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Abstract— Simultaneous implementation of myoelectric
pattern recognition and muscle force estimation is highly
demanded in building natural gestural interfaces but a
challenging task due to the gesture classification accuracy
degradation under varying muscle strengths. To address
this problem, a novel method using transformer-based
multi-task learning (MTL-Transformer) for the prediction
of both myoelectric patterns and corresponding muscle
strengths was proposed to describe the inherent charac-
teristics of an individual gesture pattern under different
force conditions, thereby improving the accuracy of myo-
electric pattern recognition. In addition, the transformer
model enabled the characterization of long-term tempo-
ral correlations to ensure precise and smooth estimation
of the muscle force. The performance of the proposed
MTL-Transformer framework was evaluated via experi-
ments of classifying eleven hand gestures and estimat-
ing the corresponding muscle force simultaneously, using
high-density surface electromyogram (HD-sEMG) record-
ings from forearm flexor muscles of eleven intact-limbed
subjects. The MTL-Transformer framework yielded high
classification accuracy (98.70±1.21%) and low root mean
square deviation (12.59±2.76%), and outperformed other
two common temporally modelling methods significantly
(p< 0.05) in terms of both improved gesture recognition
accuracies and reduced muscle force estimation errors.
The MTL-Transformer framework is demonstrated as an
effective solution for simultaneous implementation of myo-
electric pattern recognition and muscle force estimation.
This study promotes the development of robust and smooth
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myoelectric control systems, with wide applications in ges-
tural interfaces, prosthetic and orthotic control.

Index Terms— Myoelectric pattern recognition, muscle
force estimation, varying muscle strengths, transformer
model, multi-task learning.

I. INTRODUCTION

MYOELECTRIC control is a technology that converts
human movement intentions into machine commands

by sensing and processing electromyographic (EMG) sig-
nals to control peripheral devices. It has been widely used
as gestural interfaces in prosthetic and orthotic robots [1],
[2], [3]. Due to its favorable non-invasive property, the sur-
face EMG (sEMG) is usually used as the command source
in the myoelectric control systems [4], [5], [6]. In recent
years, a number of studies in myoelectric control have been
devoted to the interpretation of movement patterns from the
sEMG signals [7], [8], [9]. Many machine learning methods
such as linear discriminant classifier [10], Gaussian mixture
model [11], support vector machine [12], have been adopted
to process the sEMG signals and improve the number of rec-
ognizable patterns and recognition accuracy, with significant
progresses [13], [14], [15]. In particular, the rapid development
of deep learning algorithms in recent years has significantly
advanced the techniques for myoelectric control [16], [17],
[18]. To reduce the adverse interference when exploring the
feasibility of the recognition methods, these studies are usually
carried out with different movement patterns under constant
medium force levels, without considering potential variations
of the muscle force. Intuitively, both movement pattern recog-
nition and muscle force estimation are not separate tasks.
For instance, when griping on an object by a prosthetic
control system, both the movement pattern and muscle force
are generated in a well-coordinated manner so as to achieve
natural and smooth control. Consequently, it’s necessary to
validate the gesture pattern recognition algorithm for the
sEMG signals under the condition of varying forces, and this
further motivates the research on simultaneous implementation
of both gesture recognition and muscle force estimation.

Towards advanced myoelectric pattern recognition sup-
porting muscle force estimation, several studies have been
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conducted. For example, Baldacchino et al. [19] proposed a
multivariate Bayesian hybrid model based on the gate function,
which can achieve the pattern recognition of nine finger move-
ments and force estimation of the fingertip. Fang et al. [20]
proposed an attribute-driven granular (AGrM) model for rec-
ognizing eight finger pinch patterns and estimating fingertip
forces. Despite the achievements of these works, their pattern
recognition performance degraded significantly under variable
forces. One main reason was that both the gesture recognition
and the muscle force estimation were treated as independent
tasks, ignoring their complementary properties underlying
complex muscle coordination.

Since the gesture pattern and muscle force can both be pre-
dicted from the sEMG signal, the multi-task learning (MTL)
framework is naturally considered. The MTL approaches aim
to learn multiple related tasks simultaneously, by sharing the
feature representations of different tasks, it can achieve better
generalization ability than learning individual task indepen-
dently [21]. Hua et al. [22] used a MTL framework based
on the multi-stream temporal convolutional neural network
(TCNN) to simultaneously make decisions within eight move-
ment patterns and three corresponding force levels. This
method just considered three fixed force levels for each
pattern, which had certain limitations in real world appli-
cations. Hu et al. [23] proposed a MTL framework based
on the long-short term memory (LSTM) network and the
multi-layer perceptron (MLP), incorporating a post-processing
approach. It enabled the recognition of eleven gestures while
supporting instantaneous estimation of the muscle force of
the activated gesture. However, the post-processing algorithm
can lead to a large time delay, which was not conducive to
the real-time requirement of the myoelectric control system.
Besides, these methods have just achieved unsatisfying and
limited performance (an average accuracy of just around 90%).

In the simultaneous control task, gesture recognition is usu-
ally a more important issue, and the prediction of muscle force
is meaningful only when the gesture patterns are recognized
correctly. Meanwhile, the main difficulty of the simultaneous
control task also lies in overcoming the degradation of gesture
recognition accuracy under the influence of variable forces.
Movement patterns have been frequently characterized by
sEMG features. Most of them are associated with sEMG
amplitudes [6], such as time domain (TD) features [24], [25],
and they may change obviously with varying forces, leading
to decreased pattern recognition performance. This places
a higher demand on the user’s operational normality in
the application of myoelectric control systems, resulting in
poor user experience [22]. To deal with this problem, some
methods have been proposed to improve the generalization
ability of the classification algorithm by extracting sEMG
features that are insensitive to force changes, thus reducing
the variation in feature space caused by variable contraction
forces [26], [27], [28]. For example, Al-Timmy et al. [27]
used the time-dependent power spectral descriptors (TD-PSD)
of sEMG signals on a six-class classification task under
three force levels, reducing the classification error significantly
when compared to the conventional characteristics such as
autoregressive model coefficient, discrete Fourier transform

coefficient, and wavelet transform coefficient. Pancholi and
Joshi [28] proposed an energy kernel-based feature extraction
method, with an average classification accuracy of 92% for
six gestures under three force levels, which achieved a 2%-9%
improvement over TD-PSD and wavelet transform coefficients.
Although some progresses have been made, the decoding of
movement patterns under varying forces is still unsatisfactory.

Due to the sequential properties of sEMG data, it is essential
to mine the temporal relevance along the data sequence. It is
hypothesized that temporal modeling of signal sequences helps
to learn robust features of one gesture by aggregating informa-
tion from sEMG data over varying force levels, thus improving
the accuracy of gesture pattern recognition. In recent years,
the transformer model has attracted wide attention due to its
powerful temporal modeling capability and has been success-
fully applied in speech recognition, machine translation and
many other computer vision tasks [29], [30], [31]. The key of
the transformer model lies in the self-attention mechanism,
it allows the data point in the input sequence to interact
with each other by computing the similarity score (attention
weight) among them [32]. The self-attention mechanism can
help to capture long-term dependencies in the time sequence
and aggregate global information of the data, instead of only
focusing on the local context information as in convolutional
neural networks. Besides, compared with recurrent neural
networks (RNNs) such as LSTM [33], [34], [35] with the
similar capability of aggregating global context information,
the transformer has a property of parallel computation [36],
which can reduce the training time cost and improve the
execution efficiency. Although the transformer model has
been utilized in the myoelectric pattern recognition tasks with
promising performance [37], [38], [39], its effectiveness has
not been investigated in simultaneous implementation of both
the myoelectric pattern recognition task and the muscle force
estimation task.

To reduce the negative impacts of varying muscle strengths
and simultaneously predict both the gestural pattern and the
force, we proposed a novel transformer-based multi-task learn-
ing (MTL-Transformer) method for myoelectric pattern recog-
nition supporting muscle force estimation. In this method, the
sEMG data samples were characterized as features and fed into
the transformer model, and then went through the classification
module and the regression module simultaneously to obtain
decisions of both gesture pattern and instantaneous muscle
force. Our proposed method can achieve efficient and robust
myoelectric control, which is of great significance to gestural
interfaces, prosthetic and orthotic control.

II. METHODOLOGY

Figure 1 demonstrates the flowchart of the proposed
method. First, high-density sEMG (HD-sEMG) from the
forearm flexor and the corresponding grasping force are col-
lected simultaneously when the gestures are executed. The
HD-sEMG data are used to extract sEMG envelopes in
channel-wise manner. The multi-channel sEMG signals and
the corresponding multi-channel envelope signals are stitched
together, which are segmented into a series of multi-channel
time windows and then fed into the transformer model. For
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Fig. 1. The flowchart of the proposed MTL-Transformer method.

Fig. 2. Illustration of 11 different gesture patterns.

each sEMG sample in one window, features obtained from
the transformer model are fed into the classification module
and the regression module simultaneously to obtain the gesture
pattern and instantaneous muscle force.

A. Subjects and Experiments

Eleven male subjects aged from 23 to 27 years old were
recruited in this study. All subjects did not have any neu-
romuscular diseases and were informed of the experimental
procedures and signed the informed consent. The study was
approved by the Ethics Review Board of the University of
Science and Technology of China (Hefei, China).

Eleven gestures involving pressure, pinch, grip and twist
were selected from commonly used daily gestures to form the
target gesture set in this study, as shown in Fig. 2. Several
hand molds from 3-D printing were adopted to assist the data
collection of twist gestures. The diagram of the experiment
set-up was shown in Fig. 3. As shown in Fig. 3(a), two
pressure sensors (LOADING SEN, LDCZL-FA & LDCZL-
SC, China) and a torque sensor (LOADING SEN, LDN-08A,
China) were used to record the grasping force. A HD-sEMG
electrode array consisting of 128 electrodes arranged in a
16 × 8 grid form was used to collect HD-sEMG signals. Each
electrode had a circular recording probe of 3-mm diameter,
and the center-by-center inter-electrode distance between two
neighboring electrodes was 8 mm. Each electrode in the
array worked in a monopolar manner concerning the common
reference electrode that was placed on the back of the other
hand, constituting 128 recording channels.

Fig. 3. The diagram of the experiment set-up. (a) Three force sensors
including two pressure sensors and a torque sensor. (b) Schematic
diagram of force sensor and HD-sEMG array placement in a gesture
task.

At the beginning of the experiment, the skin of the sub-
jects’ forearms was cleaned with medical-grade alcohol to
reduce the skin-electrode impedance. As shown in Fig. 3(b),
the HD-sEMG array was placed to the skin surface of the
forearm flexor muscle (containing ulnar carpal flexor, radial
carpal flexor, and intra-hand flexor), whose primary function
corresponds to the eleven gestures, and an extra inelastic
bandage was used to secure the HD-sEMG array and reduce
the motion artifacts. Then the subjects were asked to perform
three maximal voluntary contractions (MVCs) while their
corresponding forces were recorded, and the largest force
was used as the final MVC for every subject. Then, subjects
were instructed to perform target gestures in a variable force
generation pattern that rises smoothly from the initial baseline
(resting state) to 60% MVC force level and then falls smoothly
to baseline. The duration of each force generation pattern was
maintained between 2s and 3s, and the force generation pattern
was repeated 20 times for each user performing each gesture.
The target force and the actual force generation curve were
displayed on a human-computer interaction interface to help
the subjects to better complete the force generation task, and
the actual measured force was used in the subsequent signal
processing process.

A homemade recording system was used for both force and
sEMG data collection. There are a two-stage amplifier with
a total gain of 60dB and a band-pass filter at 20–500 Hz per
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channel. The HD-sEMG and force signals were sampled at
2 kHz and digitized via a 16-bit A/D converter (ADS1299,
Texas Instruments, TX). All collected sEMG and force data
were saved to the hard disk of a computer through a high-speed
USB cable. All subsequent data processing and analyses were
conducted on a desktop PC equipped with an Intel i7 CPU
and an NVIDIA GeForce GTX 1080Ti.

B. Signal Pre-Processing
A 20-500 Hz band-pass filter was applied to HD-sEMG

signals first to eliminate low-frequency noise artifacts. Then
a set of second-order notch filters were adopted to remove
the 50-Hz power line interference and its harmonics for each
sEMG channel. For the three twist gestures (Ges 9, Ges 10,
and Ges 11), the torque recorded by the force sensor was
converted into the corresponding twist force:

D̂ = I/d, (1)

where D̂ represents the calculated twist force, I is the mea-
sured torque, and d is the arm of the hand mold’s force. For
each gesture and each subject, both the HD-sEMG data and
force data were normalized separately. We first calculated a
global maximum absolute value of the sEMG amplitude over
all channels. Once the maximum absolute amplitude value was
obtained, it was used to normalize each channel of sEMG
signal between −1 and 1. In addition, the force signal was
normalized between 0 and 1 using the previously recorded
MVC value. Furthermore, we used the full-wave rectification
and low-pass filtering (cutoff frequency 3 Hz, finite impulse
response filter, Hanning window, 80th order) to process each
channel of the normalized HD-sEMG signals in the temporal
dimension, obtaining a corresponding signal envelope. These
multi-channel envelopes were also normalized in the same way
according to the maximum absolute value across all channels.
Considering following supervised learning analyses, all of the
above parameters for normalization were just derived from
the training data and they were stored and applied to any test
data. Thus a channel-augmented data stream was obtained by
concatenating the normalized multi-channel envelopes and the
normalized multi-channel sEMG data. These data also carried
their original labels including both the gesture pattern and the
corresponding measured force. The sEMG data along with the
force signal were segmented into several overlapping analysis
windows with a window length of 64 ms and a window
increment of 32 ms. These multi-channel analysis windows
were considered as the basic samples for both myoelectric
pattern recognition and muscle force estimation tasks.

C. Model Structure and Model Training
In this section, we introduce the detailed design of our

MTL-Transformer model. Given the input data X ∈ RB×T ×M

with pattern labels Y cls
∈ RB and force labels Y reg

∈

RB×T in a mini-batch, where B is the batch size, T is the
length of data samples in a window and M is the channel
number of fusion samples. To fuse the feature information of
different electrodes, we first adopted a fully connected layer

and a ReLU activation layer to map X into P channels (i.e.,
empirically 256 channels in this study) as follows:

U = Max(X W + b, 0), (2)

where W ∈ RM×P , b ∈ R P . Note that the T data samples
in a window correspond to the same gesture pattern label but
have different muscle force values, and the muscle force is not
inconsecutive and it’s important to consider the smoothness of
the muscle force prediction results. To correctly recognize the
gesture pattern of these data samples and estimate the muscle
force, temporal modeling is essential for improving the feature
robustness and smoothness. Consequently, the output U was
then fed into the multi-head attention module to aggregate
temporal information. Specifically, the multi-head attention
module consists of N heads, and each head processes the input
independently. For the n-th head, we first map U into query
Qn , key Kn and value Vn :

Qn = U W Q
n , Kn = U W K

n , Vn = U W V
n (3)

where Wn ∈ R P×
P
N represents the learnable weight. Then

query Qn and key Kn were used to calculate the similarity
matrix among data samples:

Sn = so f tmax
(

Qn K ′
n

τ

)
(4)

where τ =

√
P

/
N is the scale factor, K ′

n is the transpose of
the Kn . With the similarity matrix Sn , the output Hn of the
n-th head can be obtained:

Hn = Sn Vn . (5)

By concatenating the output of N heads together, we can
obtain the aggregated temporal feature for each data sample
according to Equation (6). In this paper, the heads number N
was set to be 4, so the dimension of H is RB×T ×256. To keep
the original feature so as to prevent over smoothing for muscle
force estimation, U and H were fused together and then fed
into a layer-normalization layer to obtain U ′ according to
Equation (7). At last, U ′ was fed into a feed forward module
FFN and a layer-normalization layer to obtain the output of
the transformer model according to Equation (8).

H = Concat (H1, . . . , HN ) (6)
U ′

= Layer Normali zation(U + H) (7)

U ′′
= Layer Normali zation

(
F F N

(
U ′

)
+ U ′

)
(8)

The feed forward module F F N consists of two fully con-
nected layers, with a ReLU activation layer between them and
a normalization layer after them. For the FFN module, each
FC layer had 256 input channels and 256 output channels.

With the output features of each sample U ′′
∈ R256×T ,

the classification scores Ŷ cls
∈ RB×C and muscle force

estimation results Ŷ reg
∈ RB×T were obtained by the classifi-

cation module N cls and regression module N reg according to
Equation (9). In the classification module, we used the tempo-
ral average pooling operation on U ′′ in the second dimension
to obtain the output U ′′′

∈ R256, which was then fed into
the fully connected layer. For the classification module, the
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number of the input channels was 256, the number of output
channels was the pattern number of the gestures (i.e., 11 in
this study). In addition, the regression module was composed
of a fully connected layer and a sigmoid activation layer. For
the regression module, there were 256 input channels, and just
1 output channel.

Ŷ cls
= N cls (

U ′′
)
, Ŷ reg

= N reg (
U ′′

)
(9)

In the training stage, the real gesture label Y cls and muscle
force value Y reg were available. The network was trained with
the stochastic gradient descent (SGD) algorithm [40], with
the batch size of B (i.e., 10 in this study). Consequently,
the classification loss Lcls and muscle force estimation loss
Lreg can be calculated as the cross entropy loss and mean
square error loss according to Equation (10) and Equation (11),
respectively, where C represents the pattern number of the
gestures, Y cls

j,c means the gesture label value of the j-th sample
labeled as pattern c in a mini-batch, Ŷ cls

j,c means the predicted
probability that the j-th sample belongs to pattern c, Y reg

j,t
means the real force value of the t-th sampling points of the
j-th sample, Ŷ reg

j,t means the corresponding predicted force
value. The final loss used for model training was the weighted
sum of two losses defined as Equation (12), where the weight
α was used to balance the contribution of the muscle force
estimation loss. Since the regression loss was found to be
about ten times smaller than the classification loss, α was set
from 0 to 10 by every increment step of 1 to find an appropriate
value leading to optimal performance. The learning rate was
set to be 1×10−3 in this paper, and the number of training
epochs was set to be 20.

Lcls
= −

1
B

B∑
j=1

C∑
c=1

Y cls
j,c log

(
Ŷ cls

j,c

)
(10)

Lreg
=

1
B

B∑
j=1

T∑
t=1

(
Y reg

j,t − Ŷ reg
j,t

)2
(11)

L = Lcls
+ αL reg (12)

D. Model Testing and Decision Making
In the testing stage, given the testing data X ∈ RL×M ,

we feed it into the MTL-Transformer model to obtain the
gesture classification result Ŷcls ∈ RC and muscle force esti-
mation result Ŷreg ∈ RT . Since Ŷcls was a pattern distribution,
the predicted pattern label c can be obtained:

c = argmax
i

Ŷcls(i) (13)

E. Performance Evaluation
To evaluate the effectiveness of the proposed method, the

training set and testing set were divided in the proportion
of 3:7 for each subject’s data. The classification accuracy
(CA) described in Equation (14) and the root mean square
deviation (RMSD) defined in Equation (15) were used to
evaluate the performance of gesture recognition and force

estimation respectively, where F and F̂ are the predicted force
and the measured force, respectively.

C A =
Correct I nstances

T otal I nstances
× 100% (14)

RM SD =

√∑T
t=1[F̂(t) − F(t)]2

L
× 100% (15)

To validate the advantage of the proposed method, two com-
mon temporal modeling approaches were applied to construct
MTL framework, which can realize simultaneous gesture
recognition and force estimation. One was based on the LSTM
model (termed MTL-LSTM), where a FC layer, a ReLU layer
and a LSTM layer were used to obtain the features of each
sample that then went through the classification and regression
modules, thus the predicted gesture pattern and muscle force
can be obtained. The other one was based on the multi-stream
temporal convolutional neural network (termed MTL-TCNN)
according to the previous study [10]. In this work, data from
each channel of the fusion samples were used as the input
of each stream. Three conv blocks containing a BN layer, a
conv layer and a maxpooling were utilized to extract features
of each sample, which were then fed into the classification
and regression modules. In both methods, the structure of
the classification and regression modules was the same as
the proposed method. All the experiments were conducted
under a single GTX 2080 GPU and an Intel(R) Xeon(R) CPU
E5-2695 v4 @ 2.10GHz. The details of the implemented
neural network layers and parameters were shown in Table I.

F. Statistical Analysis
Two one-way repeated-measure ANOVAs were performed

on the CA and RMSD respectively, to examine the effect of
gesture recognition and muscle force estimation using different
methods. The LSD post hoc test was employed for multi-
ple pairwise comparisons. The significance level was set as
p < 0.05. All statistical analysis were implemented by SPSS
software (version 24.0, SPSS Inc. Chicago, IL, USA).

III. RESULTS

Table II shows the performance of gesture recognition and
muscle force estimation respectively, when the weight coeffi-
cient α was set from 0 to 10. Please note that α = 0 means
that only the gesture recognition task was performed without
force estimation, thus there was no result of force estimation.
In this case, the CA of the single gesture recognition task was
95.00±5.15%. When the α was increased from 1 to 10, the
CA was all improved obviously with statistical significance
(p < 0.05), and the maximal value was 98.70±1.21% when
α was set to be 6. In this case, the muscle force estimation
performance was also competitive. Thus, α = 6 was selected
and it was consistently applied in subsequent analyses.

Fig. 4 reports the CA when varying the model depth
from 1 to 4 layers, both the MTL-Transformer method and
the MTL-LSTM method achieved their best performance with
just 1 layer, and the MTL-TCNN method had the optimal
performance with 3 layers. Notably, the MTL-Transformer
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TABLE I
THE DETAILS OF THE DESIGNED NEURAL NETWORK. B REPRESENTS THE BATCH SIZE

Fig. 4. The CA achieved by three methods as the number of layers
varies from 1 to 4.

method outperformed any other method under any model depth
setting.

Fig. 5 and Fig. 6 exhibit the CA and RMSD values of
all subjects using the proposed method and two comparison
methods, respectively, and the mean value averaged over all
subjects was shown in the right side of each figure. It can
be seen that the CA of the MTL-TCNN, MTL-LSTM, and
the proposed method were 69.10±20.816%, 95.85±4.63%
and 98.70±1.21%, respectively. The proposed method had the
highest average CA, which outperformed two contrast methods
significantly (p < 0.05). At the same time, the average
RMSD of the proposed method was 12.59±2.76%, achieving
a reduction in estimation error compared to 13.79±3.20% by
the MTL-LSTM method and 21.69±1.92% by MTL-TCNN
method, with statistical significance (p < 0.05).

Besides, the computational time cost in the testing stage
was also calculated as the average time cost over all windows
from the testing dataset for three methods. The mean time cost
of the proposed method was 0.20 ms, and it was a bit longer
than 0.13 ms achieved by the MTL-TCNN method, but much
shorter than 0.36 ms resulted from the MTL-LSTM method.

The resultant time cost of any method was much less than the
window increment (32 ms). In addition, the sum of individual
window length (64 ms) and the time cost per window, i.e., the
total time delay for a testing window was less than 300 ms
(the tolerance for real-time myoelectric control).

Fig. 7 displays representative examples of the estimated
force curve with respect to actually measured force curve,
using three methods (the MTL-Transformer, MTL-LSTM and
MTL-TCNN methods), respectively. It can be found that
the predicted muscle force curve of MTL-TCNN was very
noisy and therefore failed to fit the measured force well.
The MTL-LSTM method had a predicted muscle force curve
much smoother than the MTL-TCNN method. However, it still
had many fluctuations not in accordance with the true force
curve. By contrast, the estimated force curve derived from the
proposed method fits better with the measured force curve,
by capturing the fluctuations of the actual force precisely.
In this case, the proposed method achieved the lowest average
RMSD value (9.27%), outperforming the MTL-LSTM method
(9.72%) and the MTL-TCNN method (26.48%).

To evaluate the real-time classification performance of
the proposed MTL-Transformer method, we visualized the
real-time classification results [6], [41] derived from a repre-
sentative subject S4, as shown in Figure 8. In this test, S4 was
asked to cycle through every gesture. It can be found that most
of the samples were classified correctly, and misclassifications
usually occur during gesture transitions.

IV. DISCUSSION

This paper presents a novel method for simultaneous
implementation of gesture recognition and muscle force esti-
mation using the MTL-Transformer method. The transformer
model was embedded in the MTL framework to mine con-
text information of sEMG sequences. The innovations and
major contributions are as follows: (1) A novel Transformer-
based multi-task learning method is proposed for simultaneous
gesture recognition and muscle force estimation. (2) The
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TABLE II
THE CA OF THE GESTURE RECOGNITION AND THE RMSD OF THE FORCE ESTIMATION RESPECTIVELY,

WHEN THE WEIGHT COEFFICIENT α RANGED FROM 0 TO 10

Fig. 5. The CA of gesture recognition for all subjects using the proposed method and two contrast methods, respectively.

invariance of the sEMG characteristics inherent to patterns
under variable forces is explored by temporal modeling using
the transformer model, and the smoothness of both gesture
recognition and muscle force estimation is ensured simulta-
neously. (3) Better recognition performance is achieved by
sharing feature representations between both the muscle force

estimation task and the gesture recognition task through the
MTL design, as compared with the method implementing just
one individual task.

In the proposed method, MTL framework was used to
improve the generalization ability of the model by learn-
ing a shared feature space of gesture recognition and force
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Fig. 6. The RMSD of muscle force estimation for all subjects using the proposed method and two contrast methods, respectively.

estimation, compared to the single-task independent learning
way. Besides, the end-to-end implementation improves the
convenience of the myoelectric control systems. In the MTL
framework, it is essential to balance the contribution of each
task. Since gesture recognition is often a more important
task than muscle force estimation, muscle force estimation
can be considered as an auxiliary task, and the model can
work better by dynamically adjusting the importance of the
force estimation. In this paper, this was achieved by adding
a weighting factor α to the regression loss corresponding
to the muscle force estimation. When α is too small, the
model training may be dominated by the classification loss,
neglecting the contribution of the regression task. Conversely,
when α is too large, the model training may emphasize too
much on muscle force estimation loss and lead to degradation
on gesture classification. As shown in Table I, without the
involvement of muscle force estimation (i.e., α = 0), the
lowest performance of gesture recognition was obtained. This
demonstrated the effectiveness of MTL, i.e., the addition of
the muscle force estimation task has a positive effect on the
performance of gesture recognition. In contrast, when the
auxiliary task was added (with a non-zero balance factor), the
model performance was found to be improved and the best
average classification accuracy was achieved when α equals
to 6. Since gesture recognition is more important than muscle
force estimation, we chose the value of α when the highest
accuracy of gesture recognition and a competitive RMSD of
muscle force estimation was obtained, thus α was determined
as 6. Notably, there was no significant difference in recognition
results when α ranged from 1 to 10 (p > 0.05), suggesting that
the model was not sensitive to the value of the balance factor
for this task. This is consistent with a previous finding [22],
and can provide guidance for similar tasks based on the MTL
framework in myoelectric control.

As clarified in the Introduction section, the changes in
sEMG feature space under variable forces inevitably may
degrade gesture recognition accuracy. In this paper, we adopted
transformer model to implement simultaneously gesture recog-
nition and muscle force estimation. As shown in Fig. 5 and
Fig. 6, the proposed MTL-Transformer method had the CA of
98.70±1.21% and the RMSD of 12.59±2.76%, demonstrating
the best performance by both the gesture recognition and the
muscle force estimation. This verified the previous scientific
hypothesis that the negative effect of force variation on the
sEMG features can be mitigated by the temporal modeling

Fig. 7. Representative examples of the estimated force curve (blue)
with respect to actually measured force curve (red), selected from
a gesture performed by the subject S4, using the proposed MTL-
Transformer method (a), the MTL-LSTM method (b) and the MTL-TCNN
method (c), respectively.

ability of the transformer model through aggregating features
of each sample with different force values. Meanwhile, the
proposed MTL-Transformer method ensured the smoothness
of the muscle force estimation curve, as visualized in Fig. 7.

As a commonly used powerful model for temporal mod-
eling, the LSTM model was designed as a MTL structure
and used for comparison in this paper. Not surprisingly, the
proposed MTL-Transformer outperformed the MTL-LSTM
method in terms of both gesture recognition and muscle force
estimation. This is due to the fact that the LSTM relies on
historical memory, thus the initial performance of the model
is limited. When compared with recurrent neural networks
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Fig. 8. The classification visualization results during a real-time test
performed on S4, in which S4 was asked to cycle through every gesture.
Green blocks indicate correct gesture decisions, black blocks indicate
correct predictions of the resting state, and just some sporadic red
blocks indicate incidental errors of the gesture classification.

(including LSTM) that process temporal data in a sequential
manner, the self-attention operation can be conducted in a
parallel way for all data samples, which makes it very time
efficient [32], as verified by less time delay derived from the
proposed method.

Besides, temporal CNN (TCNN) is also a typical method
used to characterize temporal relationships, which has been
designed and validated as a multi-stream structure by previous
work [22]. However, the performance of the method in terms
of both gesture recognition and muscle force estimation was
unsatisfactory. There are two possible reasons. The first is the
simple structure of TCNN with a small number of parameters.
Although this property can reduce the inference time, the
simple model cannot be adapted to the complex gesture
recognition and muscle force estimation tasks. Previous work
only carried out gesture recognition and force level estimation
for sEMG signals at three fixed force levels, whereas the force
varied continuously in a great range from resting (almost 0%
MVC) to 60% MVC when performing different gestures in this
study. Greater force changes make the distribution of sEMG
features more variable, and more powerful models are needed
for achieving satisfactory results. Secondly, the receptive field
of TCNN is limited, and it can only focus on the information
within a short period of time in the long time series, so the
stationarity of gesture recognition and muscle force estimation
cannot be guaranteed. Compared with the TCNN model, the
transformer model is able to well characterize global context
information through self-attention mechanism and can improve
the model performance. All of these advantageous aspects
of the proposed MTL-Transformer method can be used to
explain its significant performance gains (over 30%) at the
cost of slightly longer time delay, with respect to the MTL-
TCNN method. Meanwhile, the prolonged testing time delay
is too small to affect the common usability of the myoelectric
control system. Therefore, the proposed method is regarded
to achieve superior gesture recognition and muscle force

estimation performance along with sufficient computational
efficiency.

Although the results are promising, there are still some
limitations in this study. First, the target gestures in the
experimental scheme in this paper only include several com-
prehensive gestures involving press, pinch, grasp and twist.
More complex and dexterous gestures from daily life can be
considered to expand the gesture set. Second, the proposed
method in this paper is based on the user-specific condition
where each new user needs to provide certain training data,
which may be inconvenient in practical use. Thus, this method
can be explored in the future in conjunction with strategies
such as unsupervised domain adaptation for cross-user simul-
taneous gesture recognition and muscle force estimation.

V. CONCLUSION

In this paper, a novel MTL-Transformer method is presented
using the transformer model embedded in the MTL framework
for predicting both gesture pattern and muscle force, which
can mitigate the negative effect of force variation on the
sEMG features through temporal modeling. The proposed
MTL-Transformer method outperformed common temporal
modelling methods-based MTL framework in terms of both
gesture recognition and muscle force estimation (p < 0.05).
The experimental results demonstrated the effectiveness of
the transformer model in mining the context information of
sEMG sequences. This study offers a promising method for
robust and smooth myoelectric control systems, with wide
applications in gestural interfaces, prosthetic and orthotic
control.
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