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Abstract— Surface electromyography (sEMG) is a
non-invasive technique that measures the electrical
activity generated by the muscles using sensors placed
on the skin. It has been widely used in the field of
prosthetics and other assistive systems because of
the physiological connection between muscle electrical
activity and movement dynamics. However, most existing
sEMG-based decoding algorithms show a limited number
of detectable degrees of freedom that can be proportionally
and simultaneously controlled in real-time, which limits
the use of EMG in a wide range of applications, including
prosthetics and other consumer-level applications (e.g.,
human/machine interfacing). In this work, we propose a
new deep learning method that can decode and map the
electrophysiological activity of the forearm muscles into
proportional and simultaneous control of > 20 degrees of
freedom of the human hand with real-time resolution and
with latency within the neuromuscular delays (< 50 ms).
We recorded the kinematics of the human hand during
grasping, pinching, individual digit movements and three
gestures at slow (0.5 Hz) and fast (0.75 Hz) movement
speeds in healthy participants. We demonstrate that our
neural network can predict the kinematics of the hand
in real-time at a constant 32 predictions per second.
To achieve this, we employed transfer learning and created
a prediction smoothing algorithm for the output of the
neural network that reconstructed the full geometry of the
hand in three-dimensional Cartesian space in real-time. Our
results demonstrate that high-density EMG signals from
the forearm muscles contain almost all the information that
is needed to predict the kinematics of the human hand.
The proposed method has the capability of predicting the
full kinematics of the human hand with real-time resolution
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with immediate translational impact in subjects with motor
impairments.

Index Terms— EMG, real-time systems, kinematics, deep
learning, transfer learning.

I. INTRODUCTION

REAL-TIME, proportional, and detailed control of the
human hand using the electromyographic (EMG) signal

is a difficult challenge. Although the EMG signals repre-
sent the current state of the art in controlling prosthetics
devices [1], [2], the number of degrees of freedom that can
be decoded simultaneously and with real-time resolution in
healthy humans is small (≤ 6), with poorer results in humans
with amputations [3], [4], [5], [6], [7], [8] or spinal cord
injury [9].

In recent years, incredible hardware advances have been
made in hand prostheses [1], [10], [11], [12], [13], [14], [15],
[16], [17], [18]. Despite being able to mechanically replicate
the movements of human hands, the current state of movement
intent detection systems hinders the full potential of these
devices due to limitations in software and hardware that are
needed to control such hands in a natural and intuitive way [1],
[2], [18], [19]. This discrepancy is one of the main reason why
hand prostheses are not yet widely accepted by the users [2],
[19], [20], [21].

At the physiological level, the central nervous system gen-
erates a control signal which is sent to the muscles through the
final pathway of movement: the spinal α-motor neurons [22].
The surface EMG [23], [24], [25] allows non-invasive access
to a surrogate signal that is correlated with the sequences of
motor neurons firings depicted by the recording electrodes as
ensembles of muscle fiber action potentials [26], [27]. There
has been significant research exploring the use of sEMG to
augment the degrees of freedom of prostheses. Although there
is a lot of work in decoding algorithms for myocontrol, only
a small number of algorithms are able to make real-time
predictions [3], [4], [5], [6], [7], [8], [28], which are crucial
for real life applications. While sEMG signals can be highly
informative, they can also be quite variable due to a variety
of factors, including the specific muscles being activated, the
intensity of the muscle contractions, neuromuscular fatigue,
and the distinct recruitment patterns of motor units encod-
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ing specific hand tasks [23], [24], [25]. To overcome this
variability all the current algorithms try to extract features
that are mostly undisturbed by the mentioned factors, which
mainly consist of low-pass filtering the EMG signals (< 20
Hz) and/or extracting features from a relatively low number
of EMG signals. These factors can cause a significant loss
of neural information that is needed to proportionally and
simultaneously control a high number of degrees of freedom
from extrinsic muscle activity. This results in at most 6 degrees
of freedom that the users are capable of controlling [3], [4],
[5], [6], [7], [8], [28] reliably. Most often this control takes
the form of a cursor in 2D [6], [7], [8], [28] or as only one
movement (grasping) in 3D [5].

Here, we demonstrate with real-time simultaneous and pro-
portional control, that this problem is not caused by intrinsic
problems associated with the EMG (i.e., that there is insuf-
ficient information contained in the signal itself) but rather
by inadequate processing algorithms that are used to process
the signal which is in a relatively large frequency range (20-
500 Hz). In our prior conference study we investigated the
offline movement decoding solutions with simulated real-time
applications [29], and produced a neural network that was
capable of accurate prediction on unseen data [29], [30].
That neural network is now adapted for real-time usage in
this work (Fig. 1 shows an overview of this study) and is
now able to predict the entire hand (21 joints) in Cartesian
space at a constant 32 predictions per second. Our study
demonstrates the ability to continuously decode and execute
12 hand and wrist movements, including individual finger
flexion and extension, fist opening and closing, two-finger
and three-finger pinching, wrist abduction and adduction, and
maintaining three different hand postures. These movements
were successfully decoded for 10 healthy participants at both
fast (0.75 Hz) and slow (0.5 Hz) speeds, solely by analyzing
the activity of the extrinsic muscles in the forearm.

This work may lay the foundation for how neural interfaces
should be used to robustly and reliably decode human motion
intentions for future human/machine interface applications.
Moreover, our neural network also shows the capability to
be widely used in neuroscience and physiology, since it
is possible to understand the latent components learned by
the AI and thus learn the contribution of different muscle
compartments to specific hand postures in a direct way.

II. METHODS

A. Participant Characteristics
We collected data from 10 subjects, 4 females and 6 males

(Fig. 2(a)). Two subjects (3 and 4) were left-handed. The
subjects in this study are young, healthy adults with an age of
25.10 ± 4.23 years and a weight of 74.10 ± 10.20 kg.

Two separate experiments were conducted in two distinct
sessions, spaced several months apart. The first experiment
involved nine participants (labeled subjects 1 through 9),
comprising four females and five males. The objective of this
experiment, referred to as the “movement-following” experi-
ment, aimed to assess the feasibility of utilizing offline-trained
neural networks for real-time kinematics prediction with min-
imal retraining required on different days.

Fig. 1. In this study, we recorded sEMG data from ten subjects while
they performed various hand movements. The subjects were shown
videos of pre-recorded movements to help them maintain a consistent
movement frequency. The recorded kinematics and sEMG were then
used to train a deep learning model. In a separate session, the trained
model was tested in real-time. We utilized transfer learning to adapt the
model to the subject’s new electrode grid placement, which can vary
from recording to recording. This process took approximately 15 min.
Real-time feedback was provided to the subjects through a virtual 3D
hand rendering. The two hands displayed can be seen in Video 1.

The second experiment involved three subjects (subjects 1,
3, and 10), including one female and two males. Termed the
“target reaching” experiment, the primary objective was to
evaluate if the neural network would be an effective user-in-
the-loop system. These participants were instructed to reach
as many targets as possible within a 10 min timeframe while
the time to reach was recorded.

All experiments were reviewed and approved by the ethics
committee of the University of Erlangen–Nuremberg (applica-
tion no. 21-150_3-B) for compliance with the Declaration of
Helsinki, and the subjects signed an informed consent form.

B. Data Acquisition
The training dataset for our model was created by recording

the sEMG signals from the muscles of the dominant hand
of the participants (Fig. 2(a)) during movements performed
synchronously with existing kinematics. Our first goal was
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Fig. 2. (a) Dendrogram showing the specifics of each subject. We recruited a total of 10 subjects, 4 females and 6 males. Two of the males were
left-handed. (b) Experimental setup and grid placement. Two 8 × 8 electrode grids are placed over the wrist and three 8 × 8s under the elbow,
with a total of 320 electrodes. (c) Comparison between the raw EMG signal and three different augmentation methods [31], coloring the altered
signals based on the normalized absolute difference from the raw signal. In short, Gaussian Noise [31, p. 3] modifies the signal to have a signal-
to-noise ratio of 5, Magnitude Warping [31, p. 3] accounts for the shift in the electrode grids, and Wavelet Decomposition [31, p. 4] facilitates model
generalization by reconstructing the original signal with noise. (d) Schematic overview of our adapted model from Sîmpetru et al. [30] for real-time
inference. Each input grid displays 8 random electrode signals from that particular grid.

to extract natural three-dimensional hand joint positions in
reference to the wrist in order to train the deep learning
model (Fig. 1). Because we did not want to constrain the
model to a user-specific hand skeleton or to a hard-coded
skeleton, we recorded the ground-truth data from a single
human individual that performed the full hand tasks (see
below). All of the individuals were then asked during the
experiments to mimic the movements of the 3D hand (Fig. 1,
Video 1). For left-handed participants we mirrored the video
horizontally. Left-handedness did not impact any other part of
the experiments. We obtained the kinematics of subject 1 by
having them perform the following movements 3 times each
in our kinematics recording setup:

• flexion of each digit
• resting
• pinching between index and thumb (2-finger pinch)
• pinching between index, middle finger, and thumb (3-

finger pinch)
• adduction and abduction of the wrist
• fist closing and opening
• pointing
• peace sign
• rock and roll sign

We recorded three hand gestures (pointing, peace sign, and
rock sign) as well as dynamic movements in order to investi-
gate whether the model would have an easier time decoding
the gestures or the dynamic movements and if there would be
any discrepancies for the model to switching from individual
finger actions to gestures. The hand gestures have been chosen
because they are easily recognizable and therefore performable
by almost everyone without the need of pretraining. The
acquisition system (detailed explanation in Cakici et al. [32])
used 4 cameras distributed around a modular frame. The
cameras recorded the movement of the hand simultaneously
from different angles. The resulting videos were processed
by the markerless kinematics software DeepLabCut [33] and
aligned in 3D space with Anipose [34] to obtain reliable 3D
kinematics data (see Video 1 and Fig. 1-3).

Based on subject 1’s kinematics, we created videos that
assisted and guided the participants in maintaining a steady
frequency while they performed the movements. These kine-
matics were also used as the ground truth because this allowed
us to skip the acquisition of kinematics for all healthy subjects
and can also allow subjects who cannot move their hand due to
amputations or spinal cord injury to participate in the study in
the future. This is an important prerogative of the study, as we
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did not want to use a virtual hand as an output signal but a
physiological signal that also contains the enslaving features
of a real human hand from a healthy individual.

The sEMG was acquired from 5 electrode grids (8 rows x
8 columns, 10 mm interelectrode distance; OT Bioelettronica,
Turin, Italy). Fig. 2(b) shows the positioning of the electrodes.
Three high-density EMG grids were placed around the thickest
part of the forearm and two around the wrist, proximal to the
ulnar head. Before placing the electrode grids, the skin was
shaved and cleaned with an alcoholic solution. The placement
of the electrode grids is designed to cover both the distal
and proximal muscles of the forearm, thereby facilitating the
acquisition of data from the majority of extrinsic muscles of
the hand. However, it is important to acknowledge that the
intricate overlap of multiple muscle groups in the forearm
presented a considerable challenge in accurately pinpointing
and specifically targeting individual muscles. Consequently,
the primary emphasis of this study revolved around predicting
kinematics without the reliance on recording specific muscles,
resulting in a decreased requirement for extensive anatomical
expertise. This, in turn, has the potential to broaden the
audience that can effectively utilize our system.

The monopolar sEMG signals were recorded using a mul-
tichannel amplifier (EMG-Quattrocento, A/D converted to
16 bits; OT Bioelettronica, Turin, Italy), amplified (×150) and
band-pass filtered (0.7–500 Hz) at source. The signals were
sampled at 2048 Hz and captured during the display of the
motion videos using a custom script written in Python. The
EMG recorder was programmed to produce sEMG signals in
32 non-overlapping windows every second. When recording
at a sampling rate of 2048 Hz, this setting resulted in 32 win-
dows, each containing 64 samples of the raw monopolar EMG
signal. At the same time, we also calculated the time stamps
to which each segment corresponds in video frames. When
the recording was finished, we used these intervals to store
the synchronized kinematics with the sEMG signals.

For the movement-following experiment, each subject had
to participate on 2 different days (except subject 1 who had
one extra day for kinematics acquisition). On the first day,
we recorded the EMG while the subjects follow the kinematics
videos that guides the subjects to perform all the planned
movement trajectories. The experimental setup can be seen
in Fig. 2(b). We used 30 s per movement, resulting in a total
of 12 min of data for training a subject specific model from
scratch. On the second day (intervals between the days varied
with a mean of a week between the two laboratory visits) the
subjects were recorded again for 10 s per movement. This
gave us 4 min of data in order to apply transfer learning
(see below) to account for the signal variability due to the
repositioning of the electrodes and day-to-day variability in the
EMG signal. After the subject-specific model trains for about
8 min, we gave the subjects 15 min to familiarize themselves
with the interface (lower part of Fig. 1, detailed explanation
in section II-G). At the end of the experiment, we asked the
subjects to try to mimic the movements of a guiding hand
as closely as possible for 15 s per movement. We record the
positions of both their virtual hand and the guiding hand for
later analysis (see Video 1).

The subsequent target reaching experiment was conducted
several months after the initial experiment and could be
completed within a single day. Each movement during the
experiment was recorded for a duration of 20 s, resulting in a
total of 8 min of training data for constructing subject-specific
models from scratch. The training process, utilizing 4 NVIDIA
RTX 3080 GPUs (unavailable during the initial experiment),
took approximately 30 min.

During the training phase, we introduced the subjects to the
new interface (Fig. 7(a)), which featured a virtual hand and
colored dots. The colored dots corresponded to the fingers’
colors and represented the desired 3D positions that each finger
should move to in order to reach the required target positions.
A target was deemed successfully reached only if the user
maintained an average distance of less than 20 mm between
the target dots and their corresponding fingers for a duration
of 2 s. In the event that this criterion was met or not met
within a 10 s interval, a new target was selected, ensuring that
consecutive targets were never identical.

Using this interface, we instructed the subjects to reach as
many targets as possible within the given 10 min timeframe.
To provide further guidance, short descriptions of the targets
were displayed above the virtual hand, such as “Rock” for
the rock sign (Fig. 7(a)). Additionally, the text changed color
from red to green, serving as feedback to indicate whether the
hand position was within the required 20 mm threshold.

C. Preprocessing
The sEMG signals are given in non-overlapping windows

of 64 samples (31.25 ms) at a rate of 32 Hz. We found out
that this did not provide enough temporal resolution for our
system to work effectively, so we implemented a queue of
length 3. This allowed us to wait for three sEMG segments to
be provided, and then use these to create a longer 93.75 ms
segment. We moved the queue one 31.25 ms segment at a time,
which dropped the oldest chunk (the first in the queue) and
added the newest (the third in the queue) at the end of it. This
means that our system will have a warm-up time of 93.75 ms
before being able to provide useful predictions. After this
warm-up time, our system can display the three-dimensional
hand predictions in 38.7 ms (31.25 waiting for the next EMG
segment and 7.45 for the prediction and correction, Fig. 8).
Therefore, the 38.7 ms latency represents the time for the
system to make inferences about movement. This is a very
small delay in comparison to other studies and most impor-
tantly it is in the range of the physiological electromechanical
delays during hand digit movements, which range from 40 to
250 ms (see results on the neuromechanical delay in Vecchio et
al. [35]).

We copied each longer segment and low-pass filtered it
forwards and backwards with a 4th order digital Butterworth
filter below 20 Hz. The filtered version was then appended to
the raw (digitally unfiltered) segment in the depth dimension,
resulting in an sEMG tensor of the shape depth (raw or
filtered) × number of electrodes × time in samples. In pre-
vious offline experiments, we have shown that the optimal
performance for a deep learning architecture, similar to the
one employed in this study, was achieved by simultaneously
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inputting both the raw monopolar EMG signals and a low-pass
filtered version (20 Hz) of those signal [29], [30].

D. EMG Augmentation
Recording each movement for 30 s was necessary in order to

complete the data collection in a reasonable time frame. This
however does not result in a lot of data for the deep learning
model, therefore we developed an EMG augmentation pipeline
with three different augmentation methods that can be applied
to each EMG segment (Fig. 2(c), augmentations taken from
Tsinganos et al. [31]). In the first method, called Gaussian
Noise [31, p. 3], Gaussian noise is added to each EMG channel
such that the signal-to-noise ratio between the unaugmented
and augmented EMG segment of 5 is achieved. To account
for possible displacement of the electrode grids on the skin,
we apply Magnitude Warping [31, p. 3]. This is achieved by
multiplying a curve sampled from normal distributions to the
EMG channels. Finally, we apply Wavelet Decomposition [31,
p. 4] to facilitate model generalization by reconstructing a
distorted but similar EMG signal. To distort the signal we
multiply a constant to the detail coefficients. Using the inverse
wavelet decomposition we can extract the distorted signal.
Taken together, these methods provide a 4× increase in data
and allow us to prepare the model for problems that occur in
real life.

E. Model
This work is a real-time adaptation of our previous

works [29], [30], both based on the same basic model,
which we updated to the latest available machine learn-
ing frameworks for Python (PyTorch [36] 1.12.0+cu116 and
PyTorch-Lightning [37] 1.7.1). For this reason, we will explain
our adjustments in detail, but keep the general description of
the architecture short, as a detailed explanation can be found
in [30]. A graphical overview of the architecture of the model
is given in Fig. 2(d). The general architecture presented in
this paper is that of a convolutional neural network [38, ch. 9]
followed by a multilayer perceptron [38, ch. 6], albeit heavily
optimized for real-time processing of EMG signals.

The inputs to the model are three dimensional EMG tensors.
The width contains the time samples, the height contains all
320 electrodes (5 × 64), and the depth is used to store the
raw and filtered information. The model reshapes the tensors
by splitting the second dimension (total number of electrodes)
into two dimensions: one for the number of grids we have
and one for the number of electrodes per grid. The reshaped
tensor then has the abstract shape depth (raw or filtered) ×

number of grids × number of electrodes per grid × time in
samples or in actual numbers 2 × 5 × 64 × 192. Using the
reshaped tensor we applied the grid-wise normalization (this
is different from the normalization in Sîmpetru et al. [30])

x̃ =
x − mean(x)

std(x)
(1)

where x is the original grid sEMG signal, mean() gives
the mean, std() gives the standard deviation, and x̃ is the
normalized sEMG signal.

The other adaption we undertook was to use Instance
Normalization [39] instead of Batch Normalization [40]. The
sEMG signal exhibits significant stochasticity and is suscepti-
ble to data drift resulting from factors such as grid positioning.
Consequently, the statistical information (mean and standard
deviation) acquired from batches are not indicative of the
sEMG recording in real-time scenarios, leading to a decrease
in the performance of the neural network. As normalization
is still necessary for faster convergence we used Instance
Normalization as this method computes the mean and standard
deviation required for each input in the batch individually and
efficiently. It is important to mention that we always compute
normalization during testing, without using any statistics that
were computed during training. This helped in making our
system more robust and ensured that it could not have relayed
on the training distribution.

We changed the activation function to GELU [41] as it is
faster then the learnable activation functions we have used in
our prior works [29], [30]. To further improve the inference
time we have also reduced the number of channels per layer.

Since the placement of the electrode grids differed
slightly between the original recording and the real-time
tests of the movement-following experiment, we first trained
subject-specific models from scratch and used transfer learning
so that the networks would learn the new grid positions and,
if necessary, learn which channels were faulty.

We optimized our models with the mean absolute error as
the loss function using the AdamW [42] optimizer with the
AMSGrad [43] correction. The weight decay was 0.01. For the
initial training from scratch, we train for 50 epochs. However,
for transfer learning, we only use 12 epochs. For training,
we used the one-cycle approach described in Smith and
Topin [44] as a learning rate scheduler with an upper bound of
10−2.5, lower bound 10−7 and initial learning rate 10−4 up to
half of the epochs, after which we exchanged it for the stochas-
tic weight averaging approach of Izmailov et al. [45] using
cosine annealing for 5 epochs and a learning rate of 10−3.
We also use the same parameters for the one-cycle scheduler
during transfer learning, but switch it after only 4 epochs for
stochastic weight averaging and use only 3 instead of 5 epochs
for cosine annealing.

The hyperparameter optimization was significantly influ-
enced by our previous work where our model was first
described [29]. In order to arrive at a reduced number of layers
per channel and still maintain a reasonable loss, we used 10%
of the data from subject 1 for the hyperparameter optimization.
Since all tests are performed on a new day with new unseen
data, there is no possibility of overfitting to the test data,
however, due to stochasticity and the technical difficulty of
performing large hyperparameter searches, the architecture
could still be improved. The high variability of the EMG signal
further adds to the difficulty of the optimization, however we
believe to have arrived at an acceptable compromise between
search time and loss reduction.

F. Real-Time Inference
Between the two sessions of the first experiment (training of

the model and real-time usage) there is at least a difference of
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one day, which results in significant out-of-distribution data.
This is very difficult to overcome as the common assump-
tion for machine learning models is that the training and
testing data are independent and identically distributed [38],
[46], which clearly violates our knowledge about how the
experiments are performed and more egregiously about the
stochastisity of the EMG signal.

We trained the model using transfer learning, with data
collected on the day of testing, for a period of 15 min to
combat the possibility of faulty electrodes and to teach the
model the new electrode grid position on the subject. Even
with such measures the accuracy was not high enough to allow
the user to believe that they had true volitional control.

The main problem with the model was its tendency to
alternate between a resting state and the intended movement
position, resulting in an inability to perform the desired
movement with high accuracy. We hypothesize that both grid
and arm position affect the predictive ability of the system.
While the position of the grids can be adjusted through transfer
learning techniques, correcting for the disparity in arm position
between the testing and training phases is considerably more
challenging. This is primarily due to the inherent difficulty
in replicating the exact arm position since humans cannot
consistently maintain the same position. To address this,
we developed an algorithm that can correct the model’s pre-
dictions in real-time, removing jitter and allowing all users to
feel like they have control over the virtual hand. Our correction
method differs from a standard low-pass filter because it does
not introduce any delays, and it utilizes a memory of previous
raw and filtered predictions to more accurately reconstruct the
desired movement without slowing them down.

Fig. 3(a) illustrates the structure of the filter employed
in our study. The effectiveness of the filter is demonstrated
through a visual comparison between the raw and filtered
predictions in Fig. 3(b) and Video 2. Fig 4 consists of two
panels that highlight the filter’s behavior when applied to
both a near-perfect prediction (panel (a)), which represents an
idealized scenario, and a noisy prediction (panel (b)) reflecting
the realistic conditions encountered in our experiments.

This filtering behavior is achieved by following algorithm.
For the first run (purple) the prediction P is stored into two
queues, the prediction queue Q P , which contains the last n
predictions of the model, and the averaged prediction A queue
Q A, which contains the last n hand positions with all filtering
applied to them. The output of the first cycle is the last element
from Q A.

For cycles 2 to n (red) the prediction is again saved in Q P ,
after which it gets filtered with a basic smoothing filter (Eq.
2), that suppresses small changes (assuming they are random
noise) and leaves big changes preserved (volitional changes).

An−2 +
norm (|Pn−1 − An−2|)

weightsmoothing filter
· (Pn−1 − An−2) (2)

The basic smoothing filter is a weighted addition between
the current averaged prediction An−1, and the difference
between the current prediction Pn−1 and the previous averaged
prediction An−2. The weight is defined by the division of the
normalized difference we previously explained and an user

settable parameter called “weightsmoothing filter”. The combina-
tion resulting from the difference between Pn−1 and An−2
and the parameter value set decides the amount of smoothing
and how much or less the new prediction resembles the actual
prediction made by the model. This new prediction is saved
into Q A.

For all other cycles (blue), the prediction of the model is
again stored in Q P and having the basic smoothing filter
(Eq. 2) described previously. In the next step, we build linear
regressions for Q P and Q A. The regression models are used
to predict one time step into the future (FP and FA) using data
from Q P and Q A respectively. Then the average between the
basic filtered prediction Pn−1 and the regression prediction
(FP results in a while FA in b) is built (Eq. 3).

a|b =
FA|P + Pn−1 · weightprediction influence

1 + weightprediction influence
(3)

The low pass filtered prediction Pn−1 can be weighted, so that
the regression predictions influences the hand position more or
less by setting the parameter “weightprediction influence”. Going
one step back, we also take the resulting functions of the
regression models and build the cross-correlation between
them r . The reason why we used two regression models is
that the Q P contains all unfiltered information, with which
we can detect changes or stops in the movement, however
to the detriment of also containing jitter. Q A contains only
the smoothed positions. Using it, we can estimate how the
next step would look like if we follow the movement trend
with a smoothed jitter. Since we want to detect movement
changes quickly while still smoothing out the jitter we need a
combination of both regression models. This is performed in
the following weighed average operation:

P n−1 =
(a · r) + b

1 + r
(4)

If the correlation of the regressions r is low, the regression
made from Q P is weighted more heavily, because most likely
a change in the movement happened that has to be taken
into consideration otherwise we might negatively impact the
feeling of volitional control. If necessary the prediction can
be again filtered to suppress jittering even more by using the
filter from Eq. 2.

Another challenge for real-time applications is latency.
In addition to the necessary warm-up time of 93.75 ms (3 ×

31.25 ms), which cannot be reduced as we need three small
EMG segments (31.25 ms) to create the input of our model,
we optimized the rest of our pipeline. We reduced latency by
implementing our model in half-precision (float16) and using
TorchScript, the PyTorch just-in-time compiler, to achieve a
constant 32 predictions per second. Additionally, we wrote
the correction prediction entirely in PyTorch. The code was
executed on an NVIDIA RTX 3090 GPU during the real-time
experiments.

G. Visualization
We used two libraries to visualize the 3D points that make

up the hand joints. The first version used VisPy [47] because
it ran on the GPU and allowed us to make a visualization
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Fig. 3. (a) An overview of the structure of the output smoothing filter. The algorithm has three levels of complexity based on the amount of time, and
therefore on the available data history. We use 2 queues (QP for the prediction queue and QA for the averaged predictions) with a user-selectable
length n. To denote the position and thus the time at which an element was added to the queue, we use zero indexing. This means that, for
example, the current prediction is placed last in the queue and is therefore denoted as Pn−1. The oldest prediction stored is P0. The very first cycle,
represented by the purple arrows, forms the basis for all subsequent cycles. In the first cycle, the first prediction P is stored in both the predictions
QP and the average predictions QA queues. The output is the unchanged AI prediction. Cycles 2 to n, where n is a hyperparameter selected by the
user, are shown with red arrows. These cycles use Eq. 2 to smoothen the prediction P by applying an average filter over QP. The average value A
is then stored in QA and then outputted. From the nth cycle (flow shown in blue) we consider to have enough data to begin our regressive prediction
correction. Both QA and QP are used to fit 63 1-D lines (one for each coordinate for each joint) that we use to extract the movement trends. We also
use the regression lines to get a prediction in the future and use the correlation between the movement trends to see how much to weight the future
prediction based on actual AI output vs the filtered predictions. If a direction change were to occur we would favor the actual prediction (b in Eq.
4) where as if not we would favor the filtered prediction (a in Eq. 4). The output of this decision is then filtered by the running average and then
outputted. (b) Plot showing a comparison of the raw and filtered trajectories of the middle finger tip predictions during grasping. The 3D frames seen
are part of Video 2.
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Fig. 4. Example of the real-time filter explained in Fig. 3. (a) With a
perfect prediction, the filter suppresses the peaks. However, perfect pre-
dictions are very unlikely in reality. (b) With realistic predictive variability,
the filter produces uniform output.

that was fast, intuitive, and most importantly not uncanny
(Fig. 1, Fig. 3(a), and Video 2). To achieve the needed speed
for 32 prediction per second we displayed the hand as 2D lines
and shapes that gave the illusion of 3D. Although capable of
displaying 3D tubes for the fingers VisPy needed (at the time
of using it) to constantly recalculate each tube from its start
and end points, meaning that each individual vertex that made
up the surface needed to be recomputed which takes too long.
We have used Mayavi [48] to create 3D visualizations of our
data for offline analysis, as it allows us to translate the 3D
tubes to new positions without the need to recompute them for
each frame. This was not necessary for real-time rendering,
but was useful for visualizing the results of the prediction
correction (Fig. 3(b) and Video 2).

H. Statistical Analysis
An independent analysis of variance (ANOVA) was con-

ducted to examine the task-wise averaged absolute and relative
Euclidean distances in Fig. 5. The analysis was conducted
in Python. Following that, post-hoc t-tests with Bonferroni
correction were performed using the posthoc_ttest method
from the scikit_posthocs library to determine statistical signif-
icances. Statistical significance was set at a p-value threshold
of 0.05.

III. RESULTS

We acquired sEMG data from 320 electrodes placed on the
extrinsic forearm muscles (Fig. 2(b)) together with hand and
wrist movements from 10 human subjects.

The first 9 subjects took part in the first experiment which
consisted in following different movements using the trained
models. During this experiment, we recorded both the guiding
hand and the hand that was being controlled by the subject
(Fig. 6(c)).

Subjects 1, 3, and 10 (new subject) participated in the
second experiment, which consisted of reaching and holding
various target positions in real time (Fig. 7(a)). In this exper-
iment, the number of targets reached within 10 min, the type
of target (Fig. 7(b) and (c)), and the time at which the target
was reached and held for 2 s were recorded (Fig. 7(d)).

A. Movement-Following Experiment
The interface used in this experiment consists of the guiding

and the predicted (using sEMG from the subject) hands. The
colors of the guiding hand provide the subject with visual
feedback based on the correlation coefficient (CC) between the
ground truth and the prediction. If the CC is less than or equal
to 0.75, the guiding hand is colored red. If the CC is greater
than 0.75 but less than or equal to 0.90, the guiding hand
is colored yellow, and if it is greater than 0.90, the guiding
hand is colored green. Note that the CC is computed across all
markers, therefore, this value takes into account also the static
posture of the hand, since the neural network is continuously
outputting all the three-dimensional points of the hand.

During the offline accuracy validation of the network (see
below) we included both the R2-Score of only the digits that
were required to move as well as the Euclidean distance (the
absolute error) across all the digits. The combination of these
two metrics gives an index of the proportional 3D control of
the hand that can be controlled by the subjects.

In Fig. 5 we display the mean Euclidean distance between
the ground truth kinematics and three different prediction
scenarios both in mm Fig. 5(a) and in percentage Fig. 5(b).
The red line shows the maximum possible error achievable
when the system predicts an all 0 vector. Due to the nature of
the relative error calculation, which results in a constant value
of 100% for the maximum error, we did not include the red
line in Fig. 5(b). The purple lines shows the error when the
output is a static stretched out hand, which simulates failure
to detect any movement intent by predicting resting position.
The AI prediction, averaged across the subjects, is shown in
blue.

Using the recorded videos we have visually inspected if
movement intent resembling the intended movement could
be detected. For example, if the flexion of the ring finger is
detected half way between extension and flexion, then it is con-
sidered detected, while a flexion of the middle finger instead
of the ring finger is not considered as correct. The movement
intent detection was performed visually and the results were
then combined with the two metrics (Euclidean distance for
all the markers of the hand and the R2-Score across the fingers
that were required to move with the guiding hand signal). The
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Fig. 5. Mean Euclidean distance between ground truth data and
predictions. (a) The absolute error in mm between the AI prediction,
a steady prediction representing the rest state, and a prediction where
all values are set to zero. The averaging of the rest state and AI
predictions is displayed for both all fingers and only the moving fingers.
(b) The relative error in percentage. The normalization is performed
using the maximum error from (a) task-wise. The statistical significance
was assessed by conducting post-hoc t-tests with Bonferroni correction
following an independent analysis of variance (ANOVA). *** = p< 0.001.

results of this analysis are displayed in Fig. 6(a) as a binary
heatmap. Overlaid on top is the interquartile range (IQR) of

the Euclidean distance in mm averaged over all joints and all
time points. The mean Euclidean distance across all subjects
is 36 ± 34 mm. The median distance is 21 mm, and the IQR
spans from 9.8 to 42.8 mm.

Fig. 6(b) shows the R2-Scores (mean across subjects: 0.65)
of the movements. The R2-Scores between the ground truth
and the prediction was calculated by averaging over all finger
tips and the first joints from the finger tips (distal interpha-
langeals). Both the ground truth and the prediction were first
filtered with a 0.75 Hz low-pass filter before the averaging was
performed. By using this method, we were able to compare the
movement intent between the ground truth and the prediction,
regardless of whether the subjects were perfectly synchronized
with the guiding hand or not. Two of the videos used for this
analysis (Fig. 6(b)) showing subject 2 and 7 are available as
Video 1 and 3.

B. Target Reaching Experiment
Three participants were recruited to perform a series of

target-reaching tasks using our user-in-the-loop system within
a 10 min time constraint. The objective of the experiment was
twofold: to assess the feasibility of reaching all target positions
and to measure the speed at which they could be achieved.

The interface displayed the predicted hand together with
colored targets (dots) that matched the color of the individ-
ual fingers. The arrangement of the colored targets changes
to depict the desired hand positions (Fig. 7(a)). A target
is considered reached if the averaged distance between the
colored targets and their respective fingers is below 20 mm
for 2 s. To further aid the subjects we displayed a short target
description above their virtual hand (e.g. “fist” for closing the
fist) and changed the color of the text from red to green if the
error is below 20 mm (Fig. 7(a)). If the target is achieved or
if 10 s pass without reaching it, the next target is chosen in a
way that ensures consecutive targets are never identical.

This target selection rule causes the selection to no longer
be uniformly distributed. The recorded distribution of the tasks
can be seen in Fig. 7(b).

In Fig. 7(c), we present the number of reached and not
reached targets for each subject. The total count of reached
targets is shown on the right, along with the calculated
completion rate. The 3 subjects achieved completion rates of
90%, 82%, and 83%, respectively, resulting in a mean of 85%.

Fig. 7(d) displays the duration taken to reach the targets.
The reaching moment is defined as the point when the subject
was first below the 20 mm distance requirement of the target,
provided that position was sustained for 2 s. The mean time
to reach was 2.23 ± 1.83 s, while the median is 2.06 s (IQR
0.27–3.66 s).

C. Latency
The latency of our system (Fig. 8) has been calculated in

simulated real-time using 100000 inputs. We then confirmed
these results during the actual real-time experiments. After
the initial warm up of 93.75 ms our system needs to wait
for one small EMG segment (31.25 ms) to be acquired by the
recording system. Afterwards both the model inference and the
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Fig. 6. (a) The binary heatmap shows if the movement intent can be visually detected from recordings done during the experiments (see (c), and
Video 1 and 3). Overlaid on top is the interquartile range (IQR) of the mean Euclidean distance in mm for that respective task/subject pair. The task
suffix S indicates a slow movement, while F indicates a fast movement. (b) The heatmap shows the R2-Score for each movement averaged over
all finger tips. Rest position is not displayed as this is a static pose for which our system outputs a very similar and slightly noisy signal. Displaying
it will results in negative R2-Scores even though from (a) we can see that the errors are negligible. (c) One frame from Video 1 used to determine if
the movement intent is detectable. (d) The trajectory comparison of the middle finger tip. The movement trend is the 1 Hz low-pass prediction and
shows that the general movement is proportionally reproduced with relatively good accuracy.

corrections are negligible. The model inference takes about
6.25 ± 10.54 ms with a 99% confidence interval (CI) lying
between 6.18 and 6.41 ms. The prediction correction takes
1.17 ± 0.53 ms with a 99% CI between 1.162 and 1.169 ms.
In total the latency of our system is about 38.7 ms. The
prediction process, including model inference and correction,
takes less than 31.25 ms, allowing us to sustain a constant rate
of 32 predictions per second.

IV. DISCUSSION
We trained a deep learning model based on the

subject-specific EMG activity to predict hand kinematics. This
model was then utilized in two separate experiments conducted
over a period of several months. In our study, we have
successfully demonstrated the real-time predictive capabilities
of our deep learning model in relation to the kinematics
of 12 human hand movements. Across various subjects, our
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Fig. 7. (a) Target reaching experimental setup. Three subjects (1, 3, and 10) had 5 electrode grids placed on their forearm. A model was trained
for each subject from zero using 20 s recordings of 13 different movements (see x-axis of (b)). After the model training, the subjects were given
5 min to familiarize themselves with the closed-loop interface. The interface displayed a hand with differently colored fingers and dots of the same
color as the fingers for each movement target. The interface also indicated which movement should be executed and whether it was reached using
red (not reached) and green (reached) text above the hand. The subjects were then asked to reach as many targets they could in 10 min. A target
is considered reached if a distance smaller than 20 mm is held for 2 s. After 10 s of not reaching a target the target would randomly select the next
one. (b) Distribution of the targets shown. The ideal distribution would be uniform but due to the experimental necessity to not select the same target
twice in a row the actual distribution differed. (c) Amount of targets reached and not reached. The total number differs between subjects as the
faster the targets are reached the more are shown withing the 10 min. (d) Violin plots showing time to reach. The moment of reaching is considered
to be the starting moment when the subject is below 20 mm after the target has been successfully held for 2 s. We display the median for each
subject with a star shape (1.61, 3.65, and 1.71 s).

model achieved a mean Euclidean error of 3.6 cm (Fig. 6(a))
and exhibited a completion rate of 85% when tasked with
reaching different targets (Fig. 7(c)).

In our first experiment, we conducted a study involving
9 subjects who were instructed to perform various dynamic
movements and hand gestures while recording sEMG signals
and kinematic data. The movements included wrist adduction
and abduction, flexion and extension of each digit, fist grasping
(closing and opening), as well as two- and three-finger pinches.
Additionally, three hand gestures (pointing, rock sign, and
peace sign) were performed. Subject 1 was instructed to per-
form the kinematics prior to the experiment, and their recorded
kinematic data were subsequently used as a reference for all
other participants in the study. By utilizing the kinematics from
subject 1 as a reference for all participants, we were able to

mitigate the need for individual data collection. This approach
not only streamlines the process but also opens up possibilities
for testing individuals with paralysis or amputations, as their
hand movements cannot be directly recorded due to it either
not moving or being absent. By utilizing techniques such as
resampling, we have the flexibility to modify the speed of
recorded movements. This adaptability opens up possibilities
for individuals with impairments to effectively track and repli-
cate movements of a virtual hand. In our previous study [9],
we demonstrated the feasibility of this concept by employing
a comparatively straightforward machine learning approach,
allowing patients with spinal cord injuries to regain limited
control over a few DoFs. This was only possible because we
could leverage the kinematics of a healthy individual as the
ground truth that the spinal cord injury patient then saw and
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Fig. 8. Timeline explanation showing breakdown of the latency. All
units shown are in ms. After the initial warm up of 93.75 ms, the input
queue must be shifted one EMG segment over. This results in a 31.25
ms delay (waiting signal), as the new EMG segment must be acquired
by our system. Afterwards we run the model on the new input and
apply the prediction correction to remove any unwanted artifacts in the
movements. The latency for inference and the prediction algorithm have
been determined in a simulated real-time scenario by using 100000 long
segments. The real-time experiments showed similar performances.
The exact latency for the inference is 6.25 ± 10.54 ms with a 99%
confidence interval (CI) lying between 6.18 and 6.41 ms. The prediction
correction takes 1.17 ± 0.53 ms with a 99% CI between 1.162 and
1.169 ms.

attempted to follow. However, it is important to acknowledge
that using subject 1’s kinematics as a reference may introduce
challenges in decoding, as not all participants exhibit the same
finger enslavings (movement of additional fingers along with
the intended finger) or perform the movements precisely at
the requested timing. This hypothesis should be explicitly
evaluated and validated in future research.

Using this dataset, we trained subject-specific models that
were subsequently tested in real-time scenarios. However,
due to the significant variability observed in the raw unfil-
tered monopolar sEMG signals across different recordings
and hand postures, we employed transfer learning prior to
predicting hand kinematics in real-time. Transfer learning
involves rapidly training a pre-existing model on new data
(approximately 15 min in our case), taking into account data
drifts that may occur due to factors such as variations in the
placement of the electrode grids on the skin (Fig. 2(b)).

Following the transfer learning process, the subjects were
required to perform different movements in real-time by
following a guiding hand. The real-time predictions were
recorded and analyzed in Fig. 6, Video 1 and 3.

Although our system achieved successful decoding in most
tasks, there were certain instances where it did not perform
as expected. For example, subjects 6 and 9, were unable to
perform pinching movements, but they could effectively close
and open the virtual fist. Subject 4, 7, and 8 experienced
limited responsiveness in their index finger, yet it remained
controllable during combined tasks such as fist closure and
opening. We speculate that these errors could be attributed to
potential overfitting of the models for these specific subjects,
primarily on hand gestures, and the failure to adequately
account for EMG variations between the original record-
ing and real-time sessions during the brief transfer learning
period.

It is also important to note that the kinematics used to train
the model were recorded from subject 1, who is the only
subject able to correctly execute all movements. We speculate
that the AI might have learned some invariant neural dynamics
underlying the movement of the hand. Although this study
cannot demonstrate that this is the case, our previous purely
offline systems [29], [30] seem to also be in support of this
idea as they achieve good results on models trained from
subject-dependent kinematics.

The Euclidean distances presented in Fig. 6(a) are primarily
influenced by the accuracy of our models in decoding the
intended movements. However, they are also subject to addi-
tional factors such as the synchronization between the subject
and the guiding hand, the level of fatigue experienced by the
subject, and the ability to reproduce smooth flexion-extension
phases. We chose it as the metric in our study because all
subjects followed the same kinematic patterns, enabling com-
parability of results across individuals. By stabilizing the hand
position using the wrist as the origin in Cartesian coordinates,
it becomes easier to intuitively comprehend errors in terms
of millimeters or centimeters relative to a target, as opposed
to using angular measurements. This choice is motivated by
the observation that even a small angular deviation at the
metacarpophalangeal joint (base of the finger) can result in
a significantly larger Euclidean error compared to the distal
interphalangeal joint (at the fingertip). The presence of a
discontinuity in error contribution, as observed our previous
study (Sîmpetru et al. [30]), not only poses challenges for
generalization when utilizing angular coordinates but also has
implications for accurately assessing the prediction capabilities
of the system. This discontinuity can potentially lead the
reader to misinterpret or underestimate the system’s predictive
performance.

The thumb and peace sign tasks exhibited lower R2-Scores
compared to the other tasks. The lower score observed in the
thumb task can be attributed to the anatomical placement of
the thumb muscles. The majority of muscles responsible for
controlling the thumb are located within the intrinsic hand
region. The peace sign task involves a slight flexion of the
wrist, which could potentially introduce movement artifacts
in the wrist grids. These artifacts may contribute to a noisier
signal, leading to a less smooth and less accurate decoding
compared to the other tasks.

In the movement-following experiment illustrated in Fig. 6,
our system demonstrated an average Euclidean distance
of approximately 3.6 cm per subject when tracking sinu-
soidal movements (Fig. 6(a)). The corresponding R2-scores
(Fig. 6(b)) and the provided example prediction (Fig. 6(d))
indicate that the system successfully follows the intended
movements, with the primary source of error being the delayed
execution of flexion/extension motions.

To assess the impact of this level of error on the practical
usability of our system, we conducted an additional experiment
involving three subjects. This experiment was designed to test
the user-in-the-loop experience and required the subjects to
reach as many target positions as possible within 10 min
(Fig. 7). The targets are depicted as colored dots that matched
the color of the virtual hand’s fingers. A target position was



3130 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

considered reached if the mean distance between the target
dots and their respective fingers was smaller then 20 mm for a
duration of 2 s. In comparison to other studies in the literature,
such as the work by Nowak et al. [8] with a hold time of
0.3 s, our choice of a 2 s hold time is significantly longer.
We deliberately opted for this longer duration as it aligns more
closely with real-life scenarios where the objective is often to
maintain a grasp on an object for extended periods rather than
solely reaching towards it (e.g., holding an umbrella).

The results in Fig. 7(c) indicate that all targets were
reachable by the users, although individual subjects exhib-
ited varying patterns of failure. This could be due to the
arm position the subject had at the time which causes data
drifts that the model can not compensate. A problem that
could be mitigated during training by providing different arm
positions for the same movement. Furthermore, the reach time
(Fig. 7(d)) is also influenced by the aforementioned problem
of data drift resulting from inconsistent arm positions. This
hypothesis is supported by the observation that two subjects
(1 and 10) exhibited a higher number of reaching times falling
within the typical human reaction speed (as indicated by the
base of the violin plot). It is plausible to suggest that these
instances corresponded to situations where the arm position
closely matched the configuration during training, enabling the
system to make more accurate predictions.

While not perfect, our system is able to decode a greater
number of distinct movements than previously published
solutions [3], [4], [5], [6], [7], [8], [28], at a rate of 32 pre-
dictions per second, providing a sense of embodiment and
volitional control. Our system not only demonstrates the ability
to decode a larger set of proportional movements but also
maintains a high completion rate, as depicted in (Fig. 7(c)),
in comparison to other real-time studies that focus on a
narrower range of movements [7], [8]. The proposed system
may lay the foundation for an EMG processing pipeline
that can take leverage of the full EMG bandwidth, without
imposing any a priori constraint but by learning how the brain
controls the human hand through feedforward processing of
the monopolar, raw EMG signals.

In a prior study [30], we conducted an investigation
using nonlinear factorization methods to analyze the features
acquired by the neural network. Our findings revealed that the
model successfully distinguished different hand movements,
displaying distinct clusters for each individual finger and
discernible separation between flexion and extension move-
ments of the same finger. This is of high importance because
this demonstrates that the proposed system can exploit the
nonlinear associations within the EMG signals unlike other
approaches [7], [8], [9] that reduce the EMG signal to linear
mappings in order to achieve better robustness. From a physi-
ological perspective this result is not so surprising since during
dynamic movements there are several nonlinear components in
the EMG signals both at the neural and muscular level which
are likely only depicted by the full frequency band of the EMG
(20-500 Hz, [25]).

Although the decomposition of the high-density EMG rep-
resents the most adequate solution since it mimics how the
central nervous system encodes muscle forces [9], [49], [50],

there are a large number of limitations in decoding a significant
number of motor units during dynamic hand movement in
real-time (see our previous conference paper [32] and tutorial
article [27]) due to the high nonlinearities in the action poten-
tial shapes that are distorted by the contracting muscles [25].
Here we argue that machine learning, and more specifically
deep learning, may represent the future for interfacing human
movement with machines using the surface EMG signals.

V. CONCLUSION

In this study we acquired sEMG data from 320 electrodes
placed on the extrinsic hand muscles (Fig. 2(b)) together with
hand movements from 10 human subjects. The subject had
to perform dynamic movements (adducting and abducting the
wrist, flexing and extending each digit, closing and opening
the fist to grasp, and 2- and 3- finger pinches) as well as 3 hand
gestures (pointing, rock sign, and peace sign).

We used the recorded data to train subject-specific models
that are able to decode most performed movements in real-
time. To achieve this, we conducted a short (15 min) transfer
learning session before testing the system in real-time, and
developed a prediction correction algorithm to remove artifacts
and smooth the output. We also asked 3 of the 10 sub-
jects to attempt to reach as many targets as possible in a
three-dimensional Cartesian space in real-time in order to test
the user-in-the-loop experience and robustness of the proposed
method.

Our system outperforms previously published systems in
both number of movements that can be performed and
reliability. Furthermore, the proposed system is capable of
proportionally controlling a greater number of movements, and
similar completion rates despite the fact that previous solutions
focus on signifcantly smaller sets of movements. The current
work also highlights future challenges that deep learning
myocontrol algorithms should overcome such as overfitting
and dealing with the complexity of EMG changes with specific
movement patterns. The proposed solution presented in this
work may serve as a foundation for the potential development
of reliable real-time movement decoders leveraging surface
high-density EMG activity.
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