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Abstract— KCNQ2 epileptic encephalopathy is relatively
common in early-onset neonatal epileptic encephalopa-
thy and seizure severity varied widely, categorized as
drug-sensitive epilepsy and drug-resistant epilepsy. How-
ever, in clinical practice, anti-seizure medicines need to
be gradually adjusted based on seizure control which
undoubtedly increases the economic burden of patients,
so further positive anti-seizure regimens depend on
whether seizure severity can be predicted in advance.
In this paper, we proposed a reliable assessment to differ-
entiate between drug-sensitive epilepsy and drug-resistant
epilepsy caused by KCNQ2 pathogenic variants. Based
on the electroencephalogram (EEG) and electrooculogram
(EOG) signals, twenty-four classical temporal and spectral
domain features were extracted and Gradient Boosting
Decision Tree (GBDT) was employed to distinguish between
patients with drug-sensitive epilepsy and drug-resistant
epilepsy. In addition, we also systematically investigated
the impact of channel combination and feature combi-
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nation based on the forward stepwise selection strategy.
By employing selected channels and features, the clas-
sification accuracy can reach 81.25% with a sensitivity
of 57.14% and specificity of 100%. Compared with the
state-of-the-art techniques, including the functional net-
work, effective network, and common spatial patterns, the
improvement of accuracy ranges from 37.5% to 56.25%,
indicating the superiority of our proposed method. Overall,
the proposed method may provide a promising tool to
distinguish different seizure outcomes of KCNQ2 epileptic
encephalopathy.

Index Terms— KCNQ2 epileptic encephalopathy, drug-
resistant epilepsy, electroencephalogram (EEG), gradient
boosting decision tree (GBDT).

I. INTRODUCTION

KCNQ2 is a confirmed epilepsy pathogenic gene, located
on the long arm of chromosome 20, at position 13.3.

KCNQ2 gene encodes the voltage-gated potassium channel
subunits KV7.2 and is a key factor in regulating neu-
ral excitability [1]. Pathogenic variants on KCNQ2 gene
may reduce the activation threshold of the neuron, leading
to early-onset neonatal epilepsy or epileptic encephalopa-
thy (EE) in neonates. In the clinic, KCNQ2 EE patients
are all required to take ASM treatments continuously to
reduce the frequency and severity of seizures. According to
seizure outcome, patients who achieved sustained seizure-free
with antiseizure medicines (ASMs) were diagnosed with
drug-sensitive epilepsy (DSE), while those who failed to
adequate trials of two ASMs were diagnosed as drug-resistant
epilepsy (DRE) [2]. However, to diagnose the specific type
of KCNQ2 EE (DSE or DRE), long-term ASM treatment and
follow-up are required to determine whether ASM drugs have
a positive therapeutic effect on KCNQ2 EE patients. This pro-
cess is time-consuming and may greatly influence whether to
adopt positive treatment regimens or not, for early and rational
intervention is especially important for neonates to reach good
outcomes. In addition, the miscategorization of DSE and DRE
may cause unnecessary psychological and economic burdens,
which also bring out a potential risk of inappropriate treatment
or side effects. Thus, in our study, we attempt to identify the
KCNQ2 EE patients in advance after initial ASMs treatments
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by exploring potential differences in EEG signals. This early
identification would help the physicians in making a more
appropriate and precise therapeutic intervention, then further
effort needs to be paid to predicting the severity of seizures.

Recently, to distinguish different seizure severity of
epilepsy, various methods have been proposed. DRE is
often associated with malformations of the brain regions.
Magnetic resonance imaging (MRI) is widely used to iden-
tify patients with DRE. By applying density imaging [3],
image feature extraction [4] and diffusion tensor imaging [5],
possible structural abnormality can be quickly detected by
techniques of MRI analysis. However, imaging of KCNQ2-
related epilepsy was reported to be normal in most neonatal
patients [6], then MRI-based methods cannot distinguish sever-
ity of KCNQ2-related epilepsy effectively. In addition, MRI
equipment is expensive and needs professional maintenance,
which is unavailable in underdeveloped areas. Thus, these
above-mentioned flaws are not conducive to the application
of MRI for distinguishing KCNQ2 EE.

In contrast, electroencephalogram (EEG) is another promis-
ing technique to study EE. Compared with MRI, EEG
signals has the advantages of lower cost and convenient
acquisition. Extracting signal features from EEG for brain
disease analysis has been widely applied in seizure pre-
diction, epilepsy identification, epileptic foci detection, etc.
Shiao et al. [7] extracted muti-frequency band features (i.e.,
6 different frequency bands) for seizure prediction from
intracranial electroencephalogram (iEEG) and achieved a high
sensitivity of about 90-100%. Xu et al. [8] extracted the
spatial pattern features from the resting EEGs. 92% accu-
racy was achieved for classifying psychogenic nonepileptic
seizures from epilepsy. Boonyakitanont et al. [9] employed
EEG signals for epileptic seizure detection with temporal
and spectral domain features (i.e., variance, energy, kurto-
sis entropy and wavelet coefficients, etc.). The specificity
of 83% was achieved with a sensitivity of 70% using the
LDA classifier. These studies revealed the potential of EEG
signals in reflecting the physiological state of patients’ brains.
By extracting the temporal and spectral domain features,
cerebral pathological information can be captured effectively
for epilepsy analysis. Recently, several studies have also
found that unique patterns were detected in the EEG of
KCNQ2 patients with DRE. Buttle et al. [10] observed a
unique pattern of focal pointed theta waves of lambdoid
morphology. These pointed theta waves were observed in
all subsequent recordings. Kato et al. [11] observed interictal
burst-suppression or multiple focal spikes in neonatal-onset
EE patients. Ghimatgar et al. [13] described a very frequent
episodes pattern of spike or sharp wave discharges in con-
ventional EEG. Previous studies provided a perspective that
KCNQ2 EE can often cause EEG abnormalities. However,
whether the physiological information implicitly contained
in the EEG signals can distinguish the seizure severity of
KCNQ2 EE has not been systematically investigated. Neonates
spend two-third of their lives sleeping [13], [14]. Thus, the
acquisition of sleep EEG is convenient for practical use.
Inspired by these aforementioned studies, we hypothesized that
the sleep EEG signals of neonates could be used to distinguish

seizure severity of KCNQ2 EE. Specifically, the inter-ictal
sleep EEG signals of neonates were selected for analysis.

To quantitatively analyze the electroencephalographic char-
acteristics of KCNQ EE, twenty-four classical temporal and
spectral domain features from previous works [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25] were extracted.
These features can reflect potential pathological information.
Besides, the effect of channel selection and feature selection
to propose a compact model were investigated. A forward
stepwise selection method to find the optimal channel com-
bination is proposed, which would potentially reduce the
acquisition cost, computational complexity and enhance the
performance. Furthermore, the quality of EEG features is
highly associated with the epilepsy identification performance.
Here, we employed the wrapper technique to continue reduc-
ing redundant features, which has several merits in practical
application. Firstly, through feature dimensionality reduction,
redundant features can be excluded to reduce the computer
cost. Secondly, the optimal feature combination is conducive to
eliminating noise error, leading to performance improvement.
Last, based on the fixed optimal feature combination, the
trained compact model is not prone to overfitting. We used
the forward greedy stepwise selection strategy to search for the
optimal feature combinations until the classification accuracy
no longer increased.

Our objectivein this paper is to propose a reliable method to
distinguish seizure severity of KCNQ2 EE, which may provide
auxiliary diagnosis and avoid the time-consuming medication
process and follow-up process. Specifically, temporal and
spectral domain features were extracted to distinguish the
potential pathological abnormalities between DSE patients and
DRE patients. The contributions of the proposed method can
be summarized as follows:

1) To quantitatively analyze the electroencephalographic
characteristics of KCNQ2 EE, features that can reflect
the temporal and spectral EEG dynamics were extracted.
Meanwhile, with the wrapper technique, redundant fea-
tures were eliminated to reduce the model complexity
and the potential indicators for distinguishing the DSE
and DRE were reserved.

2) In consideration of acquisition cost and computational
efficiency, channel selection is performed by a forward
stepwise selection approach. With the channel selection
process, it would not only potentially reduce the setup
time in the signal acquisition, but also lessen the com-
putational complexity and improve the performance in
further EEG signal processing.

3) Our proposed method was validated on a clinical dataset
of KCNQ2 EE, and the highest accuracy value of
81.25% can be reached. To the best of our knowledge,
this is the first study to explore the feasibility of EEG
in distinguishing the DSE and DRE of KCNQ2 EE.

The rest of this paper is organized as follows. In Section II,
we introduce the dataset and data preprocessing. The extracted
features, data balance technique, and validation strategy are
also described. The results are presented in Section III.
In Section IV, we discuss the results and compare our results
with other state-of-the-art techniques. In the last section,
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Fig. 1. The overall framework of the proposed method.

we conclude the paper and present the future work of this
study.

II. MATERIALS AND METHODS

The overall framework of the proposed approach includes
the following stages: 1) Data acquisition, 2) Feature extraction
and data balance, 3) Channels selection and feature selec-
tion, and 4) Classification. Firstly, we extracted the temporal
and spectral features from each recorded channel. Secondly,
a forward stepwise selection method was applied. Last, DSE
patients and DRE patients were differentiated based on GBDT.
The overall framework is shown in Fig. 1. And the details of
each stage were elaborated as follows.

A. Dataset
A total of 20 neonatal patients with early-onset EE caused

by KCNQ2 pathogenic variants were diagnosed by the physi-
cians through clinical feature analysis and gene sequencing
from 2016 to 2019. Patients were all required to take initial
ASMs treatment to reduce the frequency and severity of
seizures at first. After that, physicians needed to diagnose
the patient’s condition (DSE or DRE) according to the effect
of long-term ASMs treatment and follow-up records. The
specific diagnostic criteria were as follows: DSE: the success
of adequate trials of two tolerated, appropriately chosen and
used ASMs schedule. DRE: failure of adequate trials of two
tolerated, appropriately chosen and used ASMs schedule [2].

After initial ASMs therapy, the EEG signals were collected
by the Children’s Hospital of Fudan University using the 10-
20 system electrode locations. The electrode locations include
F3, F4, T3, T4, C3, C4, P3, and P4. Meanwhile, two EOG
channels namely EOG1 and EOG2 were also attached to
record information of eye movements. The sampling rate

was set to 500Hz with a 50Hz notch filter and a band-pass
filter of 0.5Hz-70Hz. All the subjects were informed of
the experiment’s purpose and signed informed consent. This
retrospective study was approved by the ethics committee of
the Children’s Hospital of Fudan University (approval number:
2022-51).

After EEG signals recording, the collected signals were
labeled as different segments including seizures, body move-
ments, wake and sleep by a senior neurophysiologist. Then,
we selected the inter-ictal sleep epoch from patients for further
analysis. Overall, sleep epochs of 16 patients (7 DSE patients
and 9 DRE patients, 10 males and 6 females) were selected.
The specific clinical information of patients with KCNQ2
EE is shown in Table I. The continued sleep EEGs signal
were divided into five-second segments without overlap. Any
segments affected by muscle movements or body movements
were excluded. Ultimately, 3768 segments were selected from
16 patients for further analysis.

B. Feature Extraction and Data Balance Technique

In this study, we extracted twenty-four temporal and spectral
domains features from the segments of each channel (as shown
in Table II). These features were commonly used in epilepsy
prediction and epilepsy classification, showing a reliable abil-
ity to recognize the pathological patterns of epilepsy [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25]. Each feature
was computed using the 5s segments. Features belonging to
the same segment were concatenated to build a feature vector.
For each channel, a 243768 feature matrix was obtained,
accordingly. Let x(t) be the 5s segment (a 5s segment contains
N=2500 sampling points). The features can be calculated as
follows:
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TABLE I
CLINICAL INFORMATION OF PATIENTS WITH KCNQ2 EE

1) Line length: Line length [15] is an effective feature in
epilepsy analysis and can be defined as:

Linelength =

N∑
t=1

|x (t) − x (t − 1)| (1)

1) Wavelet-based features: Wavelet-based features [16]
have been used in various epilepsy studies. Here,
we extracted three wavelet-based features based on the
Haar mother wavelet.

C(t)a
b =

∫
x(t)

1
√

a
γ (

t − b
a

)dt (2)

V WC =
1
N

N∑
t=1

(C(t) − C̄)
2 (3)

EWC =
1
N

N∑
t=1

C(t)2 (4)

K WC =

1
N

N∑
t=1

(C(t) − C̄)
4

( 1
N

N∑
t=1

(C(t) − C̄)
2
)

2 (5)

where C(t)a
b is the wavelet coefficient at scale a and position

b. C̄ is the average of the C(t).
3) Hurst exponent: Hurst exponent [17] can reflect the

tendency of time series. Here, we implement it based on the
rescaled range analysis.

lg
R(N )

S(N )
= HE ∗ lgN (6)

where R(N) represents the cumulative range and S(N) repre-
sents the standard deviation. HE is the hurst exponent.

4) Sample entropy: Sample entropy [18] is a measurement
of fluctuation in the time series, taking the following form:

SampEn(m, r)= ln(
Km+1(r)
Km(r)

) (7)

where m represents the embedding dimension and ris the
tolerance. Km(r) represents the probability of two sequences
matching m points under tolerance r .

5) Mean: Mean value is the average of x(t).
6) Coefficient of variation: Coefficient of variation reflects

the data dispersion and is defined as the ratio of the standard
deviation to the mean.

7) Mobility and complexity: Mobility and complexity rep-
resent the spectrum properties of EEG signals. Mobility [19]
can be calculated as the ratio of standard deviation of the
signal derivative to the standard deviation of the raw signal.
Complexity [20] is the mobility of the signal derivative to the
mobility of the raw signal.

8) Root mean square: Root mean square reflects the average
power of the EEG signal which is given by the following form:

RM S =

√
1
N

∑N
t=1 x(t)2

N
(8)

9) Slope signal change: Slope signal change reflects the
frequency information of EEG signal. The thresh is set to 40uv
for all segments in this study.

10) Wavelength: Wavelength is the parameter reflecting both
amplitude and frequency information. Let fs be the sampling
frequency. Wavelength is given by the following form:

W L =
fs

N − 1

N∑
t=1

|x(t) − x(t − 1)| (9)

11) Zero crossing: Zero crossing is an indicator of signal
frequency. Its value is directly related to signal uncertainty.
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TABLE II
THE 24 HAND-CRAFTED FEATURES

12) Area under curve: Area under curve (AUC) is calculated
from the segments. We employed the trapezoidal rule to
estimate the value of the integral.

13) Power spectral density of delta, theta, alpha, and
beta frequency band [21]: the power spectral density was
obtained by Welch’s overlapped segment averaging estimator
(Parameter: 50% segment overlap and 8 overlapped segments).
If the length of the signal cannot be divided into an integer
number of segments with 50% overlap, the signal is truncated
accordingly.

14) Kurtosis: Kurtosis [22] is related to the sharpness of
signal peak, which is given by the following form:

K urt =

1
N

∑N
t=1 (x (t) − x̄)4(

1
N

∑N
t=1 (x (t) − x̄)2

)2 (10)

15) Energy and variance: Energy [23] and variance [10]
are the indicators related to the amplitude measurement. The
detailed formulas are as follows:

Energy =

N∑
t=1

x(t)2 (11)

V ar =
1
N

N∑
t=1

(x(t) − x̄)2 (12)

16) Skewness: Skewness [24] is a digital feature of the
degree of asymmetry of data distribution.

Skew =

1
N

∑N
t=1 (x(t) − x̄)3

( 1
N

∑N
t=1 (x(t) − x̄)2)

3
2

(13)

17) Nonlinear energy: Nonlinear energy [25] is sensitive
to the high frequency oscillation, which can well capture the
abrupt change in EEG signal.

N E =

N∑
t=2

(x(t)2
− x(t − 1) ∗ x(t + 1)) (14)

In practical application, the dataset is often imbalanced due
to distribution differences or sampling deviation. The differ-
ence in the number of signal segments of patients may lead the
classifier to bias the learning results of the minority classes.
Here, we employed Synthetic Minority Over-Sampling Tech-
nique (SMOTE) to balance the data for each training patient.
SMOTE synthesizes new samples for minority classes based
on interpolation. Compared with the technique of resampling
the minority classes directly, it can prevent the generation of
specific samples and the reduction of generalization. We per-
formed the data balance technique on the training set and
validated the performance on the remaining patient’s data.

C. Channel Selection and Feature Selection
For the channel selection, we progressively increased the

number of channels based on the forward stepwise selection
strategy [26]. To be specific, the criterion in each forward
step was that the selected channel contributed to the highest
KCNQ2 patient recognition accuracy. We initially performed
the evaluation with each channel and selected the channel
satisfying the selecting criterion as the first selected channel.
Then we separately combined the previously selected channel
with each of the rest channels to evaluate the performance.
The channel with the highest accuracy was selected and added
to the optimal channel combination. The algorithm was termi-
nated until all channels were selected. The optimal channel set
was then determined based on the 10-round forward stepwise
selection results.

The computational efficiency is highly dependent on the
number of alternative features. Thus, it is not feasible to
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directly optimize all features from all channels, which may
cause computational burden or even dimension disaster. Exces-
sive ineffective alternative features can also add the challenge
of refining features. Hence, we further searched for the optimal
feature combinations based on the selected channels. The
forward greedy stepwise selection strategy was also applied
in this process. Specifically, to obtain the optimal feature
combination with the dimension of N f , we gradually increased
the number of features, via the wrapper technique from 1
to N f .

D. Validation Protocol
The classification performance was evaluated by employ-

ing the Leave-One-Subject-Out-Cross-Validation. Namely, one
patient’s data was used as the test set and other patients’ data
was used as the training set. For each subject, we predicted the
two types of KCNQ2 epileptic encephalopathy in lines with
the most segments predicted type based on the hard voting
method. To be specific, if more than 50% of the segments
of a DSE (or DRE) patient are predicted to be DSE (or
DRE), this DSE (or DRE) patient is considered to be classified
correctly. We repeat the validation process until each patient’s
data has been used as the test set. The seven evaluation indices
(accuracy, sensitivity, specificity, precision, recall, F1 score
and kappa coefficients) were calculated as follows:

ACC =
T P + F P

NDSE + NDRE
∗ 100% (15)

SE N =
T P

NDSE
∗ 100% (16)

S P E =
T N

NDRE
∗ 100% (17)

P RE =
T P

T P + F P
(18)

REC =
T P

T P + F N
(19)

F1 =
2 ∗ P RE ∗ REC

P RE + REC
(20)

p0 =
T P + T N

NDSE + NDRE
,

pc =

(T P+F N ) ∗ (T P+F P)+(F P + T N ) ∗ (F N +T N )

(N DSE + NDRE )2

K =
p0 − pc

1 − pc
(21)

where ACC, SEN, SPE, PRE, REC, F1 and K represent the
accuracy, sensitivity, specificity, precision, recall, F1 score and
kappa coefficients, respectively. TP and TN are the correctly
identified number of DSE patients and DRE patients.FP and
FN are number of wrongly identified DSE patients and DRE
patients.NDSE and NDRE are the actual number of DSE patients
and DRE patients, respectively.

E. Model Selection
To first select an optimal model, we systematically com-

pared the baseline performance of Random Forests [27],

TABLE III
HYPERPARAMETER SETTING FOR THE CLASSIFIERS

Fig. 2. Performance comparison of different classifiers.

Support Vector machine (SVM) [28], K Nearest Neighbor
(KNN) [29], Naïve Bayes classifier (NB) [30], Linear Discrim-
inant Analysis (LDA) [31], and Gradient Boosting Decision
Tree (GBDT) [32] before channel selection and feature selec-
tion. The corresponding hyparameter combinations are listed
in Table III. For each hyparameter combination, the accuracy
was calculated for model evaluation. As shown in Fig.2, the
GBDT achieved the best performance with an accuracy of
56.25%, outperforming all other models in classifying KCNQ2
patients. Based on this result, we selected and fixed the GBDT
model for further analysis.

III. RESULTS

A. Performance on Channel Selection
To differentiate the DSE patients and DRE patients, feature

vectors were concatenated based on the forward stepwise
selection strategy. The feature vectors were then fed into
Gradient Boosting Decision Tree (GBDT) to identify the
specific label of a patient. We conducted a total of 10 rounds
of the channel selection process to find the optimal channel
combination.

As shown in Table IV, the channel with the highest accuracy
will be retained as the basis for subsequent selection. F3
channel was selected firstly and achieved an accuracy of 75%
(SEN: 57.14% and SPE: 77.77%). In the second round, the
SPE was further improved by adding the T4 channel. The
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TABLE IV
CHANNEL SELECTION RESULTS BASED ON THE FORWARD STEPWISE SELECTION STRATEGY

TABLE V
THE SELECTED FEATURES COMBINATIONS AND RELATED ACCURACY

optimal channel combination appeared in the third round by
adding channel T3. ACC, SEN, and SPE can achieve 81.25%,
57.14%, and 100%, respectively. Subsequent channel selec-
tions failed to further improve performance. As expected, the
specific channel combination achieved the best performance in
ACC, SEN, and SPE, indicating the ability of these channels
to distinguish DSE patients and DRE patients. To intuitively
view the effect of channel selection, we visualized the chan-
nel selection process. The channel combination of F3, T4,
and T3 achieved the best performance in forward stepwise
selection.

B. Performance on Feature Selection
After the forward stepwise channel selection, we employed

the forward stepwise feature selection to search for the optimal
feature combinations. Here, 24 features were extracted sepa-
rately from the selected channels (F3, T4, and T3). Totally,
72 features were systematically investigated based on the Gra-
dient Boosting Decision Tree classifier. The feature selection
was terminated until reaching the maximum accuracy.

By adopting the Leave-One-Subject-Out-Cross-Validation
technique, seven groups feature combinations were obtained

(as shown in Table V). In the process of feature searching,
the feature combination may vary due to multiple locally
optimal solutions. We recorded and traversed the branches of
each local optimal solution until the classification accuracy
no longer increased. The selected feature combinations were:
COV (F3) + COV (T4) + HE (F3); COV (F3) + COV (T4) +

SampEn (F3); COV (F3) + COV (T4) + Mean (F3); COV
(F3) + COV (T4) + SSC (F3); COV (F3) + COV (T4) +

AUC (F3); COV (F3) + COV (T4) + PSD of β (F3); COV
(F3) + Kurt (T4). The 81.25% classification accuracy can be
achieved. Among all feature combinations listed in Table V,
COV (F3) and COV (T4) were selected most, indicating their
superiority in distinguishing KCNQ2 EE.

IV. DISCUSSION

In the proposed method, we employed the twenty-four
temporal and spectral domain features to classify the two
types of KCNQ2 EE. To further improve the performance,
we employed channel selection and feature selection tech-
niques to minimize the impact of redundant features. Channel
selection and feature selection have several merits for practical
application. First, the selected channels can not only capture
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TABLE VI
THE PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART METHODS

the brain abnormalities but also shield the impact of invalid
channels. Also, channel reduction and feature reduction are
potential values in epileptic encephalopathy, as these will help
to reduce the acquisition cost and system consumption.

A. Performance on Channel Selection
Regarding the channel selection, our results show that

the best performance can be achieved by using the selected
three channels. In the clinic, three channels are generally
considered enough to cover the epileptic focus [33]. For some
partial seizures, the seizure patterns never spread to more
than 6 channels. Selecting all the channels may involve the
channels without seizure manifestations, which are regarded as
the noise for the classification. Furthermore, from Table IV,
the highest performance (ACC, SEN, SPE, PRE, REC, F1
and Kappa) can be reached by using the three channels (F3,
T4, and T3). It should be noted that despite these selected
channels are not exactly the same as the focal channels for all
KCNQ2 patients, the high performance can still be reached by
using these selected channels. Possible explanations may fall
into two parts. Firstly, Seizure symptoms are often associated
with abnormal conduction direction of abnormal discharge
[34]. Channels away from the epileptogenic foci may be
more conducive to capturing the spread information of the
abnormal discharges. In addition, the focal channels detect the
earliest changes of EEG signal, but it is not confirmed that
they also have a notable effect on detecting potential disease
mechanisms. Secondly, based on the early EEG changes,
neuroscientists identify the focal channels. Since the focal
channels are more highly related to the seizures instead of the
physiological abnormalities between KCNQ2 EE, the selected
channels may not be exactly the same as these channels.

For the specifically selected channels (F3, T4, and T3),
our results also show consistency with the reported cases of
KCNQ2 EE. T4 and T3 channels are approximately located
near the temporal regions. And the selected channel F3 is in
the left frontal region. Previous case studies have reported that
the clinical manifestations of most KCNQ2-related epilepsy
show multiple focal spikes [35]. Part of the EEG phenotype in
KCNQ2-related epilepsy shares the different unique discharge
patterns (i.e., slow delta waves [36], frontal spikes [37], and
harp waves over both temporal regions [35], [38]). Most of

these patterns can be frequently observed in bilateral temporal
regions and frontal regions. Thus, electrodes located in these
areas are more sensitive to abnormal brain discharges, which
may provide sufficient abnormal physiological information.

B. Performance on Feature Selection
Regarding the feature selection, we proposed the fea-

ture combinations to distinguish the DSE patients and DRE
patients. By traversing the features from the selected channels,
we obtained the seven group feature combinations. By using
the selected features, ACC, SEN, and SPE gradually rose to
convergence, which were sufficiently high compared with the
accuracy when all the features were used. Thus, these feature
combinations were recommended to distinguish pathological
abnormalities.

For the wrapped feature selection strategy, different optimal
feature subsets can be obtained based on different classifiers.
Similarly, based on different feature selection approaches (fil-
ter, wrapper, and embedded approaches), the selected feature
subsets can also vary from each other. Thus, the selected
features may not have the explicit physiology significance but
may achieve the best performance combined with the specific
subset search strategy and subset evaluation approach [39].
The m best features may not be the best m features, because
the m best features are most relevant to the classification,
but there may be large redundancy between them [40]. Here,
we investigated several feature combinations as shown in
Table IV. Our work also demonstrated that temporal and spec-
tral domain features from the EEG signals have the potential
to detect different physiological abnormalities of KCNQ2 EE.
Usually, EEG signals contained the abnormal discharge of
neurons. Extracting relevant features from appropriate brain
regions may further improve the performance of distinguishing
KCNQ2 EE. Thus, advanced techniques to select appropriate
channels and features are not only required for practical
application but also for the improvement of accuracy.

C. Performance Compared With the State-of-the-Art
Techniques

We also compared our work with state-of-the-art techniques.
These techniques were: 1) Functional EEG network based
on coherence. 2) Effective EEG network based on transfer
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Fig. 3. The visualizations of KCNQ2 EE feature subspace. The red
dots represent DSE sample points, while the cyan dots represent the
DRE sample points.

entropy. 3) Common spatial patterns of functional and effective
EEG networks. For the functional network and effective net-
works, the network properties including local efficiency, global
efficiency, characteristic path length, and clustering coefficient
were extracted for classification. All these network properties
were calculated with the Brain Connectivity Toolbox [41].
As for the common spatial patterns, we employed the scheme
in [42] to generate the spatial pattern of the network filters. The
spatial patterns were extracted in the network space. To ensure
fairness, all these techniques were implemented in our dataset.

Network properties have been used for the diagnosis of
some neurological diseases in previous studies [43], [44],
[45]. However, it is difficult directly distinguish the KCNQ2
EE based on the network properties as shown in Table VI.
Neither the functional network, effective work, nor the com-
bination of these two networks can reflect the pathological
differences between the two different seizures of KCNQ2 EE.
One possible explanation is that the four network properties
based on graph theory analysis are the statistic measurements,
which cannot fully represent all the potential information
of the network. Abnormal information in the KCNQ2 EE
may be more complicated than these network properties.
Consequently, network properties cannot provide effective
differentiation for patients with KCNQ2 EE.

Regarding the common spatial patterns of functional and
effective networks, the performance was further degraded com-
pared with the network properties. Commonly, the common
spatial patterns can extract the spatial pattern of networks
(SPN), which can reflect the connective strength of nodes
and potential pathological differences underlying core brain
regions. However, fusing spatial features among functional
and effective networks may not be an effective approach to
classify the two types of KCNQ2 EE compared with our
proposed method. This can be explained from the following
two perspectives. Firstly, the common space patterns are
sensitive to different brain spatial modes. Thus, they are highly
effective in distinguishing psychogenic nonepileptic seizures
from epileptic seizures [8], or patients with schizophrenia
from healthy controls [46]. Compared with these neurological
diseases, it still remains uncertain whether there are significant
differences in spatial patterns of networks among patients with
KCNQ2 EE. Accordingly, the methods based on common

spatial patterns may not provide a satisfactory differentiation
of KCNQ2 EE. Secondly, the brain networks constructed by
different methods may lead to performance differences. Thus,
the brain network methods for KCNQ2 EE classification are
still needed further exploration.

Regarding the results, it is noted that the sensitivity of all
methods achieved a relatively low performance. Especially,
the EEG network nearly can not distinguish the DSE patients.
Here, we employed t-distributed stochastic neighbor embed-
ding (t-SNE) to visualize the spatial distribution of local
sample clusters (as shown in Fig.3). Regarding the state-of-the-
art techniques, we found out that the sample distributions were
similar between the two categories. The spatial distribution
of features extracted by the SOTA methods is relatively
close between DSE and DRE, showing high inseparability.
Thus, the model may have difficulty distinguishing between
DSE and DRE patients, resulting in extremely low metrics.
As we visualized the temporal and spectral domains feature
combinations, the sample distributions demonstrated high sep-
arability. However, compared with the DRE sample points,
the DSE sample points were distributed with a larger intra-
cluster variance. This may also leads the model to misclassify
DSE as DRE, resulting in low evaluation metrics. Thus, the
discriminative features are still needed a further exploration
to separate the category samples of KCNQ2 EE in the feature
space as far as possible.

D. Limitations
In this study, we demonstrated an EEG-based approach to

distinguish between DSE and DRE for KCNQ2 EE. We cor-
rectly classified 13 out of the 16 patients. However, this work
can still be enhanced via involving the following issues in our
future work:

1) More EEG features can be extracted: Whether in the
time domain, frequency domain, or time-frequency
domain, these features have been used to analyze
EE. More EEG-related features can be extracted to
provide potential pathological abnormality, including
high-dimension features extracted by a deep learning
framework, which may provide discriminative and com-
prehensive information.

2) More KCNQ2 EE can be recruited: The number of
patients in our dataset was relatively few. In this case,
if one DSE (or DRE) patient is misclassified, the
evaluation metrics may decrease significantly. However,
the KCNQ2 patients are relatively rare and the data
collecting is challenging. Although compared to related
research, the data size used in this study can be generally
considered as large, the absolute number of patients
in each category is still not high. Nevertheless, our
proposed approach is competitive compared with state-
of-the-art techniques and demonstrate the feasibility of
EEG in distinguishing KCNQ2 EE. In the future, we will
extend the KCNQ2 EE dataset to propose a robust
pathological analysis model.

3) More phenotypes of KCNQ2-related epilepsy can be
considered: In this study, we distinguished two phe-
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notypes of KCNQ2 EE (DSE and DRE). Additionally,
KCNQ2 pathogenic variants cause benign epilepsy
besides EE. It deserves a further investigation into
whether our work is effective in distinguishing all these
phenotypes.

V. CONCLUSION

In clinical practice, a long-duration is required to determine
the response to ASMs and seizure outcomes of patients
with KCNQ2 EE before providing further positive treatment
regimens. It not only brings additional economic burdens and
side effects, but also may affect early and rational intervention.
In this work, an EEG-based approach to distinguish two
different seizure outcomes in KCNQ2 EE was proposed.
We extracted twenty-four temporal and spectral domain fea-
tures from all the channels, respectively. By applying channel
selection and feature selection techniques, we further reduced
the acquisition cost and computational burden of the proposed
approach. Ultimately, based on the only four selected features
from the selected three channels, 13 out of the 16 KCNQ2
EE were correctly classified. Compared with the state-of-the-
art approaches, our proposed method obtained higher accuracy
while using fewer channels and features. Meanwhile, our
proposed approach, combined with comprehensible features,
can provide a promising tool to distinguish different seizure
outcomes of KCNQ2-induced epileptic.
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