: In this study, a filter-bank canoni-

cal correlation analysis (FBCCA), which was established for
character spelling in our previous study [36], was applied as
the SSVEP detection method. For the sake of completeness,
we provide a brief overview of the method in this section.
As illustrated in Fig. 4, during offline analysis and online
testing for SSVEPs, data epochs consisting of signals from
twenty-four channels were extracted by the stimulus pro-
gram. The FBCCA method was then applied for extracting
frequency-related features by taking into account both tem-
plate data that modulating visual stimulation and individual
calibration data, as well as the capture of specific harmonic
information from SSVEP [29], [37], [38]. Specifically, the
EEG data epoch was first decomposed into N subbands of
harmonic components using bandpass filters (i.e., Butterworth
infinite impulse response (IIR)) [39]. For the nth subband
component of the SSVEP epoch, the lower-bound frequency
was calculated as 6 + (n − 1) × 7 Hz, while the upper-bound
frequency was fixed at 48 Hz. Next, we calculated the correla-
tion coefficients between each of the subband components and
sine-cosine reference signals by employing standard canonical
correlation analysis (CCA) [40], and integrate them into a
vector rn,k of the nth subband and the kth target. Considering
two multidimensional variables A and B and their linear

combinations x = AT U and y = BT V , CCA calculates the
weight vectors U and V that maximize the correlation between
x and y by solving the following optimization problem:

max
U,V

ρ(x, y) =
E

[
U T ABT V

]√
E

[
U T AAT U

]
E

[
V T B BT V

] (2)

where the maximum value of ρ is the maximum canonical
correlation with respect to U and V . The matrices A and B
were selected as i) A1 = Xn and B1 = Y fk , ii) A2 = Xn
and B2 = X̂n,k , iii) A3 = Y fk and B3 = X̂n,k , iv). In this
study, Xn , X̂n,k are the test EEG data epoch and the individual
calibration data of the kth target, respectively. Y fk represents
the sine-cosine template data epoch with frequency fk and is
created as follows:

Y fk =


sin(2π f t + φ)

cos(2π f t + φ)
...

sin(2π Nh f t + φ)

cos(2π Nh f t + φ)

 (3)

where φ is the initial phase and Nh is the number of harmonics
(in this study, Nh = 3).

A vector of correlation coefficients was then obtained
using these three pairs of weight vectors [29], [38],
i.e., rn,k(1) = ρ(XT

n U A1 B1 , Y T
fk

V A1 B1), rn,k(1 + l) =

ρ(XT
n U A1 B1 , X̂

T
n,k V Al Bl ) for l = 1, 2, 3. Finally, the weighted

feature of the kth target was used to identify the target.

pk =

N∑
n=1

w(n) ·

4∑
i=1

sign(rn,k(i)) · rn,k(i)2 (4)

where sign() is utilized to maintain the discriminating infor-
mation, while w(n) denotes the weight coefficient for different
SSVEP harmonic components as follows:

w(n) = n−a
+ b, n ∈

[
1 N

]
(5)

where a and b are constants determined using a grid-search
method during offline analysis (1 and 0, respectively, in this
study).

Accordingly, we calculated the averaged correlative features
in the control state as pcontrol and in the idle state pidle, after
collecting the calibration data for SSVEP. Then, two thresholds
were defined for asynchronous detection, namely δ1 = β1 ·

pcontrol and δ1 = β2 · pcontrol/pidle, respectively. In this study,
β1 and β2 represent empirical constant weights within 0 to 1,
with δ1 and δ2 fluctuate within the range of [0.5 0.8], and
[1.05 1.25], respectively.
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2) EOG Data Analysis: The EOG signals between 100 and
500 ms after cue onset were extracted and filtered to a
frequency range of 1 to 10 Hz using a 2nd-order Butterworth
bandpass filter. Next, the filtered epoch passed multithreshold
waveform detection (as described in a previous study [36]),
which implied that there was a clearer detected peak and valley
in a waveform with a blink than in a nonblink waveform.
We implemented a check criterion based on the distance
between the peak and valley, as well as the regressive value
obtained using an SVM model for each epoch. If these values
exceeded the corresponding predefined thresholds (δd and δy
as specified in [36]), which were derived from calibration EOG
data specific to each subject, the corresponding button was
considered to trigger an intended blink action. Additionally,
the response time of individuals, defined as the difference
between the time of peak onset during the online test and
the predefined value after calibration, proved to be a crucial
parameter in distinguishing between attended blinks, non-
blinks, and unattended blinks. Therefore, the satisfied buttons
for our check criterion were then considered the final EOG
candidates if the response time for each of them was in a
presupposed range (−160 to 160 ms in this study).

3) Decision Making: The results of intended blinking detec-
tion were considered initially in this phase. If the EOG
data from a specific trial did not meet the blink detection
criteria, the system concluded that no character was generated.
Otherwise, further decision making would be conducted by
applying the following three criteria after acquiring the two
candidate sets:

1) Criterion I: [r1, r2, . . . , rm] ∩ [s1, s2] ̸= ∅.
2) Criterion II: pkmax > δ1.
3) Criterion III: pkmax /pksecond > δ2.

where [r1, r2, . . . , rm] are the candidates after blink detection
and [s1, s2] are the candidates with the top two values for pk .
pkmax and pksecond are the maximum and the largest value of
pk , respectively.

We decide whether to adopt criteria I based on the subjects’
response to SSVEPs, as the multi-task for robot control
requires a relatively fast response to EOG cue onset and
SSVEP detection has the advantage of maintaining high accu-
racy and short response time simultaneously compared with
EOG detection. If a subject achieved relatively unsatisfactory
accuracy (e.g., beneath 92%) in the SSVEP offline experi-
ment, all the above three criteria were applied for decision
making. That is, once criteria I, II, and III are satisfied, the
candidate with the largest value of pk among [r1, r2, . . . , rm]

is recognized as the target. Otherwise, no result is output.
However, if satisfactory accuracy for SSVEP detection is
generated for one subject, only criterion II and criterion III
would be considered, which means that the final target is
the candidate with the largest value of pk among all fifteen
buttons. Otherwise, no result is output at the end of the current
trial.

C. Experimental Flow
All subjects were first performed the BCI training and cue

spelling session without actual control of the robotic arm. The

BCI training session was designed to help the subjects learn
and improve their ability to efficiently modulate SSVEPs and
blink their eyes simultaneously with cue onset. Then, two
online experiments corresponding to robotic arm control were
conducted.

1) BCI Training and the Online Free Spelling Session: First,
the subjects were required to participate in the training phase
in which the SSVEP dataset (60 trials in the control state and
15 trials in the idle state) and the EOG dataset (10 trials in
the control state and 10 trials in the idle state) were collected
to calibrate thresholds used in the asynchronous mode. Note
that the subjects were allowed to perform basic physiological
activities including eye movements while avoiding severely
strenuous events. The thresholds for each subject were then
determined (see above EEG and EOG Data Analysis section
for details) after the above calibration datasets were acquired.
Next, each subject needed to conduct an online free spelling
experiment in which 30 trials were selected (each character
was designed to be chosen for two trials) in the asynchronous
mode. The spelling results were presented to the subjects in
a visual feedback fashion, as each corresponding target was
surrounded by a red square.

2) BCI-Controlled Robot 3D Reach Task: After the free
spelling test, we assessed whether each subject could manip-
ulate the robotic arm to reach for a ping-pong ball that has a
diameter of 3 cm and was connected with a support lever. The
ping-pong ball was placed at a random position in 3D space,
but the position was kept the same for all subjects. The subjects
needed to maneuver the robotic arm within a narrow range
of approach angles while avoiding touching the lever below,
as the hand aperture was slightly larger than the target ball.
A successful ‘reach’ trial occurred when a subject controlled
the arm to touch the target ball from the start position and
envelop it with its fingers.

First, the robot 3D reach task required subjects to control the
robotic arm in the step movement mode from three different
start positions (i.e., the start positions in Fig. 8) to the target
position (i.e., the location of touching the ping-pong ball).
Each position was executed for two runs. In the step movement
mode, people utilized the hybrid asynchronous BCI subsystem
to send a new movement command, taking into account the
current position of the robotic arm. Upon receiving each
command, the robotic arm would move step by step towards
the target position. We familiarized the participants with the
task for approximately 10 min, during which the participants
learned the physical space in which the directional commands
would be effective in moving the robotic arm close enough to
the target ping-pong ball. Specifically, all subjects first chose
one of the three commands for the vertical direction according
to the height of the end effector of the robotic arm from
the target and then selected one of the eight commands with
different directions in the horizontal plane. Second, in addition
to the step movement mode, the subjects also needed to move
the robotic arm by sending BCI commands in the continuous
movement mode to finish the 3D reach task from the first
start position, as above, to the target position for two runs.
In the continuous movement mode, the robotic arm would
maintain a consistent speed and change its direction promptly
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upon receiving a new BCI command. It would stop until the
command of “Sp” was generated by subjects.

3) BCI-Controlled Robot Reach-Grasp-Drink Tasks: Subjects
conducted the reach-grasp-drink task in the shared control
mode. First, they were asked to execute this task for a single
target object (e.g., a water cup) in which the robotic arm
moved from the first start position (Fig 12(a)) toward the target
object. Once the target entered the viewing field of the camera,
the participants issued a grasp command, and the robotic arm
finished the remaining actions with the help of vision-guided
control, including grasping the cup, moving to the drinking
position, and placing the cup back onto the desktop. Each
subject completed two runs of this task. Then, a reach-grasp-
drink task for multi objects with shared BCI control was
executed, in which participants selected the drinking button
through the hybrid asynchronous BCI sub-system after the
robot guiding the camera to observe the objects, as in the task
for single object, and chose the button corresponding to the tar-
get cups from the three cups shown in a subpage (see Fig 10).
If a wrong object was selected or the robotic arm finished
the drink action, they can select a return button to the main
window. The robotic arm would cease its movement, return
to the initial position and wait for the subjects to issue a new
BCI command. Note the selected frequencies corresponding to
three objects from left to right and a return button were 7.6 Hz,
9.6 Hz, 11.6 Hz and 12.8 Hz, respectively. The corresponding
phases were 0.5π , 1.0π , 1.5π , 1.0π , respectively. Similarly,
the robot would implement the remaining actions of drinking,
as in the single object grasp task. One run by each subject for
each target object. A QR code was attached to each subject’s
chest to identify the location of his/her mouth.

Furthermore, an additional control experiment for the robot
reach-grasp-drink task in the step movement control with
direct BCI control was conducted with all subjects. In this
experiment, the participants steered the robotic arm, which
was controlled directly with their selected BCI commands,
to gradually approach the target. They then sent a grasp and
drink command until the robotic arm moved to the point where
the finger could hold the target water cup. The robot would
subsequently execute the following actions of drinking. Here,
the start position of the robot was the same as that in the task
for a single object. Two runs of the task were performed by
each participant.

D. Subjects and Data Acquisition
Ten healthy subjects (all males; age range: 20-28 years

old) were recruited for this study. Prior to participating in the
offline and online experiments, all subjects provided written
informed consent for their data to be used and published.
This study was also approved by our cooperative institution
of the Ethics Committee of Sichuan Provincial Rehabilitation
Hospital (approval number: CKLL-2018008).

A liquid-crystal screen (resolution: 1,920 × 1,080 pixels,
refresh rate: 60 Hz) was applied to present stimuli for subjects.
Also, a amplifier Synamps2 with 64 channels at a sampling
rate of 250 Hz was used to record EEG and EOG data after
stimuli. The impedances of all electrodes were maintained
below 10 k�. The ground electrode was placed on the forehead

Fig. 5. Confusion matrix across all subjects with 6-fold cross-validation
using 2 s-length data segment from offline training. The color bars
indicate the classification accuracies, with the number on the diagonal
representing the correct output.

(GND), while the reference electrode was placed on the right
mastoid (A2). EEG data were acquired from 24 channels
located in the occipital region, which included CP1, CPz, CP2,
P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO5, PO3, POz,
PO4, PO6, PO8, CB1, O1, Oz, O2, and CB2. EOG data were
acquired from one channel on the forehead (Fp1).

III. RESULTS

A. Experiment I: Performance of Offline SSVEP Training
and the Online Free Spelling Task

The confusion matrix of the fifteen targets recognition in
the offline SSVEP training task is illustrated in Fig. 5. All
subjects achieved the accuracy above 80% for each target.
Post-hoc comparison with Bonferroni correction suggested no
significant difference between the targets from each other
(p > 0.05), which revealed the appropriated frequency dis-
tribution for SSVEP stimulation. Moreover, we compared
the averaged classification accuracy across all subjects with
data length at 2000 ms between the applied FBCCA method
with several commonly used methods such as the minimum
energy combination (MEC) [41] and the classical canonical
correlation analysis (CCA) [42]. The results demonstrated that
FBCCA-based method outperformed other methods (FBCCA
vs. CCA vs. MEC, 95.67 ± 4.46% vs. 80.33 ± 9.22% vs.
52.00 ± 21.44%), with one-way repeated ANOVA measures
depicted significant main effects (F(2, 27) = 304.46, p <

0.001). In terms of the performance in the online free spelling
task, table I depicts the classification accuracy, FPR in the
idle state, and ITR in the control state across all subjects with
the same data length (2.5 s, which consisted of 2.0 s of the
stimulation and 0.5 s of the trial shift). The ITR metric used
to evaluate the integrated performance of BCI systems was
calculated as follows:

I T R = 60(log2 M + P log2 P + (1 − P) log2(
1 − P
M − 1

))/T

(6)

where T is the mean response time (2.5 s in this study)
to select a command, M is the number of classes (15 in
this study), and P is the accuracy. The average classification
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TABLE I
RESULTS OF AN ONLINE FREE SPELLING TEST WITH THE HYBRID

ASYNCHRONOUS BCI SUB-SYSTEM

accuracy in the online free spelling task was 92.4% ± 5.5%,
resulting in an ITR value of 97.9% ± 12.8% bits/min across
all subjects, as well as a low FPR value of 1.25% ± 0.71%.
The maximal and minimal ITR values were 117.02 bits/min
(subjects S1 and S8) and 78.6 bits/min (subject S6). The online
results of the free spelling task demonstrated the feasibility of
implementing BCI-controlled robot systems.

B. Experiment II: Performance of the BCI-Controlled
Robot 3D Reach Task

Table II illustrates the results of the robot 3D reach task
using step movement control. All subjects successfully com-
pleted the robot 3D reach task, which consisted of three
sessions, each corresponding to a different start position of
the robotic arm. The average completion time needed to reach
target from start position 1, start position 2 and start position
3 were 1.92 ± 0.63 minutes, 1.58 ± 0.47 minutes and 1.59 ±

0.48 minutes, where the numbers of commands issued by the
subjects were 22.10 ± 4.98, 18.50 ± 4.19 and 17.70 ± 2.05,
respectively. Furthermore, the numbers of wrong commands
for the three sessions were 1.10 ± 1.71, 1.05 ± 1.67, and
1.00±0.79, respectively. One-way repeated-measure ANOVA
tests followed by Bonferroni post hoc tests revealed that the
numbers of incorrect commands for the three sessions did not
differ from each other (F(2, 57) = 0.02, p = 0.97). For all
individuals, subject S8 achieved the best performance with
0 total error commands reported as well as the shortest total
complete-time of 7.11 minutes and the least total number of
issued commands of 104, while the performance of subject
S2 was worst with the most total error commands of 24, the
longest total complete-time of 14.72 minutes, and the highest
total number of issued commands of 151. To provide a more
intuitive demonstration of the experimental process, Fig. 6
depicts a representative trial of subject S9 guiding the robotic
arm to move from the first initial point and ultimately touch
the target ping-pang ball.

To evaluate the efficiency of the robot’s moving trajectory
from the different start positions to the end positions in 3D
space, the trajectory efficiency (TE) was also recorded, which
can be defined as follows:

T E = tr0/tr1 (7)

where tr0 and tr1 are the straight-line distance and actual
moving distance from the start position to the end position,

Fig. 6. Subject S9 finished the BCI-controlled robot 3D reach task
in the control mode of step movement. Three sequential snapshots
(from 1 to 3) show subject S9 successfully guiding the Gen3 robotic
arm to move from the start position (1), close to the target ping-pang
ball (2), and to touch the ball (3).

Fig. 7. TE of the robot 3D reach task for each subject. The theoret-
ical value of TE was 1. The one-way repeated-measure ANOVA test
revealed no significant difference in the three different start positions
(F(2, 57) = 0.25, p = 0.78).

respectively. The value of TE varies from 0 to 1, and a
larger value indicates a more optimized trajectory. As shown
in Fig. 7, the average TE values across all subjects for
three different sessions were 0.80 ± 0.10, 0.81 ± 0.10, and
0.79 ± 0.07.

We also mapped the position profile of the end-effector of
the robotic arm generated through ROS to the 3D position
dimension (3D axes) to represent the arm trajectory pathway.
Fig. 8 presents the trajectory pathway reconstruction of the
robot 3D reach task completed by subject S8. He successfully
completed three trials, where they moved the robot from three
different start positions toward the same target (i.e., the ping-
pong ball) with no inaccurate commands and TE values of
0.87, 0.90, and 0.87.

Table III lists the results of the robot 3D reach task using
continuous movement control. Further statistical analysis using
a paired t-test revealed that the subjects reported fewer issued
commands (p < 0.05) and smaller TE values (p < 0.001)
after finishing the task in the mode of continuous movement
than in the mode of step movement. However, there were no
significant differences in terms of the duration of the task
(p > 0.05) and the number of wrong commands (p > 0.05)
between these two modes (Fig. 9). This phenomenon consists
with the fact that an extremely short task duration was not
expected from the subjects, as they were naive to the BCI-
controlled manipulation. Additionally, highly attention was
objectively required to the visual stimulation on the screen
and the ongoing movement of the robotic arm simultaneously
during the continuous movement control. The results showed
that people could finish the BCI-controlled robot 3D reach
task in the control mode of either step movement or continuous
movement, with acceptable accuracy even from different initial
robot positions which correspond to different trajectories with
specific sets of distances and directions. Nevertheless, the
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TABLE II
RESULTS OF THE ROBOT 3D REACH TASK IN THE STEP CONTROL MODE

Fig. 8. Trajectory samples from three-dimensional view and single axial view of subject S8 finishing three successful trials during the robot 3D
reach task. The colored solid lines represent the actual moving trajectory of the robotic arm following each BCI command (marked with arrows
beneath the line), while the gray dashed lines indicate the shortest path between the start positions and the end positions.

TABLE III
RESULTS OF THE ROBOT 3D REACH TASK IN THE

CONTINUOUS CONTROL MODE

subjects stated that it was more difficult to move the robotic
arm using continuous movement due to the stricter require-
ments of mental concentration.

C. Experiment III: Performance of the BCI-Controlled
Robot Reach-Grasp-Drink Task

Table IV lists the results of the robot reach-grasp-drink
task for a single object (e.g., a water cup) and multiple

Fig. 9. Comparison of the online experiment performance results using
step control and continuous control for robot 3D movement. The black
asterisks ** and *** denote that there are statistically significant differ-
ences at the 0.05 and 0.001 levels, respectively, while n.s. represents
no significant difference. The error bars show the standard errors of the
means.

objects (three water cups) with the shared BCI control strategy.
Generally, all subjects completed the tasks of BCI-controlled
robot movement and sent a grasp drink command. On average,
they were able to finish this task for a single object in
0.99 ± 0.35 minutes of BCI-guided control by issuing 9.40 ±

2.14 commands, as well as 0.35 ± 0.59 incorrect commands.
In terms of the task for multiple objects, the average number
of issued commands was 11.50±5.07, the average number of
wrong commands was 1.27±1.72, and the average completion
time for BCI-guided control was 1.42 ± 0.96 minutes across
all subjects. It is worth to note that the whole completion time
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TABLE IV
RESULTS OF THE ROBOT REACH-GRASP-DRINK TASK THROUGH THE SHARED BCI CONTROL

Fig. 10. Subject S9 drinking a cup of water using the Gen3 robotic
arm. Six sequential snapshots (from 1 to 6) of the reach-grasp-drink
task show the whole process that he successfully guiding the robotic
arm close to the bottles (1 and 2), choosing the target bottle (3 and 4)
by themself, drinking water (5) through a straw with the help of computer
vision and placing the bottle on the table automatically by robot(6).

of one attempt for both single object and multiple objects
should be the above time of BCI-guided control plus the
time of vision-guided control (0.70 minutes in this study)
which helps robot perform the remaining actions of drinking.
Subject S8 finished the task for a single object with the least
number of commands, the smallest task duration, and zero
error commands, while subject S1 completed the multiobject
task with the least number of commands, the smallest task
duration, and one error command. Fig. 10 shows snapshots
in which subject S9 successfully performed the reach-grasp-
drink task with the proposed shared brain-control robotic arm
system. Once the system was under vision-guided control, the
robotic arm could always finish the reach and grasp tasks
successfully.

Furthermore, Table V shows that all subjects achieved the
average performance (i.e., the number of issued commands
was 28.90 ± 6.83, the number of wrong commands was
2.25 ± 2.02, and the completion time of BCI-guided control
was 3.04 ± 1.42 minutes) during the robot reach-grasp-drink
task using the direct BCI control strategy. It is also worth
to note that the remaining execution time of drinking for
robotic arm after BCI-guided control was 0.67 munites in
this study. Compared with using direct BCI control, the
statistical analysis revealed that people used significantly less
BCI commands with higher accuracy and shorter completion

TABLE V
RESULTS OF THE ROBOT REACH-GRASP-DRINK TASK

THROUGH DIRECT BCI CONTROL

Fig. 11. Comparison of the online experimental performance results
with the strategies of direct BCI control and shared BCI control. The
black asterisk *** denotes that there are statistically significant differ-
ences at the 0.001 level, while n.s. denotes that there is no significant
difference. The error bars show the standard errors of the means.

times to accomplish the robot reach-grasp-drink task using
shared BCI control (Fig. 11).

To gain more insight into the task execution process
through the shared BCI-controlled strategy, Fig. 12 shows the
trajectory of robotic movement for subject S8 during the BCI-
controlled period. He accomplished three trials of moving
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the robot from the first starting position and sending a grasp
command corresponding to one of the three target water cups
once the target entered the vision detection area of the robot’s
camera. Finally, the water cup was moved near their mouth
and was guided automatically by the robotic arm.

IV. DISCUSSION

In this study, we combined hybrid asynchronous BCI and
computer vision to develop a shared robotic arm control
system. The hybrid asynchronous BCI model was used to
select one of the fifteen commands for the robotic arm action,
while computer vision was responsible for detecting target
objects in the workspace. The average values of the number
of issued commands, the completion time and the number of
error commands during the BCI-controlled robot 3D reach
task were 18.94, 1.64 minutes, and 0.90, respectively, with the
exact value time depending on the complexity of the task and
the performance of the subject. In addition, the shared BCI
control strategy has demonstrated the advantage of shorting
the completion time and improving the accuracy with less
commands compared with the direct BCI control strategy.
To the best of our knowledge, the proposed system is the first
noninvasive BCI system that achieves robot 3D movement of
brain control in an asynchronous mode and that incorporates
machine vision to implement complex tasks, such as grasping
and drinking.

It is crucial to achieve high accuracy with relatively
satisfactory ITR and lower FPR values simultaneously for
asynchronous BCI, which can make a brain-controlled robotic
arm system more flexible and practical for real-life applica-
tions [25], [43]. During the BCI-guided control period, the
subjects needed to focus on the task state when controlling
the movement of the robot arm and needed to maintain the
idle state either between two consecutive commands or during
the vision-guided control period. It should be noted that pur-
suing satisfactory performance for online accuracy was more
important than seeking a high ITR value for a brain-controlled
robotic arm system. On the one hand, lower accuracy can lead
to redundant robot trajectories and therefore indirectly increase
the overall duration of experiments. On the other hand, con-
trolling the robot for different actions is a highly integrated
task in which participants shift frequently between the control
state and the idle state. Also, this autonomy in deciding the
timing of instructions of our system contributes to a short
interval (0.5 s in this study) between two consecutive trials
compared with other synchronous BCI robotic control systems
(e.g., 4.25 s in a SSVEP-based study [44]). The comparison
between the results in Table I and Table II revealed there was
no significant difference in online accuracy between the two
tasks, demonstrating the feasibility of utilizing the proposed
asynchronous BCI for complex robotic arm control. However,
the average time to select a control command in the robot
relative task across all participants was 5.24 s, which revealed
that participants took longer intervals between two consecutive
commands in this task than in the spelling task. This was
because people chose to spend more rest time to consider
the next command due to the complexity of operating in a
3D environment and shifting between the stimulation screen

and the robotic arm. Moreover, the results in Table II and
Table III demonstrate that by using the asynchronous BCI, all
participants could successfully steer the robotic arm toward
the target object not only in the step movement mode but
also in the mode of continuous movement. It can also be
concluded that the subjects (e.g., S1, S4, S7, and S8) with
relatively high online accuracy were inclined to achieve better
performance than others during the brain-controlled reach task
with relatively few wrong commands and short completion
times.

In addition to the online performance of asynchronous BCI,
building a proper strategy that converts the brain-selected
results among multiple commands into practical robot actions
is also helpful to improve the efficiency of robotic arm-related
tasks. Several reports have proposed goal-oriented control
strategies (i.e., the BCI commands were directly connected to
the targets in known situations rather than guiding the robots
to move) for BCI-controlled robotic arms [44], [45], [46],
[47], [48], [49]. In addition, a direct control strategy for robot
movement was investigated to handle more complex tasks in
which the targets were unknown. For example, Edelman et
al. [50] used a motor imagery-based BCI to realize robotic
arm control for continuous random target tracking in two-
dimensional space. Chen et al. [25] also investigated a strategy
in which a robotic arm successively follows a one-dimensional
axial motion in the XYZ plane of 3D space. Compared with
these, our proposed 3D vector synthesis strategy has the
advantage of providing more efficient control commands in 3D
space, which could lead to a higher TE value than traditional
one-dimensional axial control (approximately 0.8 vs. less than
0.6). In fact, this strategy even outperformed an MI-relative
robot control strategy [51] that only works in 2D space in
terms of TE (0.8 vs. 0.7). Moreover, this strategy allows
for a reduced number of character encodings to generate
BCI commands for different directions. As a result, the
task duration can even be further decreased. The benefits
of using fewer characters are twofold: it leads to improved
task accuracy and lowers the FPR. Additionally, subjects are
not required to frequently modify the robotic arm’s vertical
movement direction during specific tasks. Finally, all subjects
successfully finished the BCI-controlled robot 3D reach task
from three start positions, demonstrating the good robustness
of our system, which enables people to stably customize a
flexible trajectory of the robotic arm for unknown targets.

Shared control is a good combination of goal-oriented
control and direct control and allows users to freely switch
between the above two levels of control [44], [51], [52],
[53]. On the one hand, it can transcend the limitation of
goal-oriented control that all operations are required to be
fully defined in advanced. On the other hand, it requires
less mental effort from subjects compared to direct control.
In our case, direct control was used to explore the uncon-
strained movements of a robotic arm and hence enhanced the
workspace of the robot. Once the objects were captured by the
camera that moved along with the end-effector of the robotic
am, goal-oriented control (i.e., the vision-guided control in
this study) took over and executed the following actions
more accurately and flexibly than direct control. This kind
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Fig. 12. Trajectory samples during BCI-guided control of subject S8 completing three successful trials in the robot 3D reach-grasp-drink task
through the shared BCI control strategy.

Fig. 13. NASA TLX score by dimension. The box plots represent the
median values (solid bar) and IQR values (margin of box), and the
whiskers denote the 95% confidence intervals.

of two-step strategy allows users to freely move the robotic
arm close to the cup/cups, select the target, and drink water
with the assistance of vision intelligence. The experimental
results showed that all subjects finished guiding the robotic
arm’s movement with similar durations either through shared
control (Table IV) or through direct control (Table II) due to
the generally high accuracy of asynchronous BCI (> 90%
for all except S2) and the similarly selected commands for
optimized moving trajectories. However, there were significant
differences (Fig. 11) in the performance between the shared
control and the direct control, as the subjects generated fewer
issued commands (9.40 ± 2.14 vs. 28.90 ± 6.83), shorter
durations (0.99 ± 0.35 vs. 3.04 ± 1.42) and fewer wrong
commands (0.35 ± 0.59 vs. 2.25 ± 2.02) in the reach-grasp-
drink task using the former than using the latter. Therefore,
the feedback from subjects after the experiments demonstrated
that using the former caused much less fatigue than using the
latter.

Grasp detection with visual sensors is the critical step in
vision-guided control period of the shared control. In real-
time experiments of shared control, 3D information about
targets from a depth camera was mapped to real-world coor-
dinates for subsequent trajectory planning. For the camera
configuration, we offered a solution called eye-in-hand (i.e.,
the camera is attached to the end-effector of the robot) for
BCI-controlled robotic arms. Compared with the other solution
called eye-to-hand (i.e., the camera is placed at a fixed point

in the workspace), which was used in several studies of
BCI-controlled robots ( [44], [51], [54]), the eye-in-hand
approach applied in this study has higher recognition accuracy.
Moreover, the connatural shortage of limited sight for this
approach can be overcome and the range of its visual per-
ception can even exceed the range using other approach when
integrated with BCI-guided control, which gives a camera the
ability to explore a 3D workspace.

After the online experiment, each subject was invited to
complete a self-reported task load survey that evaluated six
factors such as mental demand, physical demand, perfor-
mance level, and frustration level and was measured by the
NASA-TLX questionnaire scores (Fig. 13). Scores less than
50 or 60 can be regarded as acceptable according to some
studies [55], [56], as a higher score indicates a higher subjec-
tive workload and vice versa [57]. Specifically, the two factors
of mental demand and effort achieved higher scores than
the other factors, suggesting that fatigue associated with the
proposed system may be mainly caused by mental involvement
and the effort needed for multiple tasks (i.e., staring at the
flickering buttons and blinking eyes simultaneously with the
cue onset). However, the average scores were less than 30 for
the factors of the performance and frustration levels, indicating
that people were overall satisfied with their task completion.

In the future, future improvements can be achieved to
promote the usability of the proposed system for real-life
applications in the following directions. First, the performance
of the system with elderly individuals of paralyzed patients
requires further investigation, as their health states may fluc-
tuate. Second, the calibration time of SSVEP recognition
can be shortened using transfer-learning techniques. Thirdly,
it should be noted that QR code detection is not the ultimate
solution for vision-guided control. To enhance the practicality
of object recognition and mouth tracking in subjects using
a camera in real-world scenarios., the proposed system would
benefit from a more adaptable computer vision approach. This
could involve leveraging deep learning technologies for image
and depth identification, enabling more flexible and accurate
analysis. Furthermore, while the TCP/IP protocol effectively
prevented any loss or alteration of BCI commands during
the experiments, and the transmission delay remained within
an acceptable range (within 60 ms in this study), it may be
necessary to consider Bluetooth transmission as an alternative
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in cases where the wireless network signals are too weak.
Finally, more intelligence techniques on robotics, such as path
planning and avoidance of obstacles, can be integrated to
improve the overall performance of the proposed system.

V. CONCLUSION

In this study, a novel shared control strategy that com-
bined hybrid asynchronous BCI with computer vision was
investigated to control a robotic arm. The results of the exper-
iments demonstrated that subjects could operate the robotic
arm to move to an indeterminate position in any given 3D
environment with both high accuracy and low FPR values
simultaneously. Furthermore, with the assistance of computer
vision, people were able to to perform more complex and
accurate tasks, such as grasping and drinking, with few com-
mands and high accuracy. The BCI-guided control enabled an
enhanced moving range of the robotic arm, while subsequent
vision-guided control contributed to completing precise move-
ments more efficiently, thereby reducing the user’s mental
effort and allowing the system to be used for longer periods
of time.
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