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Abstract— The finger tapping test is a widely-used and
important examination in the Movement Disorder Society
Clinical Diagnosis for Parkinson’s Disease. However, finger
tapping motion could be affected by age, medication, and
other conditions. As a result, Parkinson’s disease patients
with mild sign and healthy people could be rated as sim-
ilar scores on the Movement Disorder Society-sponsored
revision of the Unified Parkinson’s Disease Rating Scale,
making it difficult for community doctors to perform diag-
nosis. We therefore propose a three-dimensional finger
tapping framework to recognize mild PD patients. Specif-
ically, we first derive the three-dimensional finger-tapping
motion using a self-designed three-dimensional finger-
tapping measurement system. We then propose a three-
dimensional finger-tapping segmentation algorithm to seg-
ment three-dimensional finger tapping motion. We next
extract three-dimensional pattern features of motor coor-
dination, imbalance impairment, and entropy. We finally
adopted the support vector machine as the classifier to rec-
ognize PD patients. We evaluated the proposed framework
on 49 PD patients and 29 healthy controls and reached an
accuracy of 94.9% for the right hand and 89.4% for the
left hand. Moreover, the proposed framework reached an
accuracy of 95.0% for the right hand and 97.8% for the
left hand on 17 mild PD patients and 28 healthy controls
who were both rated as 0 or 1 on the Movement Disor-
der Society-sponsored revision of the Unified Parkinson’s
Disease Rating Scale. The results demonstrated that the
proposed framework was less sensitive to traditional fea-
tures and performed well in recognizing mild PD patients
by involving three-dimensional patter features.
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I. INTRODUCTION

THE finger tapping (FT) test is an easy task with little
time cost and widely-used for the evaluation of motor

function in clinical practice, especially in screening. It is an
important part of the Movement Disorder Society Clinical
Diagnostic Criteria for Parkinson’s Disease [1] to assess the
bradykinesia of upper limbs. Moreover, Agostino [2] reported
that PD patients performed FT test significantly difficult than
the other upper-limb tests for bradykinesia assessment. The
FT test is thus important for the diagnosis of Parkinson’s
disease (PD). In clinical practice, neurologists investigate
hypokinesia, fatigue, and especially slowness in evaluating
FT on a five-point scale from 0 to 4 according to the
Movement Disorder Society-sponsored revision of the Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS) [3], where
a zero value indicates normal and a value of 4 indicates severe
symptom [3].

Other conditions, e.g. age and medication status, might
affect the FT motion significantly [4]. For example, healthy
people might suffer from motor impairment due to aging [5]
and Levodopa could be used to treat PD patients effectively.
As a result, healthy people might be rated as 1 or above owing
to aging in the FT test [3], whereas PD patients might be rated
as 0 in the ON state. The overlap between healthy people with
aging and PD patients leads to low accuracy (75 − 85%) in
the diagnosis of Parkinson’s disease in the community [6], [7].
In particular, the FT score of mild PD patients might be similar
to that of healthy people. Thus, identifying mild PD patients by
FT task is challenging. Moreover, identifying mild PD patients
is important because the early diagnosis and treatment of PD
can reduce the risk of dyskinesia and greatly increase quality
of life [8].

Ways of identifying mild PD patients from healthy peo-
ple with aging-related motor decline can be summarized as
conducting more test, adopting normalization, and using new
features. More tests could be conducted to assess other motor
symptoms of PD, e.g. bradykinesia of low limb, rest tremor,
and rigidity [1]. Those tests are widely used in clinical practice
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Fig. 1. Overview of the proposed three-dimensional finger-tapping assessment framework.

but time consuming. The effect of age can be removed through
normalization method [9]. However, this method requires
a large data set including healthy people of different ages
and could not deal with nonlinear effect. New features not
sensitive to traditional features can potentially be used to
identify mild PD patients, which was also mentioned in the
Movement Disorder Society Clinical Diagnostic Criteria [1].
We speculated that those new features should be dimensionless
and described FT motion in other ways to reduce the effects
of age and symptom severity.

Most recent studies [4], [10], [11], [12], [13], [14], [15], [16]
have simplified FT motion as a scissors-like motion. This
simplification ignores the multi-joints motion of FT, which
makes it impossible to analyze the multi-joints pattern of
the FT. To analyze the multi-joints pattern, we proposed a
three-dimensional (3-D) finger tapping measurement system
and extracted 3-D pattern features in our previous work [17].
As a result, we found that 3-D pattern features were more
significant than one-dimensional (1-D) features between mild
PD patients and healthy people [17].

In this study, we propose a 3-D finger-tapping assessment
framework for recognition of PD patients, especially mild PD
patients. The overview of the proposed framework was shown
in Fig. 1. Firstly, we collected 3-D FT motion data using our
3-D FT measurement system [17]. Specifically, we collected
motion data of the thumb and forefinger using sensor units,
estimated the orientation of sensor units (E

S1q and E
S2q) using

Mahony’s complementary filter [18], and derived 3-D FT
motion using our 3-D kinematic model. Second, we searched
for candidate segmentation points by peak searching method
and adjusted these points by combing the magnitude of angular
velocity with the rotation angle. We thus obtained the closed
and opened points of each tapping and segmented 3-D FT
motion. In feature extraction, we combined slowness, hypoki-
nesia, and fatigue features with the proposed 3-D pattern fea-
tures, namely motor coordination, imbalance impairment, and
entropy features. Third, we used sequential floating forward
selection method [19] to select features and avoid the curse of
dimensionality. Finally, we used support vector machine [20]
as the classifier to recognize PD patients. We evaluated the
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proposed framework on 49 PD patients and 29 healthy controls
(HC). The proposed framework reached an accuracy of 94.9%
for the right hand and accuracy of 89.4% for the left hand on
the total data set. On the data subset in which both PD patients
and HC were rated as 0 or 1 according to the MDS-UPDRS,
the accuracy for right hand was 95.0% and the accuracy for left
hand was 97.8%. The results demonstrated that the proposed
framework worked better in recognizing mild PD with the
inclusion of 3-D pattern features.

A. Related Work
Several research groups have used various sensors to recog-

nize PD patients. Lones et al. [4], Gao et al. [11], and Dai et
al. [16] adopted electromagnetic devices to collect FT motion.
Krupicka et al. [10] proposed the BradyAn system to analyze
FT, hand movements, and pronation-supination movements
using optical sensors. Butt et al. [12] and Buongiorno et al.
[13] used Leap Motion sensors to collect the hand motion.
Moshkova et al. [14] adopted Kinect v2 to collect gait, FT, and
foot tapping motions. Park et al. [15] adopted wearable inertial
sensors to collect FT, hand movement, and rapid alternating
movements.

Most related works have simplified FT motion as a scissors-
like motion, i.e. the flexion/extension angle of the forefinger
[15] or the distance between the thumb and forefinger [4],
[10], [11], [12], [13], [14], [16]. Through this simplification,
the studies simply analyzed 1-D FT motion and ignored multi-
joints FT motion. Especially, although Djuric-Jovicic et al.
[21] considered FT motion as a 3-D movement, they still
described FT motion as the rotation around the dominant axis
to simplify FT to a single scalar value. Therefore, these works
could not analyze the multi-joints pattern of the FT.

As for FT features, most researchers [10], [12], [13], [14],
[15], [16] tried to find better features relating to slowness,
hypokinesia, and fatigue. As an example, Yokoe [22] proposed
the opening velocity proposed to describe slowness. Besides,
Lone [4] and Gao [11] adopted Cartesian genetic programming
to obtain FT features implicitly and found that PD patients
slowed their fingers prior to the inelastic point. Two task types,
namely horizontal [12], [21] and vertical [4], [10], [11], [12],
[13], [14], [16], have been adopted by related works but the
effect of the task type remains unclear.

In summary, to the best of our knowledge, no previous
research has focused on distinguishing mild PD patients from
those healthy people with aging-related motor decline using
only a single FT motion.

B. Contributions and Article Structure
The main contributions of this study are as follows:
• Proposing a 3-D finger-tapping assessment framework for

the analysis of the multi-joints motion of finger tapping;
• Testing the effect of task type on 3-D pattern features and

finding the horizontal tasks might be a better choice for
the recognition of mild PD patients;

• Involving 3-D pattern features and achieving better per-
formance in distinguishing mild PD patients from healthy
people with aging-related motor decline.

The remainder of this paper is organized as follows.
In section II, we describe the proposed 3-D finger-tapping
assessment framework in detail. In section III, we introduce the
validation experiment and present the results for the proposed
framework. In section IV, we discuss the comparisons with
related work, the analysis of 3-D pattern features, the effect
of task type, the effect of dominant hand, and study limitation.

II. THREE-DIMENSIONAL FINGER-TAPPING
ASSESSMENT FRAMEWORK

A. Three-Dimensional Finger-Tapping Measurement
System

We previously proposed a 3-D FT measurement system
in [17], which could collect 3-D FT motion with lightweight
sensor units. In this paper, we adopted this measurement
system to derive the 3-D FT motion and relative angular
velocity with respect to the local coordination system of the
thumb. Notably, we transformed the 3-D FT motion into the
Euler angles in the order of Z -Y -X for interpretability. Thus,
the Z and X components were mostly contributed by the
forefinger and thumb respectively and we could analyze the
imbalance impairment between the thumb and forefinger.

Especially, we adopted the local coordination system of
the thumb in the zero position, i.e. we assumed the local
coordination system of the thumb was parallel to the sensor 1,
in our previous work [17], whereas Djuric-Jovicicet al. [21]
adopted the local coordination system of the forefinger in the
zero position. Therefore, the Z axis represents the motion of
the thumb in Milica’s model, but the motion of the forefinger
in our model. We tested the performances of the proposed
model and Milica’s model [21] with the participant only
moving the thumb or forefinger. To avoid the effect of the
inconsistency of the coordinate systems of Milica’s model and
our model, we defined the energy ratio (ER) and the energy
concentration (EC) to evaluate Milica’s model and our model.
ER and EC were derived as

ER =
(
∑

t E AX (t)2,
∑

t E AY (t)2,
∑

t E AZ (t)2)∑
t E AX (t)2 + E AY (t)2 + E AZ (t)2 , (1)

EC = max
j∈{X,Y,Z}

E R j , (2)

where E AX , E AY , and E AZ are the rotation angles around
the X , Y , and Z axes respectively. As we assumed that a single
component of the Euler angle represented the motion of one
finger, the energy concentrations of the thumb and forefinger
motions should both be sufficiently high. In addition, the
cosine similarity between energy ratio of the thumb and
forefinger motions should be small enough to separate the
thumb and forefinger motions as much as possible for multi-
joints pattern analysis.

The Table I showed that the energy concentration of the
proposed model was above 0.4 for both the thumb and fore-
finger motions, whereas the energy concentration of Milica’s
model was below 0.4 for the forefinger. In terms of similarity,
the proposed model also performed better than Milica’s model.
Overall, the results showed that the proposed 3-D kinematical
model performed better for multi-joints pattern analysis.
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TABLE I
COMPARISON BETWEEN MILICA’S MODEL AND OUR MODEL

B. Three-Dimensional Finger-Tapping Segmentation
Algorithm

The extraction of features relating to fatigue, opening
velocity, and closing velocity requires the segmentation of
FT motion. However, 3-D FT motion segmentation might be
difficult because the thumb does not arrive at closed points and
opened points at the same moment as the forefinger. To solve
this problem, we propose a 3-D FT segmentation algorithm.
The detail of the proposed algorithm was presented in the
appendix.

As shown in Fig. 1 and Algorithm 1, the 3-D FT segmen-
tation algorithm comprises two steps: searching for candidate
points and then adjusting the points. We firstly applied peak
searching method on the rotation angle around the Z axis to
search for candidate points preliminarily because the forefinger
generally contributes more than the thumb to FT motion [21].
Specifically, we determined the minimum peak prominence
by (3) and determined the minimum peak distance by (4).
We had

M P P = α ∗ iqrZ , (3)
M P D = β/ f p, (4)

where M P P and M P D are respectively the minimum peak
prominence and the minimum peak distance in peak searching
method; iqrZ is the inter quartile range of the rotation angle
around the Z axis; f p is the peak frequency of the rotation
angle around the Z axis; α, and β are the search parameters.

Notably, the coordination system differed between the left
hand and the right hand owing to mirror symmetry between the
left and right hands. As a result, the peaks of the rotation angle
around the Z axis of the left and right hands are correspond
to closed and opened points respectively.

We then used the magnitude of the relative angular velocity
to adjust the times of the opened and the closed points as
shown in Algorithm 1. First, we obtained a points set (M)
by searching for the local minimums of the magnitude of the
relative angular velocity, because the magnitude of the relative
angle velocity at the opened and closed points should be local
minimums around zero. Moreover, we derived the opened
and closed points by maximizing the objective function (F)
which combined the rotation angle around the Z axis and
the magnitude of the relative angular velocity with the peak
adjusting factor ( f actor ).

We adopted the 3-D FT motion from the first closed point
to the last closed point in the following analysis. In addition,
we derived the maximum opening velocity, maximum closing
velocity, and frequency of each tapping using the opened

Algorithm 1 Three-dimensional Finger-Tapping segmentation
Algorithm
Symbol Setting:

E AZ : rotation angle around the Z axis.
|ω|: magnitude of the relative angular velocity.
f p: peak frequency of E AZ .
iqrZ : inter quartile range of E AZ .
Oi , Ci : time of the i th opened and closed points respectively
α, β: searching parameters.
f actor : peak adjusting parameter.
M P D: minimum peak distance in peak searching.
M P P: minimum peak prominence.
F : objective function.
M: local minimums set of |ω|.

Process:
Let M P P ← α ∗ iqrZ , M P D← β/ f p.
if right hand then

Let angle←−E AZ .
else

Let angle← E AZ .
end if
Search local maximums of angle with M P D and M P P .
Let C← the time of those local maximums.
Let N ← |C|.
for i from 1 to N − 1 do

Let Oi ← minimum time of angle from Ci to Ci+1.
end for
for i from 2 to 2N − 2 do

if (i is odd && right hand)||(i is even &&left hand) then
Let F ←−Norm(|ω|)− f actor ∗ Norm(E AZ ).

else
Let F ←−Norm(|ω|)+ f actor ∗ Norm(E AZ ).

end if
if i is odd then

Let M ← local min of |ω| from O0.5∗i−0.5 to
O0.5∗i+0.5.
Let C0.5∗i+0.5)← argmax(F(M)).

else
Let M← local min of |ω| from C0.5∗i to C0.5∗i+1.
Let O0.5∗i ← argmax(F(M)).

end if
end for

and closed points. The segmentation parameters, i.e. α, β,
and f actor , were determined in the validation experiment.

C. Feature Extraction
Referring to the MDS-UPDRS [3], neurologists recognize

the FT motion of PD patients by slowness, hypokinesia, and
fatigue in clinical practice. In this study, we combined these
traditional features with the proposed 3-D pattern feature.
To analyze the feature contributions, we divided the extracted
features into 6 feature groups, namely slowness, hypokine-
sia, fatigue, motor coordination, imbalance impairment, and
entropy, according to the physical meanings of these fea-
tures. In total, we extracted 32 features: 4 slowness features,
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3 hypokinesia features, 11 fatigue features, 8 motor coordina-
tion features, 3 imbalance impairment features, and 3 entropy
features.

We assessed slowness by tapping frequency and angle
velocity. Specifically, we adopted the mean tapping frequency,
root mean square of the angular velocity, root mean square of
the opening angular velocity, and root mean square of the
closing angular velocity. Hypokinesia is smaller amplitude
of movement [23], and we assessed hypokinesia using the
mean range of the rotation angle around the X , Y , and Z
axes for each tapping. Fatigue is the decrements of speed and
amplitude in FT test. We assessed fatigue using the standard
deviation of the tapping frequency, coefficients of variation of
the Euler angles, maximum opening velocity, and maximum
closing velocity. We also used the decrement of Euler angles,
maximum opening velocity, and maximum closing velocity to
assess fatigue.

Motor coordination relates to the smoothness of multi-
joints motion. Specifically, we adopted the number of local
minimums with respect to the magnitude of the relative angular
velocity, the normalized first principal component variances of
the relative angular velocity, and the correlation between all
components of the relative angular velocity. We derived the
normalized first principal component variances of the relative
angular velocity by

λ1

λ1 + λ2 + λ3
, (5)

where λi is the i th principal component variances of the
relative angular velocity. In addition, we adopted spectral
coherence analysis to estimate the correlation between all
components of the relative angular velocity. Taking the corre-
lation between X and Z component as an example, we derived
CX Z by

CX Z =
PX Z

√
PX X ∗ PZ Z

, (6)

where PX X and PZ Z are respectively the autocorrelation
spectrum of the X and Z components of the relative angular
velocity; PX Z is the cross-power spectrum for the X and Z
components of the relative angular velocity. We then adopted
the maximum and the peak number of CX Z to estimate the
correlation between the X and Z component of the relative
angular velocity.

This study considered imbalance impairment in early PD:
the imbalance impairment between the thumb and forefinger
and the imbalance impairment between the opening and clos-
ing motions. We assessed the imbalance impairment between
the thumb and forefinger using the relative thumb angular
velocity by (7) and relative thumb range of motion by (8):

rms(ωX )

rms(|ω|)
, (7)

DR X
√

DR X2 + DRY 2 + DRZ2
, (8)

where ωX is the X component of the relative angular velocity;
ω is the relative angular velocity; DR X , DRY , and DRZ
are respectively the ranges of the rotation angles around

the X , Y , and Z axes. Meanwhile, we assessed the imbal-
ance impairment between the opening and closing motions
by

rms(
∣∣ωopening

∣∣)
rms(

∣∣ωclosing
∣∣) , (9)

where ωopening and ωcloseing are respectively the relative
angular velocities during opening and closing procedures.

Entropy features relate to the complexity of the relative
angular velocity, as inspired by the roller bearing fault diagno-
sis [24]. We adopted variational mode decomposition [25] to
decompose the components of the relative angular velocity and
obtained the energy entropy, and we derived the variational
mode decomposition energy entropy of all components of
the relative angular velocity. Taking the Z component as
an example, we derived the variational mode decomposition
energy entropy as

−

5∑
i=1

V ωZ

i∑5
i=1 V ωZ

i

log
V ωZ

i∑5
i=1 V ωZ

i

, (10)

where V ωZ

i is the energy of the i th intrinsic mode function of
the Z component of the relative angular velocity.

To compare the performance between 1-D and 3-D features,
we extracted 1-D features from the motion of forefinger
(i.e. the Z component of the relative angular velocity and the
rotation angle around the Z axis) referring to [21]. In total,
we extracted 15 1-D features. Specifically, we extracted the
mean tapping frequency and root mean square of the Z com-
ponent of the relative angular velocity, the opening angular
velocity, and the closing angular velocity to assess slowness;
mean range of the rotation angle around the Z axis to assess
hypokinesia; standard deviation of the tapping frequency,
coefficients of variation and decrement of range of the rotation
angle around the Z axis, the maximum of the Z component
of the opening angular velocity, and the maximum of the
Z component of the closing angular velocity to assess fatigue;
the zero crossing number of the Z component of the relative
angular velocity to assess motor coordination; ratio between
the forefinger opening and closing velocities to assess imbal-
ance impairment; and variational mode decomposition energy
entropy of the Z component of the relative angular velocity to
assess entropy. There are no corresponding 1-D forms of the
normalized first principal component variances of the relative
angular velocity and the correlation between components of
the relative angular velocity. Thus, we did not include these
features. Notably, we also used the 3-D segmentation results
in 1-D feature extraction to allow the comparison of the 1-D
features and 3-D feature.

D. Feature Selection and Classification
To avoid the dimensional disaster, we normalized features

using z-scores and adopted the sequential floating forward
selection method for feature selection. We adopted this method
to get the final feature set because its set is not fixed, which
could eliminate the nesting problem [19].

For each task, we used the support vector machine [20] to
distinguish PD patients from HC, considering the limitation of
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TABLE II
DEMOGRAPHIC AND CLINICAL DATA OF THE TOTAL DATA SET

the sample size. The radial basis function kernel was adopted
because it is generally a reasonable choice [26]. We adopted
the grid search method to find the optimal hyper-parameter
of the support vector machine as recommended in [20].
To evaluate the performance of our framework, we conducted
a five-fold cross-validation in which each subject was tested
once.

III. VALIDATION EXPERIMENT

A. Data Collection Protocol
The experiment was approved by the Ethics Committee of

the Second Affiliated Hospital of Zhejiang University School
of Medicine (2019-287). Forty-nine PD patients and 29 HC
participated in the experiment. The inclusion criteria were: (1)
a firm diagnosis of PD according to the Movement Disorder
Society Clinical Diagnostic Criteria for PD patients [1], (2) no
movement disorder disease for HC as judged by neurologists,
and (3) an age between 40 and 70 for all participants. The
exclusion criteria were: (1) people who could not finish
FT tasks, (2) people who were left-handed, and (3) people
suffering from demented, depressed, or any other neurological
disease. The demographic and clinical data of all participants
are summarized in the Table II.

In the experiment, we designed four FT tasks: namely the
left-hand horizontal task, left-hand vertical task, right-hand
horizontal task, and right-hand vertical task. Each task was
recorded for 10 seconds. when performing horizontal tasks,
participants were instructed to put their hands on the desktop
and move their fingers parallel to the desktop referring to [21],
[22], and [27]. When performing vertical tasks, participants
were instructed to raise their arms with their palms for-
ward [3]. During data collection, participants performed the
left-hand horizontal task, left-hand vertical task, right-hand
horizontal task, and right-hand vertical task in order. And
participants were asked to rest between tasks to avoid the effect
of the task order. An independent neurologist evaluated the FT
for the vertical tasks on MDS-UPDRS [3] and dervied MDS-
UPDRS FT scores. Especially, we did not collect the scores of
the rest tests of the MDS-UPDRS to reduce time cost, because
there is not a single cutoff of MDS-UPDRS could be used
to define PD according to the Movement Disorder Society
Clinical Diagnostic Criteria for PD [1].

TABLE III
DEMOGRAPHIC AND CLINICAL DATA OF THE noSeverePD SUBSET

Fig. 2. Results of the grid search in segmentation.

Notably, we established one data subset, namely noSev-
erePD, to investigate the performance of the framework in
distinguishing mild PD patients from HC. The noSeverePD
included all HC and PD patients rated as 0 or 1 for both the
left and right hands. The demographic and clinical data of
the noSeverePD subset are listed in the Table III. This table
shows that no singificant difference in the FT scores between
mild PD patients and HC in the noSeverePD subset. We thus
obtained the noSeverePD subset in which PD patients and HC
were rated as similar MDS-UPDRS FT scores.

B. Segmentation Results
We first determined f actor by investigating the reasonable

opened and closed points with α = 0.5, β = 0.5, because the
parameter f actor did not affect the results of tapping counts.
After investigating several samples, we set f actor = 0.6.
We then conducted a grid search to determine α and β.
A marginal effect might arise in searching for local max-
imums, because we only searched whole tapping from the
first closed point to the last closed point. We thus defined the
output as being correct when the difference between the output
tapping count and the tapping count label was less than 2.
We showed the results of the grid search in Fig. 2. We finally
set α = 0.5, β = 0.4 and achieved a segmentation accuracy
of 95.19%. The results demonstrated the 3-D FT motion was
reliable in view of the tapping counts.
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TABLE IV
SIGNIFICANT FEATURES BETWEEN PD PATIENTS AND HC ON THE TOTAL DATA SET

TABLE V
COMPARISON BETWEEN HORIZONTAL TASKS AND VERTICAL

TASKS ON THE TOTAL DATA SET

C. Effect of the Task Type
We listed the results of significance testing between PD

patients and HC on the total data set in the Table IV. This
table showed that most features, except the mean range of the
rotation angle around the X axis, coefficient of variation of
the maximum of the opening velocity for each tapping, and
ratio of the opening and closing velocities showed the same or
greater difference between PD patients and HC in horizontal
tasks compared with vertical tasks.

We also investigated the effect of the task type on distin-
guishing PD patients from HC as presented in the Table V.
The performance of classification was better for horizon-
tal tasks than vertical tasks for both left and right hands.
We therefore only investigated horizontal tasks in the follow-
ing analysis.

TABLE VI
RESULTS OF FEATURE SELECTION ON THE TOTAL DATA SET

D. Analysis of Selected Features
We list selected features in the Table VI. Among these

features, six features belonged to the proposed 3-D pattern
features, which demonstrated that the proposed 3-D pattern
features contributed greatly to distinguishing PD patients
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TABLE VII
RESULTS ON DIFFERENT DATA SUBSETS

from HC. Moreover, we investigated the relationship between
the MDS-UPDRS FT score and the selected features. All 3-D
pattern features except the normalized first principal compo-
nent variances of ω and the number of local minimums of |ω|
less than the lower quartile had low correlations (|r | < 0.50)
with the MDS-UPDRS FT score, which demonstrated that the
proposed 3-D pattern features described FT in a way that is
different from traditional features.

E. Benefits of 3-D Pattern Features
We conducted significance testing to investigate whether

3-D pattern features could be used to recognize mild PD
patients in our previous work [17] and found that 3-D pattern
features performed better than 1-D features at the group level.
Moreover, we focus on whether 3-D pattern features were
important in classifying PD patients at the individual level
in this study. We compared the performance of 1-D features,
traditional features, and 3-D features and investigated the
effects of 3-D pattern features on the total set and noSeverePD.

The results are given in the Table VII. All features per-
formed the best on both the total set and the noSeverePD
subset among these feature combinations. In addition, the 1-D
features performed better than traditional features, except for
the left hand on the noSeverePD subset, because 1-D features
contained the 1-D form of the proposed 3-D pattern feature,
e.g. the variational mode decomposition energy entropy of ωZ .
We thus conclude that 3-D pattern features are important

TABLE VIII
COMPARISON WITH RELATED WORKS

in distinguishing PD patients from HC with similar MDS-
UPDRS FT scores.

IV. DISCUSSION

A. Comparison With Related Works
In this study, we propose a 3-D FT assessment framework

and tested its performance on different data subsets. The
present work is compared to related work in Table VIII. Most
related work did not mention whether the data were filtered.
Other works [11], [16] filtered participants so that all invovled
PD patients were rated above 0 and all involved HC were rated
as 0 according to the MDS-UPDRS. Moreover, the accuracy
of Chao’s work [11] was low on the data subset in which PD
patients were rated as 1 and HC were rated as 0. To the best
of our knowledge, this study was the first to investigate how to
distinguish PD patients from HC with similar FT scores. Our
work reached a comparable accuracy with related works on the
total data set, and reached the highest accuracy on the filtered
data set (in which PD patients were rated above 0, HC were
rated as 0). The results show that the proposed framework
performed well in recognizing mild PD patients by involving
3-D pattern features and could distinguish mild PD patients
from HC with similar FT scores.

B. Three-Dimensional Pattern Features
We evaluated FT motion using the proposed 3-D pattern

features in a way that is different from traditional features.
We found the motor coordination of PD patients was sig-
nificantly worse than that of HC [17], which might reflect
the motor impairment of PD. In addition, the PD patients’
relative thumb angular velocity was significantly higher [17].
We considered that the motor function of the forefinger might
be impaired more than that of the thumb in mild PD because
the impairment of the thumb might be compensated for more
easily, owing to the larger cortical control area of the thumb.
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Fig. 3. Comparison of two typical 3-D pattern features in horizontal and
vertical tasks for the right hand.

The variational mode decomposition energy entropy of the
relative angular velocity components was significantly higher
in PD patients than in HC, especially in the case of the
Z component (p < 0.0001). Higher energy entropy corre-
sponds to more complex FT motions. Overall, the proposed
framework performed better with the inclusion of the proposed
3-D pattern features.

C. Effect of Task Type
To the best of our knowledge, no previous research has

focused on the effect of the task type. We evaluated our
framework on horizontal tasks and vertical tasks and found
better performance for the horizontal task. We conducted the
paired-sample t-test to investigate the proposed 3-D pattern
features in different tasks on the total data set. We found
that the horizontal tasks significantly affected PD patients and
we presented the results for the right hand in Fig. 3. The
results suggested that horizontal tasks might be a better choice
when adopting the proposed framework. However, whether the
horizontal task is a better choice for FT evaluation in clinical
practice needs to be further investigated.

D. Effect of Dominant Hand
All participants in this study were right handed. Similar

to [4] and [11], we found that the proposed framework
performed better for the right hand on the total data set.
But the proposed framework performed better for the left
hand on noSeverePD subset and filtered subset. Moreover,
we investigated the output of the proposed framework for
the left and right hands at the individual level and gave the
results in the Table IX. The results showed that the proposed
framework performed better for the right hand on total data
set, but better for the left hand on a subset of the data with
less variation between PD patients.

E. Study Limitation
The presented results are promising, yet more research is

needed. Validation experiment on larger data set with more
mild PD patients is an important part of future work will
be used to verify the generalization ability of the proposed

TABLE IX
OUTPUT OF THE PROPOSED FRAMEWORK FOR

LEFT AND RIGHT HANDS

framework. Notably, Lones [4] reported that it was easier for
classifiers to perform a diagnosis by the dominant hand owing
to the association between handedness and the onset side [28].
We obtained similar results, i.e. higher accuracy in right hand
for right-handed participants on the total data set, even though
the left:right ratio of the onset set in total data set was close
to 1:1. It seemed that the association between handedness and
the onset side was not the reason for the classifier being more
accurate for the dominant hand. This phenomenon needs to be
further investigated in clinical practice.

Lones [4] enrolled only 16 left-handed participants and
mixed left-handed and right-handed participants in investigat-
ing the performance difference between the dominant hand and
non-dominant hands. We considered that the non-dominant
hands of right-handed and left-handed people were not com-
parable, because left-handed people are less lateralized than
right-handed people [29]. As in the present study, most pre-
vious studies [4], [11], [13], [14], [16] did not investigate the
accuracy on left-handed people because of the limited numbers
of potential left-handed participants. The performance of the
proposed framework on left-handed people needs to be further
investigated.

The combination of horizontal tasks and vertical tasks
remained a problem because there was a performance gap
between horizontal and vertical tasks especially for the right
hand. The relationship between horizontal and vertical tasks
needs to be further investigated by neurologists in clinical
practice.

We did not investigate the effect of the second sensor in this
paper because we did not collect the original data of a single
sensor during the validation experiment. The effect needs to
be further investigated.

V. CONCLUSION

We propose a 3-D FT framework and included 3-D pattern
features, namely motor coordination, imbalance impairment,
and entropy. We collected and analyzed 3-D FT motion using
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the proposed framework. We evaulted the proposed framework
on 49 PD patients and 29 HC. The results demonstrated:
1) the proposed 3-D pattern features are not strongly related
to traditional features, 2) the proposed framework performed
well in recognizing mild PD patients by involving 3-D pattern
features, and 3) the proposed framework performed better on
horizontal tasks. With the inclusion of 3-D pattern features, the
proposed framework could distinguish mild PD patients from
HC with aging-related motor decline by single FT motion. The
proposed framework can thus be applied to the screening of
in PD patients.
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