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Abstract— Machine learning on electromyography (EMG)
has recently achieved remarkable success on various
tasks, while such success relies heavily on the assump-
tion that the training and future data must be of the
same data distribution. However, this assumption may not
hold in many real-world applications. Model calibration
is required via data re-collection and label annotation,
which is generally very expensive and time-consuming.
To address this issue, transfer learning (TL), which aims to
improve target learners’ performance by transferring knowl-
edge from related source domains, is emerging as a new
paradigm to reduce the amount of calibration effort. This
survey assesses the eligibility of more than fifty published
peer-reviewed representative transfer learning approaches
for EMG applications. Unlike previous surveys on purely
transfer learning or EMG-based machine learning, this
survey aims to provide insight into the biological founda-
tions of existing transfer learning methods on EMG-related
analysis. Specifically, we first introduce the muscles’ phys-
iological structure, the EMG generating mechanism, and
the recording of EMG to provide biological insights behind
existing transfer learning approaches. Further, we catego-
rize existing research endeavors into data based, model
based, training scheme based, and adversarial based. This
survey systematically summarizes and categorizes exist-
ing transfer learning approaches for EMG related machine
learning applications. In addition, we discuss possible
drawbacks of existing works and point out the future direc-
tion of better EMG transfer learning algorithms to enhance
practicality for real-world applications.

Index Terms—Transfer learning, electromyography
(EMG), machine learning, meta learning, domain-
adversarial neural networks (DANN), random forest,

model ensemble, fine-tuning, gesture recognition, force
regression.
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[. INTRODUCTION

HE human motor control system is a complex neural
Tsystem crucial for daily human activities. One way to
study the human motor control system is to record the signal
due to muscle fiber contractions associated with human motor
activities by means of either inserting needle electrodes into
the muscles or attaching electrodes onto the surface of the
skin. The signal obtained is referred to as electromyography
(EMGQG). Given the location of the electrodes, EMG is further
divided into surface EMG (sEMG) and intramuscular EMG
(iEMG). Advancement in the analysis of EMG and machine
learning has recently achieved remarkable success enabling
a wide variety of applications, including but not limited to
rehabilitation with prostheses [1], hand gesture recognition [2]
and human-machine interfaces (HMIs) [3].

The current success of applying deep learning onto EMG
related tasks is largely confined to the following two assump-
tions, which are usually infeasible when it comes to real-world
EMG related scenarios:

1) Sufficient amount of annotated training data. The
growing capability and capacity of deep neural networks
(DNN) architectures are associated with large amounts
of labeled data [4], [5]. Such high quality abundant,
labeled data are often limited, expensive, and inaccessible
in the domain of EMG analysis. On the one hand, the
EMG data acquisition process is a highly physical and
time-consuming task that requires several days of collabo-
ration from multiple parties [6]. On the other hand, EMG
data annotation associated with biomedical applications
such as the diagnosis of neuromuscular disorders requires
expert knowledge [7].

2) Training data and testing data are independent and
identically distributed (i.i.d). The performance of the
model is largely affected by the distribution gap between
the training and testing datasets. The testing data might
also refer to the data generated during actual application
usage after model deployment. Take hand gesture recog-
nition, for example. The model is only capable of giving
accurate predictions with the exact same positioning of
the forearm of the test subject and the exact placement
of the electrodes [8], [9].

As the distribution of data changes, models based on statis-
tics need to be reconstructed with newly collected training
data. In many real-world applications, it is expensive and
impractical to recollect a large amount of training data and
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rebuild the models each time a distribution change is observed.
Transfer learning (TL), which emphasizes the transfer of
knowledge across domains, emerges as a promising machine
learning solution for solving the above problems. The notion of
transfer learning is not new, Woodworth and Thorndike [10]
suggested that the improvement over one task is beneficial to
the efficiency of learning other tasks given the similarity exists
between these two tasks. In practice, a person knowing how to
ride a bicycle can learn to ride a motorcycle faster than others
since both tasks require balance keeping. However, transfer
learning for EMG related tasks has only been gaining attention
with the recent development of both DNN and HMIs. Existing
surveys provide an overview of DNN for EMG-based human
machine interfaces [11], and transfer learning in general for
various machine learning tasks [12]. This survey focuses on
the intersection of machine learning for EMG and transfer
learning via EMG biological foundations, providing insights
into a novel and growing area of research. Besides the analysis
of recent deep learning works, we make an attempt to explain
the relationships and differences between non-deep learning
and the deep models, for these works usually share similar
intuitions and observations. Some of the previous non-deep
learning works contain more biological significance that can
inspire further DNN-based research in this field. To consoli-
date these recent advances, we propose a new taxonomy for
transfer learning on EMG tasks, and also provide a collection
of predominant benchmark datasets following our taxonomy.

The main contributions of this paper are:

o Over fifty representative up-to-date transfer learning
approaches on EMG analysis are summarized with
organized categorization, presenting a comprehensive
overview to the readers.

o Delve deep into the generating mechanisms of EMG
and bridge transfer learning practices with the underlying
biological foundation.

« Point out the technical limitations of current research and
discuss promising directions on transfer learning on EMG
analysis to propose further studies.

The remainder of this paper is organized as follows.
We introduce in section II the basics of transfer learning,
generation, and acquisition of EMG and EMG transfer learning
scenarios. In Section III, we first provide the categorization of
EMG transfer learning based on existing works and then intro-
duce in detail. We also give a summary of the commonly used
datasets in Section IV. Lastly, we discuss existing methods and
the future research direction of EMG transfer learning.

[I. PRELIMINARIES

We introduce in this section the definitions of transfer
learning, and related concepts and then summarize possible
transfer scenarios. Moreover, we introduce the basics of EMG
and highlight the correspondence between transfer scenarios
and EMG generation and recording mechanisms.

A. Transfer Learning

We first give the definitions of a “domain” and a “task”,
respectively. Define D to be a domain that consists of a feature

space X’ and a marginal probability distribution P (X), where
X is a set of data samples X = [x,-]?:l. In particular, if two
domains have different feature spaces or marginal probability
distributions, they differ from each other. Given a domain D =
{X, P(X)}, atask is then represented by 7 = {), f(-)} where
f(-) denotes the objective prediction function and ) is the
label space associated with X. From the probability point of
view, f(x) can also be regarded as conditional probability
distribution P (y|x). Two tasks are considered different if they
have different label spaces of different conditional probability
distributions. Then, transfer learning can be formally defined
as follows:

Definition 1 (Transfer Learning): Given a source learning
task 7g based on a source domain Dyg, transfer learning aims
to help improve the learning of the target objective prediction
function f7(x) of the target task 7g based on the target domain
Dr, given that Dy # Dy or Tg # 1Ir.

The above definition could be extended to multiple domains
and tasks for both source and target. It is worth noticing that
the majority of works surveyed in this paper only consider
the case where there is one source domain Dg, and one
target domain D7, as by far, this is the most intensively
studied transfer setup of the research works in the literature.
Based on different setups of the source and target domains
and tasks, transfer learning could be roughly categorized into
inductive transfer learning, transductive transfer learning and
unsupervised transfer learning [13].

Definition 2 (Inductive Transfer Learning): Given a trans-
fer learning task (Dg, 7s, Dr, Ir). It is a inductive transfer
learning task where the knowledge of (Dys and 7y is used to
improve the learning of the target objective prediction function
f7(x) when 7g # Tr. The target objective predictive function
can be induced by using a few labeled data in the target domain
as the training data.

Definition 3 (Transductive Transfer Learning): Given a
transfer learning task (Dgs, 7g, Dr, Ir). It is a transductive
transfer learning task where the knowledge of Dg and 7y is
used to improve the learning of the target objective prediction
function f7(x) when Dg # Dy and Tg = 77.

For transductive transfer learning, the source and target
tasks are the same, while the source and target domain vary.
Similar to the setting of transductive learning of traditional
machine learning [14], transductive transfer learning aims to
make the best use of the given unlabeled data in the target
domain to adapt the objective predictive function learned in
the source domain, minimizing the expected error on the target
domain. It is worth to notice that domain adaptation is a
special case where Xs = X7, Vs = Vr, Ps(y|X) # Pr(y|X)
and/or Pg(X) # Pr(X).

Definition 4 (Unsupervised Transfer Learning): Given a
transfer learning task (Dgs, 7g, Dr, 7). It is an unsupervised
transfer learning task where the knowledge of Dy and 7y is
used to improve the learning of the target objective prediction
function f7(x) with Vs and Yr not observed.

Based on the above definition, no data annotation is accessi-
ble in both the source and target domain during training. There
has been little research conducted on this setting to date, given
its fully unsupervised nature in both domains.
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lllustration of electrode variation. The left-hand side shows an EMG acquisition armband put on the forearm of a subject. (a), (b) and

(c) are the net of the armband and the corresponding skin underneath. Colored circles represent electrodes, with two vertically placed electrodes
being one bipolar channel. (a) demonstrates the original placement of an eight-channel bi-polar EMG collecting armband on the surface of the skin.
(b) shows a shifted placement of the electrodes on the skin compared to (a). (c) is the case where electrode placement is the same as (a), but

some channels are missing due to any reason.

B. Transfer Scenarios of EMG

Based on various factors in actual usage scenarios that
cause a difference between the source and target domains, the
factors that lead to domain differences can be categorized into
intrinsic and extrinsic factors. We define the intrinsic factors
to be the factors that affect the generation of the EMG signal.
Such factors include individual variations, muscle fatigue,
contraction force variations, contraction pattern variations, etc.
However, in most data acquisition processes surveyed in this
paper, subjects are instructed to avoid factors such as muscle
fatigue by resting in between multiple data collection sets.
Consequently, we only focus on factors that cannot be avoided
via deliberately designed data acquisition protocols, such as
individual variations. Extrinsic factors refer to the factors that
affect the collection of the EMG signal, such as variation in
electrode placement, variation in collection devices, variation
in downstream task requirement, etc. We summarize the com-
mon transfer settings of the works surveyed in this paper as
follows:

1) Inter-subject. EMG signals have substantial variation
across individuals. The variation comes from a different
distribution of subcutaneous fat, muscle fiber diameter,
and way of performing force. Inter-subject transfer refers
to the scenario where data collected from one subject or
other subjects is utilized to calibrate the target objective
function on a new subject. The task and acquisition
devices are assumed to be the same across individuals.

2) Electrodes Variation. Electrode variation could be cat-
egorized into electrode placement shift and channel
variation. Channel variation refers to the situation where
some channels are missing during actual use as compared
to the number of channels while recording EMG for
model training. The placement of electrodes plays a

3)

4)

crucial role in EMG applications. However, electrode
shift is inevitable from wearing and taking off EMG
acquisition devices, whether in the form of armband [11]
or sockets [15]. Figure 1 provides a visualization of
electrode variation in the case of an eight-channel EMG
armband acquisition device. Consider the task of hand
gesture and source domain associated with data collected
with electrode placement shown in Figure 1(a). A transfer
learning setting is formed with the target domain consist-
ing of the same task and data collected with electrode
placement shown in Figure 1(b) or with missing channels
as in Figure 1(c).

Inter-session. In real-world applications, models are built
with data collected from previous sessions and applied
to new sessions. Data distribution varies across sessions
due to reasons such as a different way of performing
gestures, variation in electrode placement, or simply
muscle fatigue. Inter-session transfer refers to the scenario
where data collected from previous sessions is utilized to
calibrate the target objective function in a new session.
The task, acquisition device, and subject are assumed to
be the same across sessions.

Modality Variation. Modality transfer refers to the sce-
nario where data collected on one or a few modalities
is utilized to calibrate the target objective function on
another or other modalities. The task and subject are
assumed to be the same, while devices vary due to modal-
ity variation. For the same or relevant tasks, it is possible
to utilize the knowledge learned from one modality and
facilitate the performance of the objective prediction
function on another modality. For example, the transfer
learning due to modality variation could be between
neurophysiological signals (EEG and EMG) [16].



3018 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023
sEMG
ﬁ SKin el SKin
Muscle Fiber Muscle Fiber
(a) Bi-polar SEMG (b) Mono-polar sEMG
iIEMG
el e2 el =
Skin Skin
Muscle Fiber Muscle Fiber
(c) Bi-polar iIEMG (d) Mono-polar IEMG
Fig. 2. Demonstration of EMG acquisition. The sEMG acquisition configuration is shown above the dotted line, with the iEMG acquisition

configuration shown below the dotted line. The triangle represents an amplifier. For the bi-polar setup as in (a) and (c), two electrodes are placed
on the skin surface or inserted into muscle fibers penetrating the skin surface. (b) and (d) show the case of a mono-polar setup with one electrode
attached to the skin or muscle fiber and the other electrode connected to the ground or a reference point with no EMG (bones).

5) Extensive Learning. Extensive learning refers to the
transfer scenario where new input data (target domain)
extends either the data or/and the task of the source
domain. For instance, the task of the source domain is
a C class classification problem, while data collected in
the target domain is of C + K classes where K additional
classes are incrementally added. The acquisition device
and subject are assumed to be the same for both domains.

C. EMG Basics

In the previous section, we categorize the factors that cause
domain differences into intrinsic and extrinsic ones. The intrin-
sic factors are closely related to the generation mechanisms
of EMG signals, while extrinsic factors are usually associated
with the signal acquisition process. Knowing how EMG is
generated and recorded is crucial to understand the biological
foundation behind various transfer learning approaches.

a) EMG Generation Mechanism: A motor unit (MU) is
defined as one motor neuron and the muscle fibers that it
innervates. During the contraction of a normal muscle, the
muscle fibers of a motor unit are activated by its associated
motor neuron. The membrane depolarization of the muscle
fiber is accompanied by ions movement and thus generates
an electromagnetic field in the vicinity of the muscle fiber.
The detected potential or voltage within the electromagnetic
field is referred to as the fiber action potential. The amplitude
of the fiber action potential is related to the diameter of the

corresponding muscle fiber and the distance to the recording
electrode. A Motor Unit Action Potential (MUAP) is defined
as the waveform consisting of the superimposed (both tem-
porally and spatially) action potentials from each individual
muscle fiber of the motor unit. The amplitude and shape of
the MUAP are unique indicators of the properties of the MU
(functionality, fiber arrangement, fiber diameter, etc.). Individ-
uals can exhibit variations in both muscle fiber arrangement
and muscle fiber diameter. These variations contribute to the
diverse characteristics of muscles and can influence various
factors, including strength, endurance, and muscle recruitment
patterns. Consequently, these factors can lead to distinct EMG
patterns across individuals, which explains why inter-subject
scenario exists. It is important to note that muscle fatigue
can lead to distinct EMG patterns, even within the same
individual. In order to maintain stable motor movement, MUs
are repeatedly activated to sustain muscle contraction. The
repeated activation of MU generates a sequence of MUAPs
forming a Motor Unit Action Potential Train (MUAPT). The
recorded MUAPTSs collected from multiple MUs are referred
to as the commonly known EMG signal.

b) EMG Signal Acquisition: Based on the number of elec-
trodes used during the recording of MUAPT, the recording
techniques could be divided into mono-polar and bi-polar
configurations. As shown in Figure 2, based on whether the
electrodes are inserted directly into the muscles or placed
on the surface of the skin, the collected signal is referred
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Fig. 3. Overview of categorization of transfer learning on EMG analysis.

to as intramuscular EMG (IEMG) or surface EMG (sEMQG),
respectively. A thin and sharp needle shaped electrode is
quickly and smoothly inserted into the targeted muscle during
iIEMG acquisition [17]. iEMG is considered to have good
spatial resolution due to the small diameter (around 0.5 mm) of
the needle electrode. Individual MUAPTSs could be identified
by visualization. However, the effectiveness of the process
of iEMG acquisition is highly dependent on the skill of
the electrodiagnostic physician. Moreover, the punctuation
procedure bears risks such as skin infection, severe bleeding,
and muscle irritation. SEMG, on the other hand, is a non-
invasive analysis tool for the human motor system that places
electrodes on the surface of the skin [18]. SEMG is widely
adopted for Human-Computer Interface (HCI) due to the major
advantage of its ease of use and non-invasive nature. If muscle
fibers belonging to multiple MUs are within the vicinity of the
electrode, all MUAPTS from different MUs will be detected by
the electrode. Given the different diameters of the electrode,
SEMG is composed of MUAPTs from MUs from the same
layer or deep layers, leading to poor spatial resolution as
compared to iEMG. Consequently, the picked-up SEMG by
the electrodes can be considered as a linear combination
of MUAPTSs. Each electrode placement pattern corresponds
to a unique combination pattern. With electrodes placement
varying, the linear combination pattern changes.

[1l. TRANSFER LEARNING IN EMG ANALYSIS

In the previous section, we introduced basic concepts on
transfer learning on general and EMG generating mechanisms
along with EMG acquisition techniques. These preliminaries
shed insights on the underlying principles of recent progress
in the area of transfer learning on EMG. In this section,
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we construct a categorization that best summarizes existing
research endeavors of transfer learning in EMG analysis. As
illustrated in Figure 3, we categorize existing works in EMG
related transfer learning into four main lines, i.e., data-based
approaches, model-based approaches, training scheme based
approaches, and adversarial-based approaches. Recall that the
goal of transfer learning is to maximize the performance of
the target objective prediction function, which can be achieved
by either manipulating the data or modifying the model to
reduce domain differences. In addition to the model-based and
data-based interpretations, certain transfer strategies are based
on specifically designed training schemes, such as mimicking
the transfer learning process during training or calibrating
labels during the collection of target domain data. We refer to
these strategies as training scheme-based approaches. Further-
more, apart from directly minimizing the domain difference,
adversarial-based approaches aim to force the neural net-
work to learn hidden EMG representations that contain no
domain discriminative information in an adversarial manner.
To accomplish this goal, a negative gradient is usually adopted
on top of special designs of neural network architectures.
While these approaches may appear to fall within the category
of model-based approaches, we list them separately due to
their unique adversarial nature, which distinguishes them from
conventional model-based approaches.

A. Data-Based Perspective

Data-based transfer learning approaches aim to reduce the
data distribution difference between the source domain and
target domain via data transformation and adjustment. From
a data perspective, two approaches are generally employed in
order to accomplish the knowledge transfer objective, namely
instance weighting and feature based transformation.
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1) Feature Based Strategy: Feature-based approaches map
each original feature into a new feature representation either
by linearly transforming the original feature or non-linearly
transforming the original feature to enable knowledge trans-
fer. Recall that in Section II-C, we mentioned that EMG
signals are composed of superimposed MUAPTSs generated
from different MUs in both temporal and spatial domains.
Assuming that only attenuation occurs with distance and there
is no filtering effect, the relationship between the collected
EMG signal and the generated MUAPs of the muscles can be
modeled linearly. Therefore, the process of transfer learning
aims to establish a mapping from one linear combination
pattern to another. In this sense, linear transform is suited
for the electrodes variation scenario. If no muscle fatigue
and gesture performing pattern difference considered, linear
transformation based approaches can be utilized to solve the
inter-session scenario. Domain differences caused by factors
such as individual variation, muscle contraction patterns can
not be modeled linearly, thus non-linear transformation is
usually adopted for scenarios such as inter-subject.

a) Linear Transformation: Lin et al. [19] proposed a nor-
malization based approach called Referencing Normalisation
to reduce the distribution difference among domains for inter-
subject sSEMG-based hand gesture classification. In specific,
data from the source domain are mapped to the range of the
target domain data:

> (Xs—min(Xs))

" max(Xs) —min(Xs)
- (max(X7) —min(Xt)) + min(Xr), (D)

where X s is the transformed source domain data.

In addition to directly applying a linear transformation to
normalize the data to the target domain range, authors [8],
[20], [21], [22] attempted to reduce the distribution gap
based on statistical features such as covariance and mean.
Conventional classifiers such as Linear Discriminant Analysis
(LDA) [23], Quadratic Discriminant Analysis (QDA) [24],
and Polynomial Classifier (PC) [25] are commonly adopted
for SEMG classification tasks. The covariance matrix, mean
vector, and the prior are the discriminant variables of LDA and
QDA classifiers. Define Xs, X7, us, ur to be the covariance
matrices and mean vectors of data from the source domain
and target domain, respectively. The transfer learning process
of LDA and QDA based linear classifiers could be defined
with a convex interpolation:

(2a)

Y=(l-a)*Sg+ax*xZp
( (2b)

p=>0=pB)*u+p*ur,
where o, B € [0, 1] are the trade-off parameters to balance
the knowledge from the source and target domain, ¥ and /&
represent the adapted covariance and mean vector. The optimal
value for @ and B are set empirically or via grid search with
a fixed step size. Liu et al. [21] also proposed to use transfer
learning on PC for the inter-session transfer scenario on both
intact-limbed and amputee subjects. Let M be the polynomial
expansion matrix of the training data, an optimal weight matrix

W* could be formulated as:

W* = argmin [MW — Y||?. (3)
w

Similarly, the transfer learning process based on PC is defined
as:

i=K

W=> W +W, 4)

i=1
where Wi and g’ are the optimal weight matrix for the i’
session and the corresponding weight ratio, W represents the
optimal weight matrix on the new session and W represents
the adapted weight matrix. It is worth noticing that distance
measurements such as Kullback—Leibler divergence [26] could
be used to select the source domain that’s the most similar to
the target domain to avoid negative transfer when there are
multiple source domains available [27].

Muscle Synergy Modeling (MSM) [9], [28], [29], [30]
has shown great success in terms of modeling the linear
relationship between MUAPTSs of muscles and the collected
EMG signal. Let x,,(¢) be the generated MUAPTS from the
m'" muscle, define act;(t) € R to be the activation signals,
Xm(t) could then be expressed as:

i=N

X (1) = D gmi - act;(1), )

i=1

where g,,; is the gain factor of muscle m transferred to the i'"
activation signal. Assuming that only attenuation exists with
distance but no filtering effect, the observed EMG signal at
the k' electrode (k'"channel) is written as:

m=M i=N
@)= D> i - gmi - act; (1)
m=m j=|
i=N
= > ai -act;(t), (6)
i=1

where I, is the factor that reflects the attenuation level from
the m'™ muscle on the k' electrode and ay; is the combined
weight factor that models both /i, and g,,;. The above mixture
could be written in matrix form:

Y=A'F, @)

where A € REK*N is the weighting matrix and F is the synergy
matrix. In EMG analysis, Y is often observed, thus the solving
for W and F becomes a linear blind source separation (BSS)
problem [31]. Non-negative matrix factorization (NMF) [32]
finds an approximate solution to the equation (7) with the
constraint that all elements are non-negative.

Jiang et al. [33] proposed correlation-based data weighting
(COR-W) for inter-subject transfer scenario of elbow torque
modeling. In specific, they assume that the target domain
data is a linear transformation of the source domain data,
Xr ~ X s = AXg, where f(s is the transformed source
domain data. The underlying assumption is that the synergy
matrix remains the same for both domains while the weighting
matrix varies. A derived assumption of Jiang et al. is that the
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Fig. 4. Demonstration of applying the Siamese architecture for distribution discrepancy minimization. It is worth noticing that the design of neural
network architectures varies across works. FC stands for the fully connected layer. The term ‘module’ refers to a combination of layers that might
contain convolution, normalization, or residual connection. The distribution discrepancy measurement is applied to the output of the FC layer just
for demonstration. The distribution discrepancy measurement could essentially be applied to deep features output by any module.

covariance matrix of the transformed source domain should
also be similar to the covariance matrix of the target domain
data. The optimal matrix A* is estimated by minimizing the
discrepancy between Y5 and X7. The transformed source data
is then used to re-train the model. Although Jiang et al. pro-
posed for inter-subject transfer scenario, while we argue that
the linear assumption might not hold due to variation across
subjects. Electrode shift, on the other hand, is reasonably
more consistent with the linear assumption in practice. Giinay
et al. [34] adopted MSM with NMF for knowledge transfer
across different tasks. The weighting matrix W calculated on
the source domain is kept constant while the synergy matrix is
re-estimated on the target domain data using the non-negative
least squares (NNLS) algorithm. In contrast to the works that
map the source domain data to a new space, another line of
work [35], [36], [37] transforms the target domain data so that
the source domain objective prediction function is applicable
again. Prahm et al. [35] viewed the target domain data as a
disturbed version of the source domain data. The disturbance
can be expressed as a linear transformation matrix A. The main
aim is then to learn and apply an inverse disturbance matrix
A1 to the target data such that the disturbance is removed.
Prahm et al. [35] adopted Generalized Matrix Learning Vector
Quantization (GMLVQ) [38] as the classifier and estimated
the optimal A~! using gradient descent on the GMLVQ
cost function. The linear transformation that maximizes the
likelihood of disturbed data based on the undisturbed data
could also be estimated by the Expectation and Maximization
(EM) algorithm [37], [39]. Following their previous work [35],
[37], Prahm et al. [36] proposed that the linear transformation
matrix could be further exploited based on the prior knowledge
that the underlying EMG device is an armband with eight uni-
formly distributed channels. For the electrode shift scenario,
Prahm et al. assumed that the disturbed feature from channel j
could be linearly interpolated from neighboring channels from

both directions with a mixing ratio . Then the approximation
of the linear transformation matrix is reduced to finding an
optimal mixing ratio r.

b) Non-linear Transformation: The principle objective of
feature transformation is to reduce the data distribution
between the source and target domain. Thus, the metrics for
measuring distribution difference is essential. Maximum Mean
Discrepancy (MMD) [40] is widely adopted in the field of
transfer learning:

2
i=NT

Zcb( H— Tch(x :

i=1

MMD X7, Xg) = H —

®)

where @ indicates a non-linear mapping to the Reproducing
Kernel Hilbert Space (RKHS) [41], NS and N7 indicate the
number of instances in the source and target domain, respec-
tively. Essentially, MMD quantifies the distribution difference
via calculating the distance between the mean vectors of the
features in an RKHS. In addition to MMD, Kullback-Leibler
divergence, Jenson—Shannon (JS) divergence [42] and Wasser-
stein distance [43] are also common distance measurement
criteria. The Siamese architecture [44], [45] is one com-
monly adopted architecture for DNN related transfer learning,
as illustrated in Figure 4. Zou and Cheng [46] proposed a
Convolutional Neural Network (CNN) based model named
Multiscale Kernel Convolutional Neural Network (MKCNN)
for hand gesture recognition. The authors proposed a transfer
learning MKCNN (TL-MKCNN), which contains a Dis-
tribution Alignment Module (DAM) for inter-subject and
inter-session transfer learning scenarios. TL-MKCNN adopts
the Siamese architecture, with one network taking inputs from
the source domain and the other one taking inputs from the
target domain. The Siamese networks share weights with each
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Fig. 5.

lilustration of the architecture of the progressive neural network. Frozen indicates that the parameters of the network are fixed, while

trainable suggests that the network parameters will be updated during training. The same input is fed to both networks, the intermediate features
from each module of the pre-trained network is merged with corresponding intermediate features of the target domain network.

other. DAM applies the JS divergence onto the output of the
second layer of the fully connected layers to minimize the
distribution difference between the deep features of the data
from the source and target domain. Besides the Cross Entropy
(CE) loss function for classification, Zou et al. also applies a
mean square error (MSE) to minimize the distance of instances
to the corresponding class center. The overall loss function to
train TL-MKCNN is the sum of JS divergence, CE, and MSE.
Bao et al. [47] applied fast Fourier transform (FFT) to data
segment and used the spectrum as input to their designed CNN
based network. Similar to [46], the MMD loss is applied to
the output of the second fully connected layer. A Regression
Contrastive Loss is proposed to minimize the distance in the
feature space between the source domain instance and the
target domain instance of the same category. Normalization
tricks are adopted to modify the loss for regression tasks.
Coté-Allard et al. [48], [49] proposed to use the Progressive
Neural Network (PNN) [50] to alleviate catastrophic forget-
ting caused by directly fine-tuning the network parameters
with data from the target domain. As shown in Figure 5,
a source domain network is first trained with data from the
source domain. The model parameters of the source domain
network are then fixed, while the parameters for the target
domain network is randomly initialized. Note that the network
structures of both networks are exactly the same except for the
model parameters. During the transfer learning process, target
domain instances are fed to both networks. The intermediate
features of each module of the source domain network is then
merged with the corresponding features of the target domain
network and fed forward to the next module of the target
domain network. The underlying hypothesis is that although
distribution variation exists between the source and target

domain, generic and robust features could be attracted for more
effective representation learning.

Du et al. [51] proposed to adopt Adaptive Batch Nor-
malization (AdaBN) [52] for inter-session transfer learning.
AdaBN is a lightweight transfer learning approach for DNNs
based on Batch Normalization (BN) [53]. BN was initially
proposed to accelerate the convergence of the DNN for faster
CNN training. Formally, define Z = [Zi],le to be a batch of
intermediate features of instances with batch size B, the BN
layer transforms Z as follows:

iy z; — E[Z.;]
VVar[Z.;]

where y and B are learnable parameters, Var stands for
variance. The underlying hypothesis is that labeled related
knowledge is stored in the network parameters of each layer,
and the domain related knowledge is portrayed by the statistics
of the BN layers. The transformation ensures that the distribu-
tion of each layer remains the same over mini-batches so that
each layer of the network receives input of similar distribution
regardless of the source or target domain. Different from
fine-tuning, AdaBN doesn’t require target domain label for
knowledge transfer, and only a small fraction of the network
parameters need to be updated. In particular, the network is
first pre-trained on source domain data. During the training
process, the statistics of BN layers are calculated by applying
a moving average for all data batches. All network parameters
are fixed except for the parameters of BN layers during transfer
learning. The update of BN statistics to target domain data
could easily be done by a forward pass.

2) Instance Weighting: Instance weighting assumes that
similarities exist between source domain and target domain

+ 8. €))
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data. This similarity can arise from different individuals as
well as from different electrode placements. Instance weight-
ing is suited for any transfer scenario as long as the domain
difference is assumed to be small. Consider a special case of
domain adaptation where Ps(y|X) = Pr(y|X) and Ps(X) #
Py (X) which is referred to as covariate shift [54]. Consider the
transfer scenarios that we introduced in Section II-B, collecting
abundant data in the target domain is often prohibitive, and
thus target domain instances are limited. A natural solution is
to assign weights to partial instances from the source domain
so that these source domain instances can be used along with
limited target domain data. Huang et al. proposed Kernel
Mean Matching (KMM) [55] to estimate the instance weights
by matching the means of the target and source domain in
a Reproducing Kernel Hilbert Space (RKHS). The weighted
instances from the source domain are combined with labeled
target domain instances to train