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Abstract— Physical therapy keeps exploiting more and
more the capabilities of the robot of adapting the treat-
ments to patients’ needs. This paper aims at presenting
a psychophysiological-aware control strategy for upper
limb robot-aided orthopedic rehabilitation. The main fea-
tures are the capability of i) generating point-to-point
trajectories inside an adaptable workspace, ii) provid-
ing assistance in guiding the patients’ limbs in accom-
plishing the assigned task allowing them to freely move
with a certain degree of spatial and temporal autonomy
and iii) tuning the control parameters according to the
patients’ kinematics performance and psychophysiological
state. The implemented control strategy is validated in a
real clinical setting on eight orthopedic patients undergo-
ing twenty daily robot-aided rehabilitation sessions. The
psychophysiological-aware control strategy evidenced a
positive impact on the enrolled participants since they are
effectively conducted in a calmer condition with respect to
the patients who did not receive the psychophysiological
adaptation. Moreover, clinical performance indicators sug-
gest that the proposed tailored control strategy improves
motor functions.
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I. INTRODUCTION

MUSCULOSKELETAL Disorders (MSDs) are one of the
leading causes of severe long-term pain and physical

disability [1]. The people who are most affected by mus-
culoskeletal disorders are workers exposed to biomechanical
overload of the upper limbs and the elderly who suffer from
sarcopenia, tendinopathies, and arthritis [2], [3], [4]

Robot-aided rehabilitation might play an essential role
in treating MSDs to allow patients to recover their motor
performance. However, the adoption of robot-aided ortho-
pedic rehabilitation is limited to very few studies [5], [6].
Patients affected by MSDs are expected to restore their motor
functional Ranges of Motion (RoM), improve their muscular
strength, and reduce pain [7], [8]. More in general, a robotic
platform for robot-assisted orthopedic rehabilitation should
be able to guide the patients’ limbs in performing tasks
with a customized level of assistance and modify trajectories
according to the patients’ RoM recovery. Furthermore, in reha-
bilitation treatments for orthopedic patients, the affected limbs
or joints should not be overloaded by repetitive movements,
as is the case in neurorehabilitation, to avoid fatigue and/or
the occurrence of pain.

Robot control law should allow the patients to freely move
in space and in time (spatial and temporal autonomy, namely)
to accomplish the proposed tasks. Furthermore, the controller
parameters should be adapted according to the patients’
kinematics performance, to provide more and more specific
robot interventions, and to their psychophysiological state,
to maximize their active involvement in the rehabilitation and
enhance their experience in interacting with the rehabilitation
robot [9]. Several control strategies have been proposed to
exert the minimum assistance to increase patients’ spatial
autonomy [10]. Force or velocity fields can be defined in the
rehabilitation workspace to provide assistance according to the
patients’ limb position. A fault-tolerant region along with a
constantly sliding wall is introduced in [11]. The resulting
assistance moves the patients forward along the desired path
with a constant speed without allowing the patients, enrolled to
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validate the system (an elderly female), to decide self-peaced
motion velocity.

In order to increase patients’ temporal autonomy, velocity
field approaches have been designed in the literature. The
reference velocity profile is computed according to patients’
limb position instead of defining a time law [12]. On the
other hand, velocity field controllers do not allow the user to
move arbitrarily fast along the desired path and the assistance
level provided cannot be adjusted according to patients’ motor
performance.

As outlined in the literature, tailoring the robotic treat-
ment with patients parameters (kinematic, muscular and force)
improves motor recovery [13], [14], [15].

Indeed, the so-called biocooperative systems aim at closing
the control loop on patients [16]. Kinematics performance can
be directly used to tune the control parameters according to the
user needs [17]. Similarly, patients physiological parameters
can serve as input to adapt the robot control in gait [18], [19]
as well as in upper limb robot-aided rehabilitation [20].

Apart from the raw physiological measurement, the psy-
chophysiological state of the patients may play an essential
role in adapting the robot’s behavior to improve the patients’
experience during the interaction with the robot [21]. Most
of the literature research models the psychophysiological state
according to Russell representation [22]. Each state can be
represented by two dimensions: Arousal and Valence. The
former indicates the user’s involvement in executing a certain
activity or in general after the administration of a stimulus.
The latter defines whether the elicited state assumes a positive
or negative meaning. Some studies demonstrated that the
human-robot interaction influences the users’ psychophysio-
logical state [23]. Similarly, the estimation of the patients’ state
can be used to trigger audiovisual stimuli of the rehabilitation
platform provided by means of virtual reality environments
[24], [25], [26]. Anyhow, robot-aided rehabilitation platforms
can be exploited to provide many different kinds of feedback
and modulate human-robot interaction.

Nevertheless, a comparative analysis between patient-
tailored rehabilitation and conventional robot-aided rehabilita-
tion has not been performed. In particular, no study has inves-
tigated the possibility of improving human-robot interaction
during robot-assisted rehabilitation sessions by exploiting the
estimation of the patients’ psychophysiological state. Indeed,
we want to demonstrate that adapting the control parameters
in a patient-tailored manner has an effect on the patients’ robot
perception and on its motor recovery.

For this reason, the objective of this paper is to propose
and validate a psychophysiological-aware control strategy for
robot-aided orthopedic rehabilitation to tailor the treatment
according to patients’ motor performance and psychophysio-
logical state. It is worth investigating whether a more personal-
ized approach is capable of increasing the robot’s adaptability
to a specific patient as well as patients’ active participation
in treatment while also optimizing the clinical outcomes. To
this purpose, the proposed approach is implemented onto
an end-effector robot in a clinical protocol composed of
twenty sessions and delivered to eight patients suffering from
outcomes of orthopedic surgery. The effectiveness of the pro-
posed controller is quantified in terms of psychophysiological

modifications induced during the patient-robot interaction and
motor recovery over time.

The paper is structured as follows: Section II details the
proposed robotic architecture and its experimental validation
in the clinical scenario. Section III outlines and discusses the
emerging results and Section IV draws the conclusion and
delineates future work.

II. MATERIALS AND METHODS

An overview of the proposed robotic architecture is
presented in Fig. 1. As evidenced, to implement the
psychophysiological-aware control strategy, the trajectory
planner module generates a path P in Cartesian space and
a current desired position pW(t), called desired back-wall
position in the following. The Assist-as-needed (AAN) con-
troller implements an inverse dynamic control law to infer
the robot joints control torques τc from the computation of
the total assistive acceleration by summing two terms, namely
the tunnel and back-wall contributions. The former aims at
maintaining the robot’s end-effector, and therefore the patients’
limb, within a space region defined as a tunnel. The latter
provides assistance to the patients to direct them toward task
completion. In particular, a back-wall advances from the initial
position pi and pushes the patients forward. The main core
of the proposed approach lies in tailoring the interaction to
the kinematic performance and psychophysiological state of
the patients. In fact, the stiffness of the robotic system is
adapted according to kinematic measurements, collected in
specific evaluation sessions, and daily based on the patients’
state estimated from multimodal physiological monitoring.
In the following, all the functional blocks are explained in
detail.

A. Trajectory Planner
The trajectory planner computes the path that the patients

have to follow P and the desired back-wall position pW(t),
per each time instant t . It takes as input the initial position
pi, the final target position pf, the pause time TP , i.e. a time
to let the patients autonomously initiate the exercise without
generating any robot intervention, and the time to accomplish
the task TF . To enable patients to independently initiate
the movement, the position of the back wall, denoted as
pW(t), remains constant at pi for a duration of TP seconds.
Otherwise, if the patient is taking more than TP seconds to
start moving, the back-wall moves forward the user limb in
accomplishing the assigned task in TF seconds. In this way,
the trajectory planner generates a time law describing the
position of an advancing wall pW(t), orthogonal to the desired
path, used by the controller to provide assistance to move
the patient’s limb toward the target only if he/she takes more
than the defined time to complete the task. The path that the
patients have to follow with the assistance of the robot in
the specific motor task can vary, ranging from simple point-
to-point straight movements up to complex trajectories that
replicate activities of daily life, such as work-related gestures
[27]. In the treatment of orthopedic patients, robotic rehabili-
tation allows patients to be trained to gradually reach farther
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Fig. 1. Block scheme of the presented psychophysiological-aware Control architecture for orthopedic robot-aided rehabilitation.

points in three-dimensional space. Consequently, the trajectory
planner implemented in this work returns straight segments in
Cartesian space managing different initial and final positions,
pi and pf, respectively. A graphical representation of the back-
wall position, planned by the trajectory planner, is depicted in
Fig. 2B.

B. Patient-Tailored Control
The proposed approach is grounded on an inverse dynamics

control law. Its stiffness parameters are tuned according to the
patients kinematics and psychophysiological state. The control
law is defined as

τc = B(q)y + C(q, q̇)q̇ + Fvq̇ + Fssign(q̇) + g(q) (1)

where B(q) is the robot inertia matrix, C(q, q̇) accounts for
centrifugal and Coriolis effects, Fv is the viscous friction
torque, Fssign(q̇) is the static friction torque, g(q) is the grav-
ity contribution, q, q̇ and q̈ are the robot joint position, velocity
and acceleration, respectively, τc is the joint torques and y
represents joint space accelerations containing the stabilising
actions [28]. In particular, y is modelled as

y = J†(q)(aT + aW )

aT = Ad−1
t KT Adt x̃T

aW = Ad−1
t KW Adt x̃W

(2)

where J†
= JT (

J · JT )−1 is the right pseudo-inverse matrix
of the robot geometric Jacobian, x̃T = [p̃T ; ϕ̃T ] and x̃W =

[p̃W ; ϕ̃W ] are the pose errors of the actual end-effector pose
xa = [pa, ϕa] with respect to the tunnel and back-wall pose,
respectively, expressed in the robot base fixed reference frame
[XB, YB, ZB]. In particular, the tunnel pose xT is the nearest
on the planned path P with respect to the end-effector actual
one. The back-wall pose xW coincides with the output of the

Fig. 2. Control contributions generated by the proposed controller,
i.e. A) tunnel and B) back wall.

trajectory planner (see Section II-A). It is worth observing
that Eq. (2) does not take into account the desired end-effector
velocity and acceleration (ẋd and ẍd ) since the controller aims
at generating a force field without an explicit time law.

The pose errors x̃T and x̃W , expressed in the base reference
frame, are transformed into a moving frame [XT , YT , ZT ] by
means of the adjoint matrix (see Eq. (2)). The vector tangential
to the planned path P , centered in pT , is used to compute the
XT axis of the moving frame. YT and ZT axes are chosen
arbitrarily to be orthogonal to XT . Ultimately, Adt is expressed
as

Adt =

[
RB

T p̂T RB
T

O(3×3) RB
T

]T

(3)

where RB
T is the rotation matrix that expresses the orientation

of the moving frame [XT , YT , ZT ] with respect to the base
frame and p̂T is the skew-symmetric matrix of the tunnel
position pT . The controller generates two assistive contribu-
tions: the tunnel and the back wall. A graphical representation
of the control contributions generated by the controller is
provided in Fig. 2. The aT control action, reported in 2A,
maintains the robot end-effector near the planned path P .
The back-wall contribution aW , shown in Fig. 2B, moves
forward the patients in accomplishing the assigned trajectory
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in TF seconds. The stiffness matrices KT and KW encode
the robot behavior in generating the tunnel and back-wall
assistive contributions, respectively. Both matrices are (6 × 6)

positive-defined diagonal as KT = diag{0, kr , kr , kφ, kφ, kφ}

and KW = diag{k̂w, 0, 0, 0, 0, 0} where kr manages the
radial stiffness around the tunnel, kφ is the orientation control
gain and k̂w is the back-wall stiffness along the XT axis.
In particular, k̂w assumes different values as

k̂w =

{
kw, ⟨ ˜pW , XT⟩ ≥ 0
0, ⟨ ˜pW , XT⟩ < 0

(4)

where the ⟨·, ·⟩ operator represents the dot products between
two vectors, which means that the aW accelerations are
supplied whenever the current end-effector position is behind
the back-wall one.

The robotic architecture proposed in this paper takes into
account the kinematic performance of the patients as well as
their psychophysiological state. In particular, the radial stiff-
ness kr implemented onto the rehabilitation robot is computed
as

kr = kK · δP HY (5)

where kK is the stiffness retrieved from the kinematics assess-
ment and δP HY represents the daily adaptation of the robot
stiffness according to the psychophysiological state of the
patients (see Section II-C.2). The motor performance mostly
drives the definition of the current robot stiffness while the
psychophysiological component acts as a multiplicative factor
to adjust the radial stiffness. It is worth observing that the back
wall impacts mainly on the task speed, requiring the patients a
physical workload. On the other hand, radial stiffness affects
task accuracy, involving significant cognitive workload. The
user’s psycho-physiological state slightly varies with task
speed and physical load, but it is significantly impacted by
the patients’ cognitive load.

C. Radial Stiffness Modulation
1) Modulation Based on Kinematic Performance: In order

to tune the level of assistance tailored to patients’ specific
needs, the robot stiffness is modulated on the basis of patients
performance [17]. More in detail, the motor performance
of the patients is evaluated during the execution of point-
to-point movements without the robot’s assistance by using
the normalized angle between the assigned direction −→vd and
the effective task directly from the starting point up to the point
of peak speed −→vp . The aiming angle α quantifies the patients’
capability to perform a motion along the desired direction.
The higher the α, the lower the patients performance. It is
computed as

α =
1
π

∣∣∣∣arccos
(

⟨
−→vd , −→vp ⟩

∥
−→vd ∥∥

−→vp ∥

)∣∣∣∣ . (6)

A preliminary analysis showed that subjects obtaining an
aiming angle value < 0.3 were able to track the desired
trajectory requiring minimum robot intervention. On the
contrary, a higher α (≥ 0.3) needed more significant cor-
rective actions to ensure trajectory tracking. In particular, for

Fig. 3. Schematic representation of the two-step Fuzzy Logic Model
implemented to estimate the psychophysiological adaptation starting
from physiological parameters.

α < 0.1, 0.1 ≤ α < 0.3 and 0.3 ≤ α < 1, kK assumes the
discrete values {0.1, 300, 1000} N/m, respectively. The choice
of specific robot stiffness levels is crucial and is based on
standardization. It is important for the sake of comparability
and reproducibility. A predefined set of stiffness levels allows
easier comparisons of the results to evaluate the effectiveness
of the rehabilitation treatment across diverse pathological
populations [10], [29].

2) Modulation Based on Psycophysiological State Estima-
tion: The patients psychophysiological state estimation for the
stiffness adaptation is implemented by means of a two-layer
Fuzzy Logic inference system, reported in Fig. 3. The first
one aims at estimating the psychophysiological state in terms
of Arousal (A) and Valence (V) by exploiting a wearable
physiological monitoring system. The second layer takes as
input the estimated psychophysiological state and computes
the psychophysiological adaptation factor δP HY . The patients
physiological monitoring system measures the Heart Rate
(HR), the Respiratory Rate (RR) activities, and the Galvanic
Skin Response (GSR). Starting from the acquired GSR signal,
the tonic component, also called Skin Conductance Level,
is computed by applying a 4th order Butterworth low-pass
filter, with a cutoff frequency of 0.1 Hz.

Given the high intra- and inter-subject variability of physi-
ological signals, a normalization procedure was applied with
respect to a baseline value acquired from the volunteer blind-
folded and acoustically isolated. The physiological parameters
vector, defined as PHY = [H R, R R, GS R], is normalized by
removing the patients baseline physiological condition as

PHYr(t) =
PHY(t) − PHYRB

PHYRB
(7)

where t is the time stamp, PHY(t) is the physiological vector
sampled at the t-th time instant and PHYRB is the mean
physiological parameter vector computed during the resting
baseline phase. The physiological responses PHYr can be used
as input signals to a Fuzzy Logic estimation model to compute
the psychophysiological state of the patients in terms of A
and V. For each input signal of PHYr, three membership
functions are generated by using the data collected from
all the enrolled participants. In particular, the physiological
responses are equally divided into three sets defining the
linguistic variables “Low”, “Mid”, and “High”. All the mem-
bership functions are built as Gaussian functions fitting the
collected data. The A and V outputs of the Fuzzy Logic
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are represented by five equally spaced Gaussian membership
functions ranging ∈ [0, 1]. By dividing each dimension into
five Gaussians, a categorization of a wide range of human
emotional experiences is achieved. This division enables a
more precise representation of emotions compared to a simple
binary division of positive/negative V or low/high A. In
this way, it is possible to provide insight into the patients’
experience in interacting with the rehabilitation robot. The five
Gaussians account for “Low”, “MidLow”, “Mid”, “MidHigh”,
and “High” activations of A and V. Once the membership
functions are defined, conditional fuzzy rules are implemented
according to the literature [24].

The psychophysiological adaptation factor δP HY is com-
puted by the second Fuzzy Logic layer. It aims at continu-
ously mapping the estimated psychophysiological state of the
patients in the output variable δP HY ∈ [0, 2], covered by
three Gaussian membership functions. The input space, i.e.
the psychophysiological state expressed in terms of A and V,
is then represented in the form of “Low1” or “High” activation
by means of two Gaussian functions, see the Psychophysiolog-
ical Adaptation box in Fig. 3. The rules proposed to map the
patients’ A and V activations into δP HY rely on assumptions
that aim at modifying the patients’ state during the interaction
with the robotic device. The assumptions underlying the use
of softer or more rigid robot interactions are based on the
idea that different emotional states require different types of
interaction to optimize the patients’ experience and outcomes
[30], [31], [32]. Specifically, the rules implemented in the
inference system are defined as follows:

• High A & High V: high involvement with a positive
meaning is experimented by the patients. He/she is
excited and curious about the interaction with the robot.
The robot stiffness only considers the patients motor
performance δP HY → 1.

• Low A & High V: lower Arousal values are associated
with a more calm user state. This relaxed condition of
the user is not reflected in any modification of the robot
behavior δP HY → 1.

• Low A & Low V: at the beginning of the robot-aided
rehabilitation session, the patients may experience feel-
ings of boredom, frustration, and/or absent-mindedness
that may preclude the completion of therapy. However,
it’s important to remember that completing the full reha-
bilitation session is crucial for the patients’ progress and
recovery. The rehabilitation robot can intervene more
to guarantee the trajectory tracking and stimulate the
patients to focus on the task δP HY → 2.

• High A & Low V: when the patients status is estimated
stressed or agitated at the beginning of the session, it is
important to adapt the interaction that occurs during the
session. A softer and more gentle interaction may help the
patients to feel more comfortable and secure. In order to
implement such behavior the psychophysiological adap-
tation factor is δP HY → 0.

Both the Fuzzy Logic models are defined in the MATLAB
R2020b exploiting the Fuzzy Logic Toolbox. The Mamdani
method is selected to implement the Fuzzy Logic model and
the logical AND and OR operators are replaced with min(·)

Fig. 4. Experimental setup used to test the proposed approach.

and max(·) respectively. The implication and aggregation
methods are min(·) and max(·) respectively. The implemented
defuzzification process is the area centroid or center of
gravity [24].

D. Experimental Setup
To validate the proposed pshycophysiological-aware control

strategy for robot-aided rehabilitation, the experimental valida-
tion is composed of: I) the KUKA LightWeight Robot 4+; II)
a purposely designed ergonomic flange to house the patients
wrist mounted on the robot end-effector; III) a virtual reality
game showing the trajectory to be performed and the actual
position; IV) a wearable physiological monitoring system. The
robot is controlled through Robot Operating System (ROS)
Kinetic middleware on Ubuntu 16.04 LTS. The physiological
monitoring system measures the heart and respiration activities
and the GSR of the patients. Both the electrical and respiratory
activities of the enrolled participants are monitored by using
the BioHarness 3.0 chest belt, developed by ZephyrTM Tech-
nology. Such a wearable device fuses capacitive and stretch
sensors: the former assesses the heart electrical activity, the
latter measures the deformations of the rib cage induced by
respiration. In order to better measure the electrical changes
due to the heart beats, the BioHarness sensor is worn against
the skin, at the height of the sternum. The GSR is measured
by using two electrodes of the Shimmer 3 GSR+ Unit placed
on the index and middle fingers of the non-dominant hand.
The physiological data are acquired synchronously under Yet
Another Robot Platform (YARP) [33] at 40 Hz.

E. Experimental Protocol
The proposed control strategy was validated in a real clin-

ical setting providing robot-aided rehabilitation on orthopedic
patients. Eight patients who suffered from MSDs were enrolled
in this study whose characteristics are briefly reported in
Table I. In particular, all the enrolled volunteers underwent
orthopedic surgical procedures (6 sutures of the rotator cuff
and 2 open humerus fractures).

The main objectives of the experimental validation are to
assess the robotic platform capabilities in i) adapting the
rehabilitation workspace to follow patients’ motor recovery in
terms of RoM, ii) providing assistance to guide the patients’
arm in executing the assigned task by ensuring both spatial and
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Fig. 5. Experimental protocol to test the psychophysiological-aware
control strategy on orthopedic patients.

temporal autonomy and iii) improving the patients’ experience
in interacting with the rehabilitation robot by taking into
account his/her psychophysiological state. In particular, to test
this aspect, the enrolled participants were divided into two
groups (see Table I): the first one (G1) was provided with
the robot-aided treatment with kr = kK , i. e. δP HY = 1, the
second one (G2) interacted with the robot adjusted with the
psychophysiological factor δP HY ∈ [0, 2].

The experimental protocol is composed of twenty daily
robot-aided rehabilitation sessions spread over one month,
as reported in Fig. 5. During each session, the patients are
asked to perform nine cycles of nine 3D point-to-point tra-
jectories, from a starting position toward nine different targets
spread on three different heights [34].

In order to assess the motor performance of the patients,
two Kinematics Evaluation sessions are carried out, i.e. at the
admission TA and at the discharge TD of each patient. In these
sessions, a rest position and nine reachable targets are recorded
per patient to obtain a workspace adaptable according to the
user RoM. In addition, the participant is asked to complete
one cycle of nine point-to-point movements without the robot
assistance in order to compute the kinematics performance,
in terms of α (see Section II-C.1), and accordingly, tune the
stiffness kK to be provided during the treatment.

Moreover, in ten sessions, i.e. the ones colored in blue
in Fig. 5, the patient is equipped with the physiological
monitoring system, and his/her psychophysiological state is
assessed. The participants belonging to group G2 received
the treatment with the robot stiffness accordingly adapted.
At the beginning of these experimental rehabilitation sessions,
a 5 min Resting Baseline is recorded: the patients are asked
to sit comfortably, blindfolded, and acoustically isolated to
ease their rest condition. The mean values of the physiological
parameters collected during the baseline (i.e. PRB) are used
in Eq. (7) to compute the physiological responses Pr . At the
end of the Resting Baseline recording, a further registration
lasting 5 minutes takes place. In this acquisition, the patients’
psychophysiological state, in terms of initial A and V, namely
A0 and V0, is computed and the δP HY coefficient is deter-
mined by following the procedure described in Section II-C.2.
At the end of the rehabilitation session, the patients’ final
psychophysiological state is computed, A f and V f , from a
5 minutes physiological data recording.

During all the rehabilitation sessions, the control parameters
are set as follows: kw = 1000 N/m, TP = 2.5 s and
TF = 10.0 s.

The study was conducted under Ethical Committee approval
(Ethical Approval N. 03/19 PAR ComEt CBM) and in

TABLE I
CHARACTERISTICS OF THE ENROLLED PATIENTS

accordance with the Declaration of Helsinki. All patients have
been adequately informed about the purpose of the study and
gave their written informed consent.

F. Performance Indicators
In order to assess the robotic system capabilities in assisting

the patients and letting they free to move with a certain
degree of both spatial and temporal autonomy, some per-
formance indicators are computed during the rehabilitation
session subsequent to each Evaluation sessions (in order to
record information with the kK updated).

1) Position Error (P E): the mean value of the norm along
with the standard deviation of the errors computed in
all the time stamp t of a performed movement, namely
∥ p̃(t)∥ = ∥pT (t) − pa(t)∥, represents the P E . It is
the controller error in tracking the planned path and
quantitatively measures the patients spatial autonomy.

2) Rehabilitation Workspace Volume (RW V ): the volume
of the convex hull (expressed in m3) of the patients’
reachable workspace is computed. Given all the Carte-
sian positions recorded by the patients during the
evaluation session, the volume of the three-dimensional
convex hull can be computed by means of the quick hull
algorithm presented in [35]. This performance indicator
aims at demonstrating that the robot is capable of
managing various volumes according to the patients’
RoM.

3) Task Completion Time (T CT ): the mean time, and the
standard deviation, required for the patients to perform
the assigned task are computed. In particular, the T CT
allows verifying that the patients benefit from a certain
degree of temporal autonomy.

4) Motion Speed (M S): another performance indicator used
to assess the user’s temporal autonomy is the M S. It
is computed as the mean value and standard deviation
of the patients’ motion velocity during a rehabilitation
session.

5) Total Interaction Force (T I F): it is the mean value,
along with the standard deviation, of the norm of the
total interaction force that the robot exchanges with
the environment, i. e. the patients, per each performed
movement.

The sessions subsequent to each Kinematics Evaluation ses-
sions are selected to compute the aforementioned performance
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indicators. In these sessions, the robot stiffness is kr = kK (i.e.
δP HY = 1) for all the enrolled patients.

Furthermore, the psychophysiological state modification is
computed in the ten experimental treatments. It is computed
in terms of 1A =

(
A f − A0

)
and 1V =

(
V f − V0

)
.

The psychophysiological-aware controller implemented aims
at increasing the valence of the interaction (1V > 0).

Lastly, in order to quantify the efficacy of the robot-
aided treatment, the aforementioned aiming-angle α and the
Constant-Murley Score (CMS) were used [36]. The former is a
kinematic performance indicator objectively measured by the
robotic system, the latter is a clinical score ranging from 0 to
100 assessing the shoulder quality of the motor functions.

G. Statistical Analysis
In order to evaluate the impact of the psychophysiological-

aware control strategy with respect to the conventional robotic
treatment, i.e. computed on the two experimental patient
groups G1 and G2, a statistical analysis has been carried out
on the aforementioned performance indicators. The Wilcoxon
rank-sum test is performed on the computed metrics. This test
assesses whether a significant difference exists between the
investigated conditions. In particular, the significance level
was set for p-value ≤ 0.05. Moreover, for each group of
participants, the performance at admission and discharge was
compared using the same statistical analysis. In order to assess
the psychophysiological state modification over the treatment,
1A and 1V were averaged across the ten experimental
sessions per patient.

III. RESULTS AND DISCUSSIONS

Fig. 6 shows insight into the desired trajectories and the per-
formed ones executed by a healthy participant (HP) obtained
at kr = {1000, 300} N/m and a representative patient (P5)
during two rehabilitation sessions, i. e. the admission (TA)
and the discharge (TD). It is evident how the proposed control
strategy allows healthy and orthopedic participants to track a
Cartesian reference trajectory. As the radial stiffness of the
implemented control decreases, it is observed that the subject
can deviate from the assigned trajectory with greater freedom.
Analysing the reported patients behaviour in more detail, at the
beginning of the treatment, the kinematics performance of the
patients is reduced (α = 0.49 ± 0.19), so the kinematics
stiffness is accordingly set at its maximum value (kK =

1000 N/m). As evident, the point-to-point movements, reported
in Fig. 6A, are performed with high accuracy. In other words,
the patients’ limb is accurately kept near the desired path
so he/she experimented a little degree of spatial autonomy.
At the end of the rehabilitation protocol, the patients’ motor
performance improves (α = 0.26 ± 0.08) so the controller
parameters are accordingly tuned. The kinematics stiffness is
set at kK = 300 N/m letting the patients free to move with a
higher degree of spatial autonomy. As emerges from Fig. 6B,
the robot controller admits the patient making higher position
errors during the execution of the assigned tasks. Moreover,
it is worth observing that at the end of the treatment, the RWV
is greater. The patient recovers its RoM so she can reach a
wider space region.

Fig. 6. Trajectories executed by a healthy participant (HP) at different
radial stiffnesses kr are reported in the first row. The second row reports
the trajectories of P5 at the admission and discharge (TA and TD),
respectively. The desired and actual trajectories are colored in red and
blue in all the plots.

Fig. 7. Performance indicators computed for the enrolled patients.
Results are stratified for the two groups of patients and stiffnesses kr.

Table II reports the performance indicators introduced in
Section II-F, averaged over the two groups of participants.

Since the robot stiffness plays an essential role in determin-
ing the performance indicators, the results were also stratified
on the basis of radial stiffness kr . Fig. 7 presents the results
aggregated by group and robot stiffness kr . In particular, the
first row reports the number of patients Np per each group.
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TABLE II
AGGREGATED PERFORMANCE INDICATORS COMPUTED FOR THE TWO PATIENTS GROUPS

The higher the radial stiffness kr implemented in the con-
troller, the lower the P E . That means the patients experiment
with higher degrees of spatial autonomy when the radial
stiffness decreases. The patients are more and more able to
freely move in a space region around the planned path P as
his/her kinematics performance improves.

Another essential feature of the implemented system is its
capability to adapt the rehabilitation workspace according to
the reachable volume of the specific patient, i. e. according
to his/her RoM. The RW V performance indicator highlights
that the volume spanned by the robot in different rehabilitation
sessions varies per each specific user and session. Furthermore,
it is worth observing that the RW V mostly increments for
the enrolled participant over time: the patients are capable of
spanning a wider space region at the discharge. In particular,
the computed values are RW V = 0.002 ± 0.001 m3 and
RW V = 0.005 ± 0.003 m3 at TA and TD , respectively. The
aggregated results presented in Table II highlighs that the G1
patients were able to cover a significantly larger volume at
TA with respect to G2 participants (pvalue = 0.04). At the
discharge, such differences were no longer significant.

The temporal autonomy of the patients in executing the
proposed motor tasks is objectively quantified by means of
T CT and M S indicators. All the enrolled participants take
less time than the implemented maximum time TF = 10.0 s
and in general, they anticipate the implemented back-wall
(that starts after TP = 2.5 s) so that the assistive back-wall
contributions are exerted by the controller only when the
patients are slacking or moving too slow. As evident from
Fig. 7, all the participants in all the analyzed sessions can
move at their own motion speed to accomplish the task, mean-
ing they all benefit from high temporal autonomy. Such an
aspect overcomes the drawbacks of the previously mentioned
approaches based on velocity fields [12]. Moreover, it can
be noticed from Table II that G2 patients could move faster,
i.e. with a greater M S and a lower T C , in both TA and
TD sessions. However, these differences were not statistically
significant (T C in TD computed between G1 and G2 returned
pvalue = 0.07).

The T I F is computed to quantify the interaction forces
exerted by the robot during the rehabilitation treatments. It
is worth observing that the mean force does not significantly
change between the two analyzed sessions per patient. What
can be emphasized from Table II is that patients in the
G2 group require fewer assistive interventions compared to
patients in the G1 group.

Fig. 8. Psychophysiological state modification computed for the
enrolled participants averaged over the ten experimental sessions. In
particular, the G2 patients undergo rehabilitation treatments with a stiff-
ness adapted according to the estimated psychophysiological condition.
The black stars represent statistically significant differences between the
two groups.

Fig 8 reports the psychophysiological state modification
computed for the enrolled participants averaged across the
ten experimental sessions. In particular, the results are divided
into the two subgroups of participants (G1 and G2). It is worth
observing that both groups exhibit similar psychophysiological
behaviours: A decreases and V increases after the robot-aided
rehabilitation session. On the other hand, it is evident that the
G2 patients, the ones receiving the δP HY stiffness adaptation,
have a higher psychophysiological state modification. In par-
ticular, 1A are −0.01 ± 0.02 and −0.08 ± 0.07 (Wilcokson
rank sum test returned a pvalue = 0.04) and 1V are 0.05 ±

0.05 and 0.22 ± 0.16 (pvalue = 0.03) for groups G1 and G2,
respectively. These results evidence that taking into account
the psychophysiological state of the patients in the robot
control parameters has an impact on the patients themself. The
considerations drawn to design the δP HY coefficient can adjust
the robot stiffness to drive the patients in a calm condition.

Fig. 9 shows the clinical outcomes of the enrolled patients
in terms of α and CMS. The aiming angles reported in the
figure are those obtained by the patients performing nine
point-to-point movements in their reachable workspace with
the robot set in transparent mode, i.e. kw and kr set at 0.
As evident, both groups improved significantly their accuracy
in performing a straight movement after twenty sessions
of upper limb robot-aided rehabilitation. In particular, the
rank-sum test returned p-values of 0.008 and < 0.001 for
G1 and G2, respectively. Moreover, it is worth observing that
participants of G2 obtained a significantly better kinematic
performance with respect to G1 at the discharge (p-value=
0.008). These results mean that the patients who interacted
with the psychophysiological-aware controller exhibited a
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Fig. 9. Clinical outcomes of the enrolled patients. The α is assessed
by means of the robot and the CMS is a clinical score administered
by a physiotherapist. The black stars represent statistically significant
differences between the two groups.

greater kinematic improvement over time. From a clinical
point of view, the shoulder function, assessed with the CMS,
improved for both groups of enrolled patients. In particu-
lar, the p-values computed for G1 and G2 when comparing
TA and TD are 0.2 and 0.08, respectively. Moreover, it is
evident that the patients of the G2 group reported greater
functionality of the shoulder compared to the G1 group. Never-
theless, the differences highlighted among the groups and the
evaluation session resulted to be not statistically significant
(p-value= 0.68).

To summarize, the psychophysiological-aware control strat-
egy has been shown to be effective in delivering a specific
treatment tailored to a single patient. The controller itself
proved to be capable of delivering assistive contributions to let
the patients interact with the robot to accomplish motor tasks at
their specific speed. Moreover, the assistance tuned according
to the user’s kinematic and psychophysiological status allows
engaging the participants of the experimental group (G2) in all
the rehabilitation sessions. Indeed, their psychophysiological
status moved to calmer and more relaxed states from the
beginning of the therapy with respect to the one those who
interacted with the robot characterized by the same stiffness
value in all the sessions. The psychophysiological assessment
also makes it possible to assess when to stop treatment in a
given session. As stressed above, orthopedic patients do not
need intensive treatment like neurological ones but need to
train the affected joints in progressive elongation and recovery
of muscle strength without generating excessive fatigue and/or
frustration.

The proposed patient tailoring approach had an impact
also on the motor performance of the participants. The G2
better improved their kinematic performance, quantified in
terms of α. Anyhow, the clinical outcome, assessed with
the CMS, revealed that all the enrolled patients exhibited an
improvement in their shoulder quality of motor function even
if these modifications are not statistically significant.

Although the results shown in this work are of great
impact in terms of pushing research in the direction of
precision medicine, the obtained experimental results should
be considered preliminary due to the small sample size and
heterogeneity of the enrolled population. It is shown that the
tailoring of the robotic rehabilitation treatment has an evident
effect on the motor performance of the patients, but further
analysis to clinically validate the system with respect to a
control group is needed.

IV. CONCLUSION

This paper proposed a psychophysiological-aware control
strategy for upper-limb orthopedic rehabilitation. The main
features of the implemented robotic systems are the capability
of generating point-to-point trajectories inside an adaptable
rehabilitation workspace, providing assistance as needed to
allow the patients to experiment with certain degrees of
spatial and temporal autonomy, and tuning the assistance
level according to patients’ kinematics performance as well
as his/her psychophysiological state. In particular, the control
law takes into account the psychophysiological state of the
patients in order to provide a highly tailored treatment having
an impact on their human-robot interaction experience. The
implemented robotic platform is validated in a real clinical set-
ting by enrolling eight orthopedic patients who undergo twenty
robot-aided rehabilitation sessions. The claimed capabilities of
the control strategy are quantified in this experimental setting.
The main findings of the present study are that patients who
interacted with the robot tailored to their psycho-physiological
state lead patients into calmer and more relaxed states than
when they are starting the rehabilitation session. Moreover, the
effects of robotic treatment are reflected in the results obtained
by calculating specific performance indicators of motor recov-
ery. Patients become able to perform straight movements
accurately after twenty sessions of robotic rehabilitation.

The proposed psychophysiological-aware control strategy
for upper-limb orthopedic rehabilitation is a step forward
in robot-aided rehabilitation as it proved that tailoring the
treatment according to the specific patient needs improves
the outcome of the rehabilitation process. Future work will
be devoted to clinically validating the proposed approach by
comparing the clinical outcomes with respect to a control
group performing conventional therapy.
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