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Abstract— Machine learning on electromyography (EMG)
has recently achieved remarkable success on various
tasks, while such success relies heavily on the assump-
tion that the training and future data must be of the
same data distribution. However, this assumption may not
hold in many real-world applications. Model calibration
is required via data re-collection and label annotation,
which is generally very expensive and time-consuming.
To address this issue, transfer learning (TL), which aims to
improve target learners’ performance by transferring knowl-
edge from related source domains, is emerging as a new
paradigm to reduce the amount of calibration effort. This
survey assesses the eligibility of more than fifty published
peer-reviewed representative transfer learning approaches
for EMG applications. Unlike previous surveys on purely
transfer learning or EMG-based machine learning, this
survey aims to provide insight into the biological founda-
tions of existing transfer learning methods on EMG-related
analysis. Specifically, we first introduce the muscles’ phys-
iological structure, the EMG generating mechanism, and
the recording of EMG to provide biological insights behind
existing transfer learning approaches. Further, we catego-
rize existing research endeavors into data based, model
based, training scheme based, and adversarial based. This
survey systematically summarizes and categorizes exist-
ing transfer learning approaches for EMG related machine
learning applications. In addition, we discuss possible
drawbacks of existing works and point out the future direc-
tion of better EMG transfer learning algorithms to enhance
practicality for real-world applications.

Index Terms— Transfer learning, electromyography
(EMG), machine learning, meta learning, domain-
adversarial neural networks (DANN), random forest,
model ensemble, fine-tuning, gesture recognition, force
regression.
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I. INTRODUCTION

THE human motor control system is a complex neural
system crucial for daily human activities. One way to

study the human motor control system is to record the signal
due to muscle fiber contractions associated with human motor
activities by means of either inserting needle electrodes into
the muscles or attaching electrodes onto the surface of the
skin. The signal obtained is referred to as electromyography
(EMG). Given the location of the electrodes, EMG is further
divided into surface EMG (sEMG) and intramuscular EMG
(iEMG). Advancement in the analysis of EMG and machine
learning has recently achieved remarkable success enabling
a wide variety of applications, including but not limited to
rehabilitation with prostheses [1], hand gesture recognition [2]
and human-machine interfaces (HMIs) [3].

The current success of applying deep learning onto EMG
related tasks is largely confined to the following two assump-
tions, which are usually infeasible when it comes to real-world
EMG related scenarios:

1) Sufficient amount of annotated training data. The
growing capability and capacity of deep neural networks
(DNN) architectures are associated with large amounts
of labeled data [4], [5]. Such high quality abundant,
labeled data are often limited, expensive, and inaccessible
in the domain of EMG analysis. On the one hand, the
EMG data acquisition process is a highly physical and
time-consuming task that requires several days of collabo-
ration from multiple parties [6]. On the other hand, EMG
data annotation associated with biomedical applications
such as the diagnosis of neuromuscular disorders requires
expert knowledge [7].

2) Training data and testing data are independent and
identically distributed (i.i.d). The performance of the
model is largely affected by the distribution gap between
the training and testing datasets. The testing data might
also refer to the data generated during actual application
usage after model deployment. Take hand gesture recog-
nition, for example. The model is only capable of giving
accurate predictions with the exact same positioning of
the forearm of the test subject and the exact placement
of the electrodes [8], [9].

As the distribution of data changes, models based on statis-
tics need to be reconstructed with newly collected training
data. In many real-world applications, it is expensive and
impractical to recollect a large amount of training data and
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rebuild the models each time a distribution change is observed.
Transfer learning (TL), which emphasizes the transfer of
knowledge across domains, emerges as a promising machine
learning solution for solving the above problems. The notion of
transfer learning is not new, Woodworth and Thorndike [10]
suggested that the improvement over one task is beneficial to
the efficiency of learning other tasks given the similarity exists
between these two tasks. In practice, a person knowing how to
ride a bicycle can learn to ride a motorcycle faster than others
since both tasks require balance keeping. However, transfer
learning for EMG related tasks has only been gaining attention
with the recent development of both DNN and HMIs. Existing
surveys provide an overview of DNN for EMG-based human
machine interfaces [11], and transfer learning in general for
various machine learning tasks [12]. This survey focuses on
the intersection of machine learning for EMG and transfer
learning via EMG biological foundations, providing insights
into a novel and growing area of research. Besides the analysis
of recent deep learning works, we make an attempt to explain
the relationships and differences between non-deep learning
and the deep models, for these works usually share similar
intuitions and observations. Some of the previous non-deep
learning works contain more biological significance that can
inspire further DNN-based research in this field. To consoli-
date these recent advances, we propose a new taxonomy for
transfer learning on EMG tasks, and also provide a collection
of predominant benchmark datasets following our taxonomy.

The main contributions of this paper are:
• Over fifty representative up-to-date transfer learning

approaches on EMG analysis are summarized with
organized categorization, presenting a comprehensive
overview to the readers.

• Delve deep into the generating mechanisms of EMG
and bridge transfer learning practices with the underlying
biological foundation.

• Point out the technical limitations of current research and
discuss promising directions on transfer learning on EMG
analysis to propose further studies.

The remainder of this paper is organized as follows.
We introduce in section II the basics of transfer learning,
generation, and acquisition of EMG and EMG transfer learning
scenarios. In Section III, we first provide the categorization of
EMG transfer learning based on existing works and then intro-
duce in detail. We also give a summary of the commonly used
datasets in Section IV. Lastly, we discuss existing methods and
the future research direction of EMG transfer learning.

II. PRELIMINARIES

We introduce in this section the definitions of transfer
learning, and related concepts and then summarize possible
transfer scenarios. Moreover, we introduce the basics of EMG
and highlight the correspondence between transfer scenarios
and EMG generation and recording mechanisms.

A. Transfer Learning
We first give the definitions of a “domain” and a “task”,

respectively. Define D to be a domain that consists of a feature

space X and a marginal probability distribution P(X), where
X is a set of data samples X = [xi ]

n
i=1. In particular, if two

domains have different feature spaces or marginal probability
distributions, they differ from each other. Given a domain D =
{X , P(X)}, a task is then represented by T = {Y, f (·)} where
f (·) denotes the objective prediction function and Y is the
label space associated with X . From the probability point of
view, f (x) can also be regarded as conditional probability
distribution P(y|x). Two tasks are considered different if they
have different label spaces of different conditional probability
distributions. Then, transfer learning can be formally defined
as follows:

Definition 1 (Transfer Learning): Given a source learning
task TS based on a source domain DS , transfer learning aims
to help improve the learning of the target objective prediction
function fT (x) of the target task TS based on the target domain
DT , given that DT ̸= DS or TS ̸= TT .

The above definition could be extended to multiple domains
and tasks for both source and target. It is worth noticing that
the majority of works surveyed in this paper only consider
the case where there is one source domain DS , and one
target domain DT , as by far, this is the most intensively
studied transfer setup of the research works in the literature.
Based on different setups of the source and target domains
and tasks, transfer learning could be roughly categorized into
inductive transfer learning, transductive transfer learning and
unsupervised transfer learning [13].

Definition 2 (Inductive Transfer Learning): Given a trans-
fer learning task (DS, TS,DT , TT ). It is a inductive transfer
learning task where the knowledge of (DS and TS is used to
improve the learning of the target objective prediction function
fT (x) when TS ̸= TT . The target objective predictive function
can be induced by using a few labeled data in the target domain
as the training data.

Definition 3 (Transductive Transfer Learning): Given a
transfer learning task (DS, TS,DT , TT ). It is a transductive
transfer learning task where the knowledge of DS and TS is
used to improve the learning of the target objective prediction
function fT (x) when DS ̸= DT and TS = TT .

For transductive transfer learning, the source and target
tasks are the same, while the source and target domain vary.
Similar to the setting of transductive learning of traditional
machine learning [14], transductive transfer learning aims to
make the best use of the given unlabeled data in the target
domain to adapt the objective predictive function learned in
the source domain, minimizing the expected error on the target
domain. It is worth to notice that domain adaptation is a
special case where XS = XT , YS = YT , PS(y|X) ̸= PT (y|X)
and/or PS(X) ̸= PT (X).

Definition 4 (Unsupervised Transfer Learning): Given a
transfer learning task (DS, TS,DT , TT ). It is an unsupervised
transfer learning task where the knowledge of DS and TS is
used to improve the learning of the target objective prediction
function fT (x) with YS and YT not observed.

Based on the above definition, no data annotation is accessi-
ble in both the source and target domain during training. There
has been little research conducted on this setting to date, given
its fully unsupervised nature in both domains.
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Fig. 1. Illustration of electrode variation. The left-hand side shows an EMG acquisition armband put on the forearm of a subject. (a), (b) and
(c) are the net of the armband and the corresponding skin underneath. Colored circles represent electrodes, with two vertically placed electrodes
being one bipolar channel. (a) demonstrates the original placement of an eight-channel bi-polar EMG collecting armband on the surface of the skin.
(b) shows a shifted placement of the electrodes on the skin compared to (a). (c) is the case where electrode placement is the same as (a), but
some channels are missing due to any reason.

B. Transfer Scenarios of EMG
Based on various factors in actual usage scenarios that

cause a difference between the source and target domains, the
factors that lead to domain differences can be categorized into
intrinsic and extrinsic factors. We define the intrinsic factors
to be the factors that affect the generation of the EMG signal.
Such factors include individual variations, muscle fatigue,
contraction force variations, contraction pattern variations, etc.
However, in most data acquisition processes surveyed in this
paper, subjects are instructed to avoid factors such as muscle
fatigue by resting in between multiple data collection sets.
Consequently, we only focus on factors that cannot be avoided
via deliberately designed data acquisition protocols, such as
individual variations. Extrinsic factors refer to the factors that
affect the collection of the EMG signal, such as variation in
electrode placement, variation in collection devices, variation
in downstream task requirement, etc. We summarize the com-
mon transfer settings of the works surveyed in this paper as
follows:

1) Inter-subject. EMG signals have substantial variation
across individuals. The variation comes from a different
distribution of subcutaneous fat, muscle fiber diameter,
and way of performing force. Inter-subject transfer refers
to the scenario where data collected from one subject or
other subjects is utilized to calibrate the target objective
function on a new subject. The task and acquisition
devices are assumed to be the same across individuals.

2) Electrodes Variation. Electrode variation could be cat-
egorized into electrode placement shift and channel
variation. Channel variation refers to the situation where
some channels are missing during actual use as compared
to the number of channels while recording EMG for
model training. The placement of electrodes plays a

crucial role in EMG applications. However, electrode
shift is inevitable from wearing and taking off EMG
acquisition devices, whether in the form of armband [11]
or sockets [15]. Figure 1 provides a visualization of
electrode variation in the case of an eight-channel EMG
armband acquisition device. Consider the task of hand
gesture and source domain associated with data collected
with electrode placement shown in Figure 1(a). A transfer
learning setting is formed with the target domain consist-
ing of the same task and data collected with electrode
placement shown in Figure 1(b) or with missing channels
as in Figure 1(c).

3) Inter-session. In real-world applications, models are built
with data collected from previous sessions and applied
to new sessions. Data distribution varies across sessions
due to reasons such as a different way of performing
gestures, variation in electrode placement, or simply
muscle fatigue. Inter-session transfer refers to the scenario
where data collected from previous sessions is utilized to
calibrate the target objective function in a new session.
The task, acquisition device, and subject are assumed to
be the same across sessions.

4) Modality Variation. Modality transfer refers to the sce-
nario where data collected on one or a few modalities
is utilized to calibrate the target objective function on
another or other modalities. The task and subject are
assumed to be the same, while devices vary due to modal-
ity variation. For the same or relevant tasks, it is possible
to utilize the knowledge learned from one modality and
facilitate the performance of the objective prediction
function on another modality. For example, the transfer
learning due to modality variation could be between
neurophysiological signals (EEG and EMG) [16].
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Fig. 2. Demonstration of EMG acquisition. The sEMG acquisition configuration is shown above the dotted line, with the iEMG acquisition
configuration shown below the dotted line. The triangle represents an amplifier. For the bi-polar setup as in (a) and (c), two electrodes are placed
on the skin surface or inserted into muscle fibers penetrating the skin surface. (b) and (d) show the case of a mono-polar setup with one electrode
attached to the skin or muscle fiber and the other electrode connected to the ground or a reference point with no EMG (bones).

5) Extensive Learning. Extensive learning refers to the
transfer scenario where new input data (target domain)
extends either the data or/and the task of the source
domain. For instance, the task of the source domain is
a C class classification problem, while data collected in
the target domain is of C+K classes where K additional
classes are incrementally added. The acquisition device
and subject are assumed to be the same for both domains.

C. EMG Basics
In the previous section, we categorize the factors that cause

domain differences into intrinsic and extrinsic ones. The intrin-
sic factors are closely related to the generation mechanisms
of EMG signals, while extrinsic factors are usually associated
with the signal acquisition process. Knowing how EMG is
generated and recorded is crucial to understand the biological
foundation behind various transfer learning approaches.

a) EMG Generation Mechanism: A motor unit (MU) is
defined as one motor neuron and the muscle fibers that it
innervates. During the contraction of a normal muscle, the
muscle fibers of a motor unit are activated by its associated
motor neuron. The membrane depolarization of the muscle
fiber is accompanied by ions movement and thus generates
an electromagnetic field in the vicinity of the muscle fiber.
The detected potential or voltage within the electromagnetic
field is referred to as the fiber action potential. The amplitude
of the fiber action potential is related to the diameter of the

corresponding muscle fiber and the distance to the recording
electrode. A Motor Unit Action Potential (MUAP) is defined
as the waveform consisting of the superimposed (both tem-
porally and spatially) action potentials from each individual
muscle fiber of the motor unit. The amplitude and shape of
the MUAP are unique indicators of the properties of the MU
(functionality, fiber arrangement, fiber diameter, etc.). Individ-
uals can exhibit variations in both muscle fiber arrangement
and muscle fiber diameter. These variations contribute to the
diverse characteristics of muscles and can influence various
factors, including strength, endurance, and muscle recruitment
patterns. Consequently, these factors can lead to distinct EMG
patterns across individuals, which explains why inter-subject
scenario exists. It is important to note that muscle fatigue
can lead to distinct EMG patterns, even within the same
individual. In order to maintain stable motor movement, MUs
are repeatedly activated to sustain muscle contraction. The
repeated activation of MU generates a sequence of MUAPs
forming a Motor Unit Action Potential Train (MUAPT). The
recorded MUAPTs collected from multiple MUs are referred
to as the commonly known EMG signal.

b) EMG Signal Acquisition: Based on the number of elec-
trodes used during the recording of MUAPT, the recording
techniques could be divided into mono-polar and bi-polar
configurations. As shown in Figure 2, based on whether the
electrodes are inserted directly into the muscles or placed
on the surface of the skin, the collected signal is referred
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Fig. 3. Overview of categorization of transfer learning on EMG analysis.

to as intramuscular EMG (iEMG) or surface EMG (sEMG),
respectively. A thin and sharp needle shaped electrode is
quickly and smoothly inserted into the targeted muscle during
iEMG acquisition [17]. iEMG is considered to have good
spatial resolution due to the small diameter (around 0.5 mm) of
the needle electrode. Individual MUAPTs could be identified
by visualization. However, the effectiveness of the process
of iEMG acquisition is highly dependent on the skill of
the electrodiagnostic physician. Moreover, the punctuation
procedure bears risks such as skin infection, severe bleeding,
and muscle irritation. sEMG, on the other hand, is a non-
invasive analysis tool for the human motor system that places
electrodes on the surface of the skin [18]. sEMG is widely
adopted for Human-Computer Interface (HCI) due to the major
advantage of its ease of use and non-invasive nature. If muscle
fibers belonging to multiple MUs are within the vicinity of the
electrode, all MUAPTs from different MUs will be detected by
the electrode. Given the different diameters of the electrode,
sEMG is composed of MUAPTs from MUs from the same
layer or deep layers, leading to poor spatial resolution as
compared to iEMG. Consequently, the picked-up sEMG by
the electrodes can be considered as a linear combination
of MUAPTs. Each electrode placement pattern corresponds
to a unique combination pattern. With electrodes placement
varying, the linear combination pattern changes.

III. TRANSFER LEARNING IN EMG ANALYSIS

In the previous section, we introduced basic concepts on
transfer learning on general and EMG generating mechanisms
along with EMG acquisition techniques. These preliminaries
shed insights on the underlying principles of recent progress
in the area of transfer learning on EMG. In this section,

we construct a categorization that best summarizes existing
research endeavors of transfer learning in EMG analysis. As
illustrated in Figure 3, we categorize existing works in EMG
related transfer learning into four main lines, i.e., data-based
approaches, model-based approaches, training scheme based
approaches, and adversarial-based approaches. Recall that the
goal of transfer learning is to maximize the performance of
the target objective prediction function, which can be achieved
by either manipulating the data or modifying the model to
reduce domain differences. In addition to the model-based and
data-based interpretations, certain transfer strategies are based
on specifically designed training schemes, such as mimicking
the transfer learning process during training or calibrating
labels during the collection of target domain data. We refer to
these strategies as training scheme-based approaches. Further-
more, apart from directly minimizing the domain difference,
adversarial-based approaches aim to force the neural net-
work to learn hidden EMG representations that contain no
domain discriminative information in an adversarial manner.
To accomplish this goal, a negative gradient is usually adopted
on top of special designs of neural network architectures.
While these approaches may appear to fall within the category
of model-based approaches, we list them separately due to
their unique adversarial nature, which distinguishes them from
conventional model-based approaches.

A. Data-Based Perspective
Data-based transfer learning approaches aim to reduce the

data distribution difference between the source domain and
target domain via data transformation and adjustment. From
a data perspective, two approaches are generally employed in
order to accomplish the knowledge transfer objective, namely
instance weighting and feature based transformation.



3020 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

1) Feature Based Strategy: Feature-based approaches map
each original feature into a new feature representation either
by linearly transforming the original feature or non-linearly
transforming the original feature to enable knowledge trans-
fer. Recall that in Section II-C, we mentioned that EMG
signals are composed of superimposed MUAPTs generated
from different MUs in both temporal and spatial domains.
Assuming that only attenuation occurs with distance and there
is no filtering effect, the relationship between the collected
EMG signal and the generated MUAPs of the muscles can be
modeled linearly. Therefore, the process of transfer learning
aims to establish a mapping from one linear combination
pattern to another. In this sense, linear transform is suited
for the electrodes variation scenario. If no muscle fatigue
and gesture performing pattern difference considered, linear
transformation based approaches can be utilized to solve the
inter-session scenario. Domain differences caused by factors
such as individual variation, muscle contraction patterns can
not be modeled linearly, thus non-linear transformation is
usually adopted for scenarios such as inter-subject.

a) Linear Transformation: Lin et al. [19] proposed a nor-
malization based approach called Referencing Normalisation
to reduce the distribution difference among domains for inter-
subject sEMG-based hand gesture classification. In specific,
data from the source domain are mapped to the range of the
target domain data:

X̃ S =
(X S − min(X S))

max(X S)− min(X S)

· (max(XT )− min(XT ))+ min(XT ), (1)

where X̃ S is the transformed source domain data.
In addition to directly applying a linear transformation to

normalize the data to the target domain range, authors [8],
[20], [21], [22] attempted to reduce the distribution gap
based on statistical features such as covariance and mean.
Conventional classifiers such as Linear Discriminant Analysis
(LDA) [23], Quadratic Discriminant Analysis (QDA) [24],
and Polynomial Classifier (PC) [25] are commonly adopted
for sEMG classification tasks. The covariance matrix, mean
vector, and the prior are the discriminant variables of LDA and
QDA classifiers. Define 6S, 6T , µS, µT to be the covariance
matrices and mean vectors of data from the source domain
and target domain, respectively. The transfer learning process
of LDA and QDA based linear classifiers could be defined
with a convex interpolation:

6̃ = (1− α) ∗6S + α ∗6T (2a)
µ̃ = (1− β) ∗ µ+ β ∗ µT , (2b)

where α, β ∈ [0, 1] are the trade-off parameters to balance
the knowledge from the source and target domain, 6̃ and µ̃
represent the adapted covariance and mean vector. The optimal
value for α and β are set empirically or via grid search with
a fixed step size. Liu et al. [21] also proposed to use transfer
learning on PC for the inter-session transfer scenario on both
intact-limbed and amputee subjects. Let M be the polynomial
expansion matrix of the training data, an optimal weight matrix

W∗ could be formulated as:

W∗ = argmin
W
∥MW− Y∥2 . (3)

Similarly, the transfer learning process based on PC is defined
as:

W̃ =
i=K∑
i=1

β i Wi
+ W̄, (4)

where Wi and β i are the optimal weight matrix for the i th

session and the corresponding weight ratio, W̄ represents the
optimal weight matrix on the new session and W̃ represents
the adapted weight matrix. It is worth noticing that distance
measurements such as Kullback–Leibler divergence [26] could
be used to select the source domain that’s the most similar to
the target domain to avoid negative transfer when there are
multiple source domains available [27].

Muscle Synergy Modeling (MSM) [9], [28], [29], [30]
has shown great success in terms of modeling the linear
relationship between MUAPTs of muscles and the collected
EMG signal. Let xm(t) be the generated MUAPTs from the
mth muscle, define acti (t) ∈ R to be the activation signals,
xm(t) could then be expressed as:

xm(t) =
i=N∑
i=1

gmi · acti (t), (5)

where gmi is the gain factor of muscle m transferred to the i th

activation signal. Assuming that only attenuation exists with
distance but no filtering effect, the observed EMG signal at
the kth electrode (kthchannel) is written as:

yk(t) =
m=M∑
m=m

i=N∑
i=1

lkm · gmi · acti (t)

=

i=N∑
i=1

aki · acti (t), (6)

where lkm is the factor that reflects the attenuation level from
the mth muscle on the kth electrode and aki is the combined
weight factor that models both lkm and gmi . The above mixture
could be written in matrix form:

Y = A · F, (7)

where A ∈ RK×N is the weighting matrix and F is the synergy
matrix. In EMG analysis, Y is often observed, thus the solving
for W and F becomes a linear blind source separation (BSS)
problem [31]. Non-negative matrix factorization (NMF) [32]
finds an approximate solution to the equation (7) with the
constraint that all elements are non-negative.

Jiang et al. [33] proposed correlation-based data weighting
(COR-W) for inter-subject transfer scenario of elbow torque
modeling. In specific, they assume that the target domain
data is a linear transformation of the source domain data,
XT ≈ X̃ S = AX S , where X̃ S is the transformed source
domain data. The underlying assumption is that the synergy
matrix remains the same for both domains while the weighting
matrix varies. A derived assumption of Jiang et al. is that the
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Fig. 4. Demonstration of applying the Siamese architecture for distribution discrepancy minimization. It is worth noticing that the design of neural
network architectures varies across works. FC stands for the fully connected layer. The term ‘module’ refers to a combination of layers that might
contain convolution, normalization, or residual connection. The distribution discrepancy measurement is applied to the output of the FC layer just
for demonstration. The distribution discrepancy measurement could essentially be applied to deep features output by any module.

covariance matrix of the transformed source domain should
also be similar to the covariance matrix of the target domain
data. The optimal matrix A∗ is estimated by minimizing the
discrepancy between 6̃S and 6T . The transformed source data
is then used to re-train the model. Although Jiang et al. pro-
posed for inter-subject transfer scenario, while we argue that
the linear assumption might not hold due to variation across
subjects. Electrode shift, on the other hand, is reasonably
more consistent with the linear assumption in practice. Günay
et al. [34] adopted MSM with NMF for knowledge transfer
across different tasks. The weighting matrix W calculated on
the source domain is kept constant while the synergy matrix is
re-estimated on the target domain data using the non-negative
least squares (NNLS) algorithm. In contrast to the works that
map the source domain data to a new space, another line of
work [35], [36], [37] transforms the target domain data so that
the source domain objective prediction function is applicable
again. Prahm et al. [35] viewed the target domain data as a
disturbed version of the source domain data. The disturbance
can be expressed as a linear transformation matrix A. The main
aim is then to learn and apply an inverse disturbance matrix
A−1 to the target data such that the disturbance is removed.
Prahm et al. [35] adopted Generalized Matrix Learning Vector
Quantization (GMLVQ) [38] as the classifier and estimated
the optimal A−1 using gradient descent on the GMLVQ
cost function. The linear transformation that maximizes the
likelihood of disturbed data based on the undisturbed data
could also be estimated by the Expectation and Maximization
(EM) algorithm [37], [39]. Following their previous work [35],
[37], Prahm et al. [36] proposed that the linear transformation
matrix could be further exploited based on the prior knowledge
that the underlying EMG device is an armband with eight uni-
formly distributed channels. For the electrode shift scenario,
Prahm et al. assumed that the disturbed feature from channel j
could be linearly interpolated from neighboring channels from

both directions with a mixing ratio r . Then the approximation
of the linear transformation matrix is reduced to finding an
optimal mixing ratio r .

b) Non-linear Transformation: The principle objective of
feature transformation is to reduce the data distribution
between the source and target domain. Thus, the metrics for
measuring distribution difference is essential. Maximum Mean
Discrepancy (MMD) [40] is widely adopted in the field of
transfer learning:

MMD(XT , X S) =

∥∥∥∥∥∥ 1
N S

i=N S∑
i=1

8(X i
S)−

1
N T

i=N T∑
j=1

8(X j
T )

∥∥∥∥∥∥
2

,

(8)

where 8 indicates a non-linear mapping to the Reproducing
Kernel Hilbert Space (RKHS) [41], N S and N T indicate the
number of instances in the source and target domain, respec-
tively. Essentially, MMD quantifies the distribution difference
via calculating the distance between the mean vectors of the
features in an RKHS. In addition to MMD, Kullback–Leibler
divergence, Jenson–Shannon (JS) divergence [42] and Wasser-
stein distance [43] are also common distance measurement
criteria. The Siamese architecture [44], [45] is one com-
monly adopted architecture for DNN related transfer learning,
as illustrated in Figure 4. Zou and Cheng [46] proposed a
Convolutional Neural Network (CNN) based model named
Multiscale Kernel Convolutional Neural Network (MKCNN)
for hand gesture recognition. The authors proposed a transfer
learning MKCNN (TL-MKCNN), which contains a Dis-
tribution Alignment Module (DAM) for inter-subject and
inter-session transfer learning scenarios. TL-MKCNN adopts
the Siamese architecture, with one network taking inputs from
the source domain and the other one taking inputs from the
target domain. The Siamese networks share weights with each
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Fig. 5. Illustration of the architecture of the progressive neural network. Frozen indicates that the parameters of the network are fixed, while
trainable suggests that the network parameters will be updated during training. The same input is fed to both networks, the intermediate features
from each module of the pre-trained network is merged with corresponding intermediate features of the target domain network.

other. DAM applies the JS divergence onto the output of the
second layer of the fully connected layers to minimize the
distribution difference between the deep features of the data
from the source and target domain. Besides the Cross Entropy
(CE) loss function for classification, Zou et al. also applies a
mean square error (MSE) to minimize the distance of instances
to the corresponding class center. The overall loss function to
train TL-MKCNN is the sum of JS divergence, CE, and MSE.
Bao et al. [47] applied fast Fourier transform (FFT) to data
segment and used the spectrum as input to their designed CNN
based network. Similar to [46], the MMD loss is applied to
the output of the second fully connected layer. A Regression
Contrastive Loss is proposed to minimize the distance in the
feature space between the source domain instance and the
target domain instance of the same category. Normalization
tricks are adopted to modify the loss for regression tasks.

Côté-Allard et al. [48], [49] proposed to use the Progressive
Neural Network (PNN) [50] to alleviate catastrophic forget-
ting caused by directly fine-tuning the network parameters
with data from the target domain. As shown in Figure 5,
a source domain network is first trained with data from the
source domain. The model parameters of the source domain
network are then fixed, while the parameters for the target
domain network is randomly initialized. Note that the network
structures of both networks are exactly the same except for the
model parameters. During the transfer learning process, target
domain instances are fed to both networks. The intermediate
features of each module of the source domain network is then
merged with the corresponding features of the target domain
network and fed forward to the next module of the target
domain network. The underlying hypothesis is that although
distribution variation exists between the source and target

domain, generic and robust features could be attracted for more
effective representation learning.

Du et al. [51] proposed to adopt Adaptive Batch Nor-
malization (AdaBN) [52] for inter-session transfer learning.
AdaBN is a lightweight transfer learning approach for DNNs
based on Batch Normalization (BN) [53]. BN was initially
proposed to accelerate the convergence of the DNN for faster
CNN training. Formally, define Z = [zi ]

B
i=1 to be a batch of

intermediate features of instances with batch size B, the BN
layer transforms Z as follows:

z̃ = γ ·
z j − E[Z. j ]√

V ar [Z. j ]
+ β, (9)

where γ and β are learnable parameters, V ar stands for
variance. The underlying hypothesis is that labeled related
knowledge is stored in the network parameters of each layer,
and the domain related knowledge is portrayed by the statistics
of the BN layers. The transformation ensures that the distribu-
tion of each layer remains the same over mini-batches so that
each layer of the network receives input of similar distribution
regardless of the source or target domain. Different from
fine-tuning, AdaBN doesn’t require target domain label for
knowledge transfer, and only a small fraction of the network
parameters need to be updated. In particular, the network is
first pre-trained on source domain data. During the training
process, the statistics of BN layers are calculated by applying
a moving average for all data batches. All network parameters
are fixed except for the parameters of BN layers during transfer
learning. The update of BN statistics to target domain data
could easily be done by a forward pass.

2) Instance Weighting: Instance weighting assumes that
similarities exist between source domain and target domain
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data. This similarity can arise from different individuals as
well as from different electrode placements. Instance weight-
ing is suited for any transfer scenario as long as the domain
difference is assumed to be small. Consider a special case of
domain adaptation where PS(y|X) = PT (y|X) and PS(X) ̸=
PT (X) which is referred to as covariate shift [54]. Consider the
transfer scenarios that we introduced in Section II-B, collecting
abundant data in the target domain is often prohibitive, and
thus target domain instances are limited. A natural solution is
to assign weights to partial instances from the source domain
so that these source domain instances can be used along with
limited target domain data. Huang et al. proposed Kernel
Mean Matching (KMM) [55] to estimate the instance weights
by matching the means of the target and source domain in
a Reproducing Kernel Hilbert Space (RKHS). The weighted
instances from the source domain are combined with labeled
target domain instances to train the target objective prediction
function. Li et al. [56] proposed to use TrAdaBoost [57]
along with Support Vector Machine (SVM) to improve the
motion recognition performance under inter-session scenario.
In specific, they first apply TrAdaBoost to weight EMG data of
day one and train a target classifier with weighted EMG from
day one and EMG collected from another day. TrAdaBoost
iteratively adjusts the weights of instances to decrease the
negative effect of the instances on the target learner. TrAd-
aBoost is largely inspired by a boosting algorithm called
AdaBoost [58]. AdaBoost iteratively trains weak classifiers
with updated weights. The weighting mechanism of AdaBoost
is the misclassified instances are given more attention during
the training of the next weak learner in the following iteration.
The weighting mechanism of TrAdaBoost is to reduce the
distribution difference between the source and target domains.

B. Model Based Perspective
From the model perspective, transfer learning approaches

can also be interpreted in terms of model parameters and
model structures.

1) Parameter Fine-Tuning: Deep neural networks (DNNs)
are strong automatic feature extractors. Despite variations in
biological characteristics among subjects, differences in elec-
trode placement, and variations in signal modality, parameter
fine-tuning assumes that common features could be extracted
between the source domain and target domain. It further
assumes that the knowledge learned from the source domain
can be effectively transferred to the target domain. parame-
ter fine-tuning is well-suited for all transfer scenarios. One
intuitive way of transferring knowledge of DNN is to tune
the network parameters of the source learner using data from
the target domain. Fine-tuning [59] refers to the training
process where the network is first trained on one dataset
(large-scale) and use the network parameters as initialization
to further train on another dataset (small scale). Fine-tuning is
a common strategy in the Computer Vision (CV) community
where the neural networks are first pre-trained on ImageNet
(IN) either in a supervised manner or self-supervised manner
and later fine-tuned for various downstream tasks such as
classification [60] and object detection [61]. IN-21K is a
large scale dataset with 15 million images over 2200 classes.

The underlying assumption is that the dataset for downstream
tasks (target domain) is of similar data distribution of IN
(source domain). Extensive experiments have shown that using
IN pre-trained weights and fine-tuning improves performance
by a large margin. Inspired by the success of fine-tuning
in CV, authors [62], [63], [64] first transform EMG signal
to 2D data via Short-time Fourier Transform (STFT) and
treat the spectrogram as image input to the neural network.
It is worth noticing that these works [62], [63], [64] use
IN pre-trained network to improve the performance of the
network that takes STFT as input. This line of work do
not fall into any of the transfer learning scenarios that we
summarized in Section II-B. The neural network learns feature
extraction ability (texture and shape) and the ability to localize
to the foreground object. IN mainly contains images of natural
scenes such as objects, animals, and humans. Since the gap
between the source domain (natural scenes) and the target
domain (spectrum image) is tremendous, it is questionable as
to what knowledge is transferable. Phoo et al. [65] compared
the transfer performance of using miniIN (a small subset
of IN) as source domain and using IN as source domain
to ChestX (X-ray images for chest) [66] as target domain.
Experimental results show that pre-training on IN yields no
better performance than on miniIN and both yields poor
diagnosis accuracy. This suggests that more data does not help
improve the generalization ability, given that no more infor-
mative knowledge can be extracted from the source domain
to benefit the target domain learner. Pre-training the network
on the source domain and then using the pre-trained weights
to initialize the neural network for further training using the
target domain data is another popular fine-tuning strategy for
EMG transfer learning [8], [67], [68], [69], [70]. There would
be little constraint nor assumption on the transfer scenarios
since this transfer process is simple and can be viewed as
sequentially train the network with two datasets. When there
are EMG data recorded from multiple subjects or sessions, it is
possible to combine the data and treat the combined data as
the source domain [71], [72]. Or it is also a solution to train a
unique model for each subject or session and to select a certain
number of models that give the best performance on the target
domain [73], [74], the selected models are then fine-tuned on
the target dataset to provide final prediction based on majority
voting [75]. However, fine-tuning suffers from the catastrophic
forgetting, meaning that knowledge from the source domain
will be forgotten by the neural network rapidly upon the
introduction of target domain data [76]. Besides the parameters
fine-tuning of DNNs, the parameters of Decision Trees [77]
(DTs) could also be fine-tuned for EMG transfer learning [78].
The motivation is that the structure of decision trees for similar
tasks should be similar and the domain difference is reflected
from different decision threshold values associated with the
features. Structure Transfer (STRUT) [79] first discards all
the numeric threshold values of learned trees on the source
domain data and selects a new threshold value τ(ν) for a node
ν given that the subset of target examples reach ν in a top-
down manner. Any node ν that’s empty in terms of target
domain data is considered unreachable and will be pruned.
Define τ to be the threshold value of feature φ at node ν
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Fig. 6. Illustration of transferring knowledge by sharing the weights
of the neural network. The weights of the backbone modules are first
copied to the target domain network and frozen. The term ‘module’
refers to a combination of layers that might contain convolution, normal-
ization, or residual connection. FC stands for the fully connected layer.
The weights of the prediction head are randomly initialized and trained
from scratch.

that splits any set of labeled data Sν into two subsets, denoted
SL and SR . PL and PR denote the label distribution of SL
and SR , respectively. STRUT aims to find a new threshold τ ′

with maximum Divergence Gain (DG) subject to the condition
where the new thresholds are local maximums of Information
Gain (IG) [77]:

DG = 1−

∥∥ST
L

∥∥∥∥ST
ν

∥∥JSD(QT
L , QS

L)−

∥∥ST
R

∥∥∥∥ST
ν

∥∥JSD(QT
R, QS

R),

(10)

where ∥·∥ stands for the cardinality, S and T on the superscript
stand for the source and target, respectively.

2) Parameter Sharing: The neural network architectures are
not specified in Section III-B.1 since parameter fine-tuning
tunes all parameters of the network regardless of various
network designs. It is stated that fine-tuning the whole network
suffers from catastrophic forgetting and knowledge learned
from the source domain will be quickly forgotten. In most
of the works [8], [67], [68], [69], [70] that adopt fine-tuning,
the target domain dataset is of the same size as the source
domain dataset. Consider the case where the target domain
dataset is small compared to the source domain, with forgotten
knowledge from the source domain, the neural network is
prone to suffer from over-fitting [80]. A possible solution is to
freeze partial network parameters and to only update partial
parameters during the fine-tuning process [81], [82], [83], [84],
[85], [86], [87]. An illustration of knowledge transferring via
parameter sharing is provided in Figure 6. A neural network
design could be roughly divided into the backbone and the
prediction head. The backbone serves as the feature extractor
and is usually CNN based or Recurrent Neural Networks
(RNN) based. The prediction head is usually composed of
fully connected layers and predicts the desired labels based
on the deep features extracted by the backbone. Assuming
that the extracted deep features are generic for various trans-
fer scenarios, the weight of the backbone could be frozen
once pre-trained on the source domain dataset to prevent

catastrophic forgetting. Only the fully connected layers of the
prediction head need to be updated, which reduces transfer
training time and guarantees fast convergence.

3) Model Structure Calibration: Besides knowledge transfer-
ring via trained parameters, next we explore the possibility of
EMG transfer learning from the model structure perspective.
Since it is often the case that there is a lack of labeled data
in the target domain and as such it might not be sufficient
to construct a reliable high performance model solely on
the target domain data, optimizing the model structure of a
pre-trained model to fit the target domain data is desired.
As we mentioned in the previous section that DNNs are
believed to be able to extract generic features, thus it is
impractical and time consuming to alter or even search for
neural network structures using Neural Architecture Search
(NAS) [88] for various domains. However, Random Forest
(RF) [89] on the other hand, is more suitable for structure
calibration since knowledge transfer could be done by pruning
or growing the source tree model. Marano et al. [78] proposed
to use structure expansion/reduction (SER) [79] for EMG
based hand prostheses control. As the name suggests, the SER
algorithm contains two phases: expansion and reduction. Con-
sider an initial random forest that is induced using the source
domain data. In the expansion phase, SER first calculates all
labeled data points in the target domain dataset that reaches
node ν and then extends node ν into a full tree. In the reduction
phase is performed to reduce the model structure in a bottom-
up fashion. Define Esub to be the empirical error of the subtree
with root node ν, Elea f denotes the empirical error on node
ν if ν were to be pruned to a leaf node. The subtree is to be
pruned into a node leaf if Esub > Elea f . SER is performed on
each decision tree separately and the resulting random forest
is the adapted model for the target domain data.

4) Model Ensemble: Combining data from various sources
into a single source domain may not yield satisfactory results
since the distributions of these domains might vary greatly
from each other. Another commonly adopted strategy for EMG
transfer learning is model ensemble. The model ensemble aims
to combine a set of weak learners to make the final prediction.
Some previously reviewed EMG transfer learning approaches
already adopted this strategy. For instance, Kim et al. [73]
proposed to train a unique classifier for each subject and
further fine-tune the top ten best performing classifiers on a
new target subject. The final prediction is the most commonly
classified by the ensemble of all ten fine-tuned classifiers.
Decision Trees are another popular choice for weak learners.
Zhang et al. [90] proposed feature incremental and decre-
mental learning method (FIDE) based on Stratified Random
Forest (SRF) for knowledge transfer with missing or added
electrodes. In specific, define Si and S j to be the electrode
sketch score [91] for electrode ei and e j , respectively. The
distribution difference between electrodes ei and e j is defined
as:

DD(i, j) =
ρ(Si , S j )+ ψ(ei .e j )+ 1

4
, (11)

where ρ(·) stands for the Pearson Correlation Coefficients
(PCC) and ψ denotes the inverse of the Euclidean distance
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between ei and e j . K-means [92] is then utilized to cluster the
electrodes into K clusters based on the DD. Denote M as the
number of weak learners in the ensemble model, SRF is built
on the source domain data where ⌈M/K ⌉ trees are induced
using data collected with electrodes in the corresponding
cluster. If electrode i is missing in the target domain data,
the missing features could be recovered from the most similar
electrode j . If there are incremental electrodes in the target
domain dataset, FIDE first selects a set of weak learners to be
updated based on a performance score:

S(m) = acc(hm)+
# f eaturem

# f eature
, (12)

where hm stands for the mth decision tree, # f eaturem denotes
the number of features used by hm , and # f eature denotes
the total number of features. Top M ∗ δ weak learners are
then selected for updated where δ ∈ [0, 1]. The SER and
STRUT algorithms [79] introduced in previous sections are
again used for transfer learning on decision trees. Compared to
the majority voting way of ensemble, FIDE updates the source
domain model to extract new knowledge from target domain
data while not abandoning the already learned knowledge.

C. Training-Scheme Based Perspective
In addition to the previously mentioned approaches that can

be subsumed into pre-defined paradigms, we also review works
that design special training schemes for EMG transfer learning.
In theory, this line of work has the potential to be applicable in
various transfer scenarios, given a well-designed scheme. The
effectiveness of this approach lies in its adaptability across
different contexts. By employing a carefully crafted scheme,
it becomes feasible to leverage the benefits of this method-
ology in a wide range of transfer scenarios. Zhai et al. [93]
proposed a self re-calibration approach for inter-session hand
prosthesis control. In particular, a source domain classifier is
first trained with EMG data of existing sessions. Given the
target domain data, each EMG data segment x i is assigned a
prediction label yi by applying a forward pass of the EMG
segments. Based on the assumption that temporally adjacent
EMG segments are likely to be generated from the same hand
movement, the assigned labels are re-calibrated with majority
voting:

ỹi
←− Majority Voting( fS(x i−k, x i−k+1, . . . , x i , . . . , x i+k)),

(13)

where fS is the source domain classifier, and k indicates the
number of neighboring segments used to re-calibrate the label
from both directions in time before and after x i . Then the
target domain data with re-calibrated labels are used to update
the source domain classifier. It is worth noticing that such a
transfer scheme does not require the target domain labels and
can be easily adopted for day-to-day re-calibration.

Meta-learning [94] is another training paradigm that can be
used for EMG transfer learning. Meta-learning is commonly
known as learning to learn [95]. In contrast to conventional
machine learning algorithms that optimize the model over
one learning episode, meta-learning improves the model over

Algorithm 1 MAML Style Meta-Learning for Transfer
Learning

Input :
Task distribution: p(T ), Loss function: L, learning rate

for inner loop: α, learning rate for outer loop: β
Output : Prediction Model: f2,
Initialization :Randomly initialize 2

while not done do
Sample a batch of tasks Ti from p(T )
for all taskTi do

Evaluate error LTi ( f2) with respect to the
Dtrain

j
Update 2 with gradient descent:
2̃←− 2− α ·

∂LTi ( f2)
∂2

end
Evaluate error LTi ( f2̃) with respect to the Dtest

j
Update 2 with gradient descent:
2̂←− 2− β ·

∂LTi ( f
2̃
)

∂2

end

multiple learning episodes. The meta-learning goal of gen-
eralizing the model to a new task of an incoming learning
episode with limited samples aligns well with the notion of
transfer learning. Intuitively speaking, meta-learning divide
the source domain data into multiple learning episodes, with
each containing a few samples and mimicking the trans-
fer processing during training so that the model trained
has good transferability in terms of the true target domain.
Rahimian et al. [96] proposed meta-learning based training
scheme called Few-Shot Hand Gesture Recognition (FHGR)
for the transfer case where only a minimal amount of target
domain data are available for re-calibration. Define an N-way
k-shot few shot learning problem, let T j = {Dtrain

j , Dtest
j ,L}

denote a task associated with the source domain dataset where
Dtrain

j = {(xi , yi )}
K×N
i=1 and L is a loss function to measure

the error between the prediction and the ground-truth label.
Please be aware that the task T here is a naming convention
in the meta-learning area and is of a different meaning than
the task that we define for a domain. FHGR aims to predict
the labels of Dtest

j based on the samples seen from Dtrain
j

consisting of K samples from each of the N classes over a
set of tasks samples from p(T ). A Pseudocode in the MAML
style [97] is provided in Algorithm 1.

EMG transfer learning could also benefit from data aug-
mentation via generating synthetic data as data from other
sessions or subjects (target domain data). Generative Adver-
sarial Networks (GANs) are a famous type of network for data
generation without explicitly modeling the data probability
distribution. A typical GAN contains a generator G and the
discriminator D, which are two neural networks. A random
noise vector sampled from a Gaussian or uniform distribution
is input to the generator network to produce a sample xg
that should be similar to a real data sample xr drawn from
a true data distribution Pr . Either xr or xg is input to the
discriminator to get a classification result of whether the input
in real or fake. Intuitively, the generator aims to generate
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fake samples that could confuse the discriminator as much
as possible, while the task of the discriminator is to best
distinguish fake samples from real ones. The training objective
of GAN can be defined as:

LD = max
D

Exr [logD(xr )] + Exg [log(1− D(xg))], (14a)

LG = max
D

Exg [log(1− D(xg))]. (14b)

Zanini and Colombini [98] adopted DCGAN [99], which is
a convolution-based extension of the very original GAN and
style transfer for Parkinson’s Disease EMG data augmentation.

Besides GANs, style transfer has also been utilized to aug-
ment EMG data. Given a piece of fine artwork, painting, for
example, humans have the ability to appreciate the interaction
of content and style. “The Starry Night” by Van Gogh is an
appealing painting that attracts a lot of re-drawing attention
which follows the same drawing style of Van Gogh but with
different content. Gatys et al. [100] proposed an algorithm for
artistic style transfer that combines content from one painting
and the style of another painting. A similar idea could be
extended to EMG signals for transfer learning. An EMG signal
can also be regarded as the interaction of content and style.
The style might refer to the biological characteristics of the
subject, such as muscle condition, the filtering effect of a
recording device, or simply a session. The content depicts
the spikes carrying moving intention from the neural system
to the corresponding muscles. Considering that the content
of the different muscle movements are the same regardless
of any other conditions, the style component then processes
the control signals for moving to subject, device, or session
specific data. Zanini et al. [98] adopted style transfer [100] to
augment Parkinson’s Disease EMG data of different patterns.
Specifically, given a content EMG signal ec and a style image
es , the algorithm aims to find an EMG signal e that’s of the
same content as ec and of the same style as es . Mathematically,
the transferring process minimizes the following loss function:

Lc(e, ec) =
∑

l

∥∥∥F l(ec)− F l(e)
∥∥∥2
, (15a)

Ls(e, es) =
∑

l

∥∥∥G(F l(ec))− G(F l(e))
∥∥∥2
, (15b)

where F(·) is the output feature of the l th layer of the neural
network, G stands for the Gram matrix [101]. The content
component and style component are controlled by two hyper-
parameters.

L = α ∗ Lc + β ∗ Ls (16)

Besides directly generating EMG data, Suri and Guptaet
al. [102] proposed to synthesize extracted features of EMG
signals with an LSTM network [103] to mimic EMG data
from other subjects or different sessions. Different from GAN
and style transfer based EMG augmentation that is directed by
loss functions that either measure the authenticity or similarity,
the method proposed by Suri et al. simply relies on the
assumption that extracted features are robust and that EMG
signal generated by altering features are correlated to the
recorded real data.

D. Adversarial Based Perspective
Recall that in Section III-A.1, we introduce non-linear

feature based approaches that reduce the data distribution by
explicit deep feature transformation. In this section, we review
a set of methods that force the neural network to learn
hidden EMG representations that contain no discriminative
information in terms of the origin of the data for domain
generic feature extraction. Hence, this category of methods
is well-suited for scenarios involving inter-session, inter-
subject, and electrode variation. For instance, in the context
of gesture recognition, it is important to note that muscle
arrangement and diameter can differ among individuals. How-
ever, when performing a specific gesture, the same set of
muscles must contract. Adversarial-based approaches aim to
identify these common patterns while explicitly discarding
the different patterns between the source and target domains.
With this objective, Domain-Adversarial Neural Networks
(DANN) [104] is a type of neural network that contains a
backbone F(·; θF ) parameterized by θF for feature extraction
and two prediction heads: one for predicting the task label
and another for predicting the origin of the data (source or
target domain). We refer to the prediction head for the source
domain task as the task prediction head Pt (·; θt ) and refer
to the prediction head for domain classification as domain
prediction head Pd(·; θd). The parameters of the network are
optimized in a way that the learned deep feature minimizes
the loss for the task prediction head while maximizing the loss
for the domain prediction head. The domain prediction head
works adversarially to the task prediction head hence the name
DANN. Formally, the overall loss function for optimizing θF ,
θt and θd is defined as:

E(θF , θt , θd) =
1
n

n∑
i=1

Lt (θt , θF )
i
− λ(

1
n

n∑
i=1

Ld(θd , θF )
i

+
1
m

m∑
j=1

Ld(θd , θF )
j ), (17)

where Lt denotes the loss function for the source domain
prediction task, Ld denotes the loss function for the domain
classification, λ is a balance factor, n and m indicate the
number of the source domain data and target domain data,
respectively. The parameters θF , θt and θd and then are
updated using gradient descent:

θF ←− θF − β(
∂Lt

∂θF
− λ(

∂Ld

∂θF
)),

θt ←− θt − β
∂Lt

∂θt
,

θd ←− θd − βλ
∂Ld

∂θd
, (18)

where β is the learning rate. We provide an illustration of data
and gradient flow of DANN in Figure 7.

Côté-Allard et al. [113] proposed to use DANN for
multi-domain for inter-session EMG transfer learning. During
training, each mini-batch contains randomly sampled EMG
segments from one session. Each mini-batch is assigned a class
index indicating different sessions for the domain predicting
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Fig. 7. Illustration of a typical DANN. A backbone of any arbitrary design for feature extraction is marked in green, while the task prediction head
and domain prediction head are marked in blue and purple, respectively. The output deep feature from the backbone is fed to both heads for loss
calculation with respect to the ground truth label. The gradient of Lt is backpropagated through the task prediction head and the backbone for
parameter update. The domain prediction head is updated by the gradient of Ld. The negative gradient from Ld also flows back to the backbone
for parameter update.

labels. A gradient reversal layer [104] is adopted for easy
implementation of negative gradient flow from the domain pre-
diction loss to the backbone. Note that the task prediction head
is only updated with loss from the source domain data. In a
contemporaneous work, Côté-Allard et al. [114] also explored
using Virtual Adversarial Domain Adaptation (VADA) [115]
together with Decision-boundary Iterative Refinement Training
with a Teacher (DIRT-T) [115] for adversarial based EMG
transfer learning. VADA is an extension of DANN that incor-
porates locally-Lipschitz constraint via Virtual Adversarial
Training (VAT) [116] to punish the violation of the cluster
assumption during training. On top of the trained model by
VADA, DIRT-T aims to optimize the decision boundary on
the target domain data by fine-tuning the model. In specific,
the model parameter from the previous iteration is treated as
the teacher model, the optimization goal is to seek a student
model that is close to the teacher model while minimizing
the cluster assumption violation. Following the work of Côté-
Allard et al., other DANN related EMG transfer learning
research endeavors [105], [117] were made for various transfer
scenarios.

Han et al. [118] further proposed Disentangled Adversarial
Autoencoder (DAA), which disentangles the learned latent
representation into adversary and nuisance blocks to model
task-related features and domain-related features disjointly.
Based on the autoencoder (AE) [119] structure, the encoder
F(·; θ) maps the input signal x into a latent representation
z = [za, zn] where za and zn stand for the adversary and
the nuisance sub-representation, respectively. za is expected to
contain only the task relevant feature but no domain-specific
information id . On the other hand, the encoder embeds
sufficient domain-specific data into zn . The decoder G(·; η)
reconstructs the original input signal based on latent represen-
tation z. Similar to DANN, DAA also adopts two prediction
heads: adversarial prediction head Pa(·;φ) and nuisance pre-
diction head Pn(·;ψ). Formally, the overall loss to train

DAA is defined as:

L(θ, φ, ψ, η) = −λnE[log p(id |zn)] + λaE[log p(id |za)]

+ E[∥x − G(F(x))∥2], (19)

where p stands for the likelihood. As illustrated in Figure 8,
the decoder, adversarial prediction head, and nuisance predic-
tion head are discarded after the disentangled feature learning
process of DAA. The weight of the encoder is then frozen
for feature extraction, and a task prediction head with random
weight initialization is placed on top of the encoder for specific
downstream tasks. Based on their previous work [118], Han
et al. later proposed a soft version of the latent representation
disentanglement [120].

IV. SUMMARY OF COMMON BENCHMARKS

We summarize common EMG datasets [6], [48], [51], [108],
[109], [110], [111], [112], [113] that could be used for transfer
learning and provide dataset statistics in Table I, including
task category, number of subjects, number of recording device
channel, sampling frequency, number of gesture classes, and
corresponding citations.

V. EXPERIMENTAL PERFORMANCE RESULTS

For transfer scenarios introduced in Section II-B, modal-
ity variation and extensive learning mainly address specific
customized application cases with in-house data, no existing
works are with identical experimental configurations and are
thus hard to compare. Studies focusing on the scenario of
electrode variation [8], [9] adopt different data acquisition
protocols and shift the electrodes in different manners (shift
by angle or distance). Thus, we demonstrate the performance
of representative approaches that adopt publicly available
benchmarks and omit the works that utilize in-house datasets.
We provide the performance comparison on benchmarks that
are selected by at least five works. The reported metrics
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TABLE I
SUMMARY AND STATISTICS OF COMMON EMG DATASETS FOR TRANSFER LEARNING

Fig. 8. Illustration of Disentangled Adversarial Autoencoder (DAA). The disentangled feature learning phase is demonstrated above the dotted
line, while the task prediction phase is shown below the dotted line. In the disentangled feature learning phase, the input data is mapped into
disentangled feature representation za and zn, with each passed to the corresponding prediction head. The overall latent representation is passed
to the decoder for signal reconstruction. After feature learning, two prediction heads with the decoder are discarded. A new task prediction head
with random weights is introduced on top of the encoder with frozen weight for task prediction.

are taken directly from the original papers. We report the
classification result on NinaProDB2 for the inter-subject and

compare the performance for the inter-session scenario on
the CapgMyo database. Please note that the recording interval
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TABLE II
PERFORMANCE COMPARISON OF EXISTING WORKS WITH SIMILAR

EXPERIMENTAL SETUP

between the two sessions in Db-b of CapgMyo is greater
than one week, and the electrode array placement varies.
Consequently, this benchmark can also reflect the effectiveness
of various approaches on the electrodes variation scenario.
Specifically, we compare the performance of five representa-
tive methods for the inter-subject and three classical works
for the inter-session in Table II since the compared works
are with similar experimental setups. It must be emphasized
that although publicly available benchmarks are adopted, data
pre-processing techniques and dataset split vary across dif-
ferent works leading to comparisons not entirely fair. The
best performance for each transfer scenario on each dataset
is marked in bold in the table. It is worth noticing that Du et
al., 2SRNN and All-ConvNet+TL all adopted the parameter
sharing approach. The advantage of All-ConvNet+TL over the
other two approaches might be attributed to a better network
structure and careful tuning of which parameters to share. For
the inter-subject transfer scenario, all methods yield compara-
ble performance except Supportive CNN. Supportive CNN is
a model ensemble based approach that ensemble models from
different subjects and thus is very sensitive to subject variation
across subjects. We assume that the worse performance of
Supportive CNN on NinaProDB2 can be explained by huge
subject variation across subjects.

VI. DISCUSSION AND FUTURE DIRECTIONS

In this section, we revisit EMG transfer learning approaches
based on our categorization and discuss the advantages and
drawbacks of each category. Given our discussion, we further
point out future directions.

a) Instance Weighting: By applying weights to the data
samples from the source domain, instance weighting tech-
niques leverage existing source domain data to enhance the
training of models on the target domain. These methods serve
to alleviate the issue of data scarcity when the available target
domain data is limited. The use of instance weighting enables
the augmentation of the target domain dataset, effectively
enlarging its size and providing more diverse examples for
model training. While instance weighting can be beneficial,
it is important to consider its potential drawbacks. One such
drawback is that the overall performance of these methods
heavily relies on the similarities between the source and target
domains. If the source and target domains differ significantly,
the target model may suffer from poorly selected and weighted
samples from the source domain. This misalignment can lead

to suboptimal model performance on the target domain data,
as the weights assigned to the source domain samples may not
accurately reflect their relevance or representativeness for the
target domain.

b) Linear Feature Transformation: Linear feature
transformation-based approaches are considered bio-inspired
due to their ability to capture the essence of electromyography
(EMG) generation and recording through linear assumptions.
This approach is particularly advantageous as it is simple to
implement and computationally efficient. The transfer process
involves applying a linear transformation either to the data or
features, which can sometimes be easily accomplished through
matrix multiplication. We contend that the linear assumption
is applicable in transfer scenarios where there is a correlation
between electrode shifts. As discussed in Section II-C,
certain non-linear factors, such as the filtering effects of
muscle and fat tissues, as well as variations in muscle fiber
recruitment patterns across subjects, cannot be adequately
modeled using a linear transformation. However, in cases
where the subjects and recording devices remain constant,
the linear feature transformation approaches can partially
capture the effects of electrode shifts. By assuming linearity
in electrode shifts, these methods exploit the consistency in
the EMG signals generated by the same subject using the
same recording devices. Although other non-linear factors
are present, these approaches primarily focus on capturing
the linear relationship associated with electrode displacement.
This assumption allows for a simplified and computationally
lightweight transfer process, making these methods highly
practical in certain contexts. It is important to note that
while linear feature transformation-based approaches offer
simplicity and efficiency, they may not fully account for all
the complexities of EMG data. Therefore, when applying
these methods, researchers should be aware of the limitations
imposed by the linear assumption and carefully consider the
specific characteristics and nuances of their EMG datasets to
ensure the validity and applicability of the transfer learning
process.

c) Non-linear Feature Transformation: The non-linearity of
this line of work mainly comes from the non-linear activation
functions of DNNs. Moreover, DNN-based approaches in
transfer learning also benefit from the inherent advantages of
DNNs, such as their robust feature extraction abilities. Deep
neural networks have the capacity to automatically extract
high-level representations and features from raw data, enabling
them to discover meaningful patterns and discriminative fea-
tures that contribute to reducing data distribution discrepancies
between domains. Consequently, the non-linear factors, such
as subject variation, can be modeled in a black-box fash-
ion. However, one main drawback of DNN-based non-linear
transformations is the lack of interpretability. The black-box
nature of DNN architectures makes it challenging to under-
stand precisely which features are being extracted and how
they contribute to reducing the differences between domains.
The lack of interpretability can hinder further algorithmic
improvements, as there is no clear biological or intuitive
understanding behind the design of the network architecture.
Therefore, it’s hard to further improve the algorithm since no
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biological sound clue resides behind the design of the architec-
ture. Addressing the interpretability challenge in DNN-based
transfer learning remains an active area of research.

d) Parameter Fine-tuning: Fine-tuning is a straightforward
and commonly used approach in transfer learning, as it
involves retraining a pre-trained model on the target domain
dataset. This simplicity is advantageous in practice, as it
requires minimal modifications to the existing model archi-
tecture and training process. However, there are challenges
associated with fine-tuning, particularly when the data size
of the target domain is limited. One major concern is the
potential for overfitting. When the target domain dataset is
small, the fine-tuned model may overly adapt to the specific
characteristics and idiosyncrasies of the limited target domain
data, leading to reduced generalization performance on unseen
data. Another challenge with fine-tuning is the phenomenon
known as catastrophic forgetting. As the model is retrained
on the target domain data, it has a tendency to rapidly
forget the knowledge it acquired during pre-training on the
source domain. This can be problematic if the source domain
knowledge is still relevant and beneficial for the target domain
task.

e) Parameter Sharing: Parameter sharing based approaches
are quite similar to fine-tuning, with the distinction that only
a subset of network parameters is shared between the source
and target models. This approach can help alleviate the issue of
catastrophic forgetting by retaining certain knowledge through
parameter sharing. In parameter sharing-based approaches,
it is common practice to share the parameters of the feature
extractor while training a task-specific prediction head from
scratch. By sharing the feature extraction layers, which capture
general and domain-invariant representations, the transferred
model can leverage the learned knowledge from the source
domain while adapting to the target domain. This allows the
model to retain relevant information and avoid completely
forgetting during the transfer process. Freezing the shared
backbone (feature extraction layers) is often employed when
the source domain is believed to be large and has a similar
distribution to the target dataset. This practice ensures that the
transferred model focuses on learning the task-specific details
from the target domain, without altering the well-established
feature extraction layers. Freezing the backbone can help
stabilize the transfer process and prevent the model from
deviating too much from the source domain knowledge. How-
ever, it is important to note that freezing the backbone is
not always the optimal strategy. Choosing the appropriate
strategy for parameter sharing and freezing depends on the
specific characteristics of the source and target domains,
including their size, distribution, and similarity. It requires
careful consideration and experimentation to strike the right
balance between leveraging the source domain knowledge and
allowing the model to adapt to the target domain for optimal
transfer performance.

f) Model Ensemble: Directly combining data of multiple
domains might lead to the neural network not converging
smoothly due to data distribution differences. To overcome
this obstacle and preserve domain-specific information, a more
effective approach is to construct individual models tailored

to each domain and then combine them through an ensemble
technique. By building separate models for each domain, the
ensemble approach ensures that the unique information and
characteristics of each domain are captured and preserved.
This allows the models to focus on learning the specific
nuances and patterns within their respective domains, enhanc-
ing the transfer of knowledge from each domain to the target
task. In the context of EMG applications, it is often assumed
that data distributions can vary significantly across different
sessions or subjects. These variations can stem from factors
such as muscle physiology, electrode placement, and subject-
specific characteristics. Therefore, an ensemble of models
is particularly advantageous in this scenario, as it promotes
diversity among the models. Each model in the ensemble can
capture a different aspect or variation of the data, leading to
a comprehensive representation of the underlying patterns and
improving the overall performance of the ensemble. However,
it is important to consider the computational and memory costs
associated with model ensembling. As multiple models are
involved, each with its own set of parameters, storing them in
memory can be demanding. Additionally, during the prediction
phase, each data point needs to be processed multiple times,
once by each model in the ensemble, to generate the final
prediction. This can increase the computational overhead and
impact the real-time performance of the system.

g) Model Structure Calibration: The existing model struc-
ture calibration-based approaches primarily rely on random
forest models, which inherently involve model ensem-
bling. Therefore, they share similar advantages with other
ensemble-based methods. Model structure calibration in this
context refers to the adjustment of individual decision trees
through growing or pruning operations. One drawback of
calibration-based models is that feature extraction needs to
be performed manually, which is also a limitation of decision
trees themselves. This manual feature extraction process can
be time-consuming and may require domain expertise. To fur-
ther advance the field, it would be intriguing to explore the
potential of calibrating the model structure of deep neural net-
works (DNNs) using neural network structure searching tools
such as Neural Architecture Search (NAS). NAS algorithms
have shown promise in automatically discovering optimal
neural network architectures for various tasks. By applying
NAS techniques to the calibration of DNN model structures,
we can potentially enhance the transfer learning performance
by optimizing the network’s architecture specifically for the
target domain.

h) Label Calibration: This line of work involves using the
source model to label unseen data from the target domain,
followed by label calibration to refine the target domain
labels and update the model. This approach offers several
advantages that make it well-suited for real-world applications.
One key advantage is that it eliminates the need for manual
labeling of target domain data by domain experts. Instead, the
source model’s knowledge is leveraged to automatically assign
labels to the target domain data, making the transfer process
more practical and efficient. Furthermore, the transferring
mechanism of these methods allows for easy deployment on
end devices and can be seamlessly applied to new incoming
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data through a simple user interface. This makes it highly
suitable for real-time or dynamic environments where contin-
uous adaptation to new data is necessary. However, since the
source domain model labels the target domain data based on
the knowledge it has learned from the source domain, there
is a possibility of introducing label noise. This means that
the labels assigned to the target domain data may not always
accurately reflect the true labels or categories of the target
domain. The label calibration procedure aims to mitigate this
issue by refining the target domain labels, but it may not
completely eliminate the potential for label noise.

i) Data Generation: Generating synthetic EMG data can
alleviate the tedious workload associated with data collection
and annotation. The time-consuming nature of EMG data
collection and labeling, which requires expertise, makes the
generation of high-quality synthetic data appealing in terms of
practicality and efficiency. Synthetic data can provide a larger
and more diverse dataset for training models, enabling better
generalization and performance in real-world applications.
By generating data that covers a wide range of scenarios
and variations, including different muscle activations, signal
noise, and electrode positions, the models can learn to adapt
to various conditions and improve their robustness. However,
there are unique challenges when it comes to evaluating the
quality of synthetic EMG data compared to other domains like
vision or language. In vision or language tasks, the quality
of generated images or texts can be easily assessed through
human observation. However, evaluating the quality of EMG
signals generated is more complex and subjective. It is crucial
to ensure that the synthetic data accurately represents the
characteristics and statistical properties of real EMG signals.
Poorly generated data can have a negative impact on the
transfer learning process. Models trained on such data may
not generalize well to real-world scenarios, leading to poor
performance and unreliable results.

j) Meta Learning Based: Meta-learning approaches excel
in quickly adapting to new tasks with limited labeled data.
By leveraging knowledge from related tasks or domains, meta-
learning enables models to rapidly learn and generalize to new
EMG tasks. This is particularly beneficial in scenarios where
collecting labeled data for each specific task is time-consuming
or impractical. This makes meta-learning approaches well-
suited for few-shot learning scenarios. However, meta-learning
relies on the assumption that the source tasks or domains
are similar to the target task or domain. If the dissimilarity
between tasks or domains is significant, the transferability
of learned knowledge may be limited. Also, meta-learning
often requires substantial computational resources, including
memory and processing power, to train and update models.
End devices with limited resources, such as smartphones or
wearable devices, may struggle to handle the computational
demands of meta-learning algorithms.

k) Adversarial Learning Based: EMG signals can exhibit
variations due to factors like electrode placement, muscle mor-
phology, and individual differences. Adversarial approaches
aim to learn domain-invariant representations, allowing models
to focus on the underlying patterns and characteristics of
EMG signals rather than being influenced by domain-specific

variations. This helps in generalizing well to different subjects,
sessions, or conditions, thereby enhancing the transferability
of learned knowledge. This enables the transfer of knowl-
edge across domains, even when they exhibit substantial
distribution differences. However, adversarial training involves
balancing the trade-off between the adversarial loss and the
task-specific loss. Finding appropriate hyperparameter settings
for effective training can be challenging, and suboptimal
choices may lead to poor performance or instability during
training. More importantly, adversarial-based methods often
require additional components, such as domain classifiers
or adversarial networks, leading to more complex training
procedures. This complexity can increase the computational
and memory requirements, making the training process more
time-consuming and resource-intensive.

Based on the advantages and drawbacks discussed for each
transfer learning approach in the context of EMG applications,
along with the requirements of real-world EMG applications,
the transfer learning algorithm should bear the following
characteristics:

1) Bio-Inspired. The working mechanism of muscles is rel-
atively well studied and straightforward compared to that
of the brain. We point out that the activation patterns of
the muscles, relative location between muscles and elec-
trodes, and individual biological characteristics should
be explicitly modeled into the neural network to embed
the network with A priori knowledge. AlphaFold [121]
is a successful attempt at protein structure prediction
with protein A priori knowledge guided network structure
design.

2) Hardware-friendly. Ideally, the re-calibration should be
done on end devices rather than on cloud servers. With
wearable or even implantable devices, memory and com-
putation resources are highly restricted. Most current
DNN based transfer learning approaches fail to take the
hardware constraints into consideration. Future works
should incorporate a hardware resource perspective into
algorithm design (hardware-software co-design).

3) User-friendly. The transfer learning algorithm should
effectively support real-time processing and be
lightweight in terms of data collection procedures.
This ensures its feasibility and suitability for real-
world applications, enabling timely and efficient
decision-making without imposing excessive data
requirements or user involvement. Future works, thus,
should put more attention on transfer learning algorithms
that work with limited target domain data and annotation.
For instance, given a hand gesture classification task
with more than 20 classes, the algorithm is considered
user-friendly if the user is required to perform the most
simple gesture once for system re-calibration.
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