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Video-Based Quantification of Gait Impairments
in Parkinson’s Disease Using
Skeleton-Silhouette Fusion

Convolution Network
Qingyi Zeng, Peipei Liu, Ningbo Yu , Member, IEEE, Jialing Wu , Weiguang Huo , and Jianda Han

Abstract— Gait impairments are among the most com-
mon hallmarks of Parkinson’s disease (PD), usually appear-
ing in the early stage and becoming a major cause of
disability with disease progression. Accurate assessment
of gait features is critical to personalized rehabilitation for
patients with PD, yet difficult to be routinely carried out
as clinical diagnosis using rating scales relies heavily on
clinical experience. Moreover, the popular rating scales
cannot ensure fine quantification of gait impairments
for patients with mild symptoms. Developing quantitative
assessment methods that can be used in natural and
home-based environments is highly demanded. In this
study, we address the challenges by developing an auto-
mated video-based Parkinsonian gait assessment method
using a novel skeleton-silhouette fusion convolution net-
work. In addition, seven network-derived supplementary
features, including critical aspects of gait impairment
(gait velocity, arm swing, etc.), are extracted to provide
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continuous measures enhancing low-resolution clinical rat-
ing scales. Evaluation experiments were conducted on
a dataset collected with 54 patients with early PD and
26 healthy controls. The results show that the proposed
method accurately predicted the patients’ unified Parkin-
son’s disease rating scale (UPDRS) gait scores (71.25%
match on clinical assessment) and discriminated between
PD patients and healthy subjects with a sensitivity of
92.6%. Moreover, three proposed supplementary features
(i.e., arm swing amplitude, gait velocity, and neck forward
bending angle) turned out to be effective gait dysfunction
indicators with Spearman correlation coefficients of 0.78,
0.73, and 0.43 matching the rating scores, respectively.
Since the proposed system requires only two smartphones,
it holds a significant benefit for home-based quantitative
assessment of PD, especially for detecting early-stage PD.
Furthermore, the proposed supplementary features can
enable high-resolution assessments of PD for providing
subject-specific accurate treatments.

Index Terms— Parkinson’s disease, gait impairments,
video-based assessment, spatial-temporal graph convolu-
tional network.

I. INTRODUCTION

PARKINSON’S disease (PD) is the second most common
neurodegenerative disorder affecting over 10 million indi-

viduals worldwide [1], [2], [3]. The main symptoms of PD,
including bradykinesia, rigidity, tremor, and postural insta-
bility, usually cause gait impairments for patients [3]. Since
gait impairments, such as reduced arms swing, step length,
and gait speed, appear in the earliest stage of PD, they are
considered important biomarkers for discriminating early PD.
Moreover, gait impairments worsen with disease progression
and markedly impact the mobility and quality of life of patients
with PD. Accurate assessment of gait impairments is crucial
for initiating neuroprotective therapies in the earliest stage [4]
and tailoring subject-specific treatments during the whole dis-
ease stage. Traditional clinical assessments of PD are mainly
based on rating scales such as the unified Parkinson’s disease
rating scale (UPDRS) [5] and Hoehn and Yahr (H&Y) [6],
relying on clinical experience and resources and subject to
inter- and intra-rater subjectivity across examiners. Moreover,
rating scales cannot ensure high-resolution assessments to
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reflect changes in gait impairments for patients with early PD.
Hence, developing automated and quantitative PD assessment
methods that can be easily used in natural and home-based
environments is of great importance.

To date, many sensor-based methods have been proposed for
quantitative assessments of PD gait impairments. Researchers
utilized sensor information such as ground reaction force [7],
[8], motion capture [9], [10], surface electromyography
(EMG) [11], [12] to analyze gait features for the early diagno-
sis of PD. However, such rich and accurate data highly depends
on laboratory-based experiments conducted in clinics with the
help of trained experts, which brings difficulties for routine
assessments.

For non-laboratory assessments, wearable sensors have been
widely used due to advantages such as lightweight and ease
of use [13], [14]. Accelerometer [15], inertial sensors [16],
[17], [18], mechanomyography [18], [19] have been used
for measurement of bradykinesia, rigidity, and tremor. These
sensors were placed on the human body to monitor kinematic
features or muscle activities. Since PD affects many parts of
the body and causes a wide range of motion problems, an accu-
rate assessment of PD severity relies on a comprehensive
analysis of human motion features. Hence, such methods need
an important number of wearable sensors for assessing gait
impairments, which limits their applications in home-based
and natural scenarios.

With the rapid development of computer vision, a series
of vision-based methods have been proposed to quantify
PD. In [20], [21], [22], and [23], 3D human poses were
extracted using depth cameras (e.g., Microsoft Kinect) for PD
assessment. Movement features, such as stride length, stride
velocity and arm swing, were estimated based on human poses.
Meanwhile, machine learning algorithms, such as support
vector machine (SVM), random forest (RF), and K-nearest
neighbours (KNN), were used to discriminate between PD
patients and healthy subjects.

Recently, a small body of work has tried to use videos
filmed using cameras and smartphones to diagnose PD. In [24]
and [25], authors conducted early PD screening using videos
filming subjects’ gaits. In [26], [27], and [28], authors pro-
posed three neural network-based methods for predicting MDS
(Movement Disorder Society)-UPDRS scores using smart-
phone videos. The smartphone video-based methods hold
significant potential for achieving remote home-based PD
diagnosis due to advantages such as low cost, contactless,
convenience, and flexibility. Meanwhile, there is still a large
space to improve the prediction accuracy and robustness with
respect to the diversity of human gaits.

There are two commonly used types of methods for analyz-
ing PD motor disorders based on videos. The first one usually
employs statistical analysis to distinguish PD patients [25],
[29]. These methods have good interpretability. However,
in many cases, it is difficult to discover explicit relation-
ships/models between PD severity and motion features due to
the diversity and variability of PD symptoms. For the second
one, machine/deep learning approaches are used to estimate
the MDS-UPDRS scores [26], [27], [28], [30]. These methods
can provide relatively high classification accuracy. However,

few works focused on further extracting quantitative features
for the high-resolution assessment of PD symptoms.

In this paper, a skeleton-silhouette fusion neural network
is proposed to automatically predict the MDS-UPDRS scores
based on gait videos filmed using smartphones (see Fig.1). The
proposed model consists of a skeleton stream and a silhouette
stream. For the former, it takes pose graphs as inputs, which
are constructed by the 2D human poses estimated from the
gait videos, and utilizes a spatial-temporal graph convolutional
network (ST-GCN) to extract the skeleton feature vectors. For
the latter, it takes the Long-Term GEI (Gait Energy Image) as
input, which consists of several silhouette images sequentially
extracted from the gait videos, and uses a VGG network
to extract silhouette feature vectors. Then, the two feature
vectors are fused for predicting the MDS-UPDRS gait scores.
Moreover, saliency values are derived from the proposed
neural network to understand which body parts contribute
more to the ensuing correct prediction of the gait scores.
Finally, seven supplementary features are extracted to validate
the effectiveness of the saliency values. The proposed method
was evaluated on a dataset collected with 54 patients with early
PD and 26 healthy controls. The proposed model achieved
an appreciable accuracy of 71.25%, which outperforms other
state-of-the-art (SOTA) methods. The neck, torso and arm
are the three body parts with the largest saliency, and the
arms swing amplitude, the torso movement velocity and the
neck forward bending angle were found to be significantly
correlated to the gait scores with the Spearman correlation
coefficient of 0.78, 0.73 and 0.43. The supplementary features
provide credible quantification metrics with higher resolution.

The main contribution of our work can be summarized as
follows:

• The skeleton-silhouette fusion convolution network is
proposed to quantitatively assess early-stage Parkinsonian
gaits using smartphone-based videos.

• The saliency values are derived from the proposed
network for understanding the contribution of features
related to each body part in correctly predicting the gait
scores.

• Seven supplementary features are extracted to provide
continuous measures of gait impairments to enhance
low-resolution clinical rating scales.

II. METHOD

Fig. 1 illustrates the overall pipeline of the proposed
skeleton-silhouette fusion convolution network based method.
Participants are required to walk approximately 5m away in a
clinical or home-based environment. Meanwhile, participants’
gaits are recorded using two smartphones from both the
sagittal view and the coronal view. Note that only the videos
recorded from the sagittal view are used in the proposed
network for the assessment of gait impairments. The videos
recorded from the coronal view are used to ensure the left
leg and right leg are correctly estimated by the OpenPose.
Both human silhouettes and skeleton sequences are extracted
from the recorded sagittal videos by Mask R-CNN [31] and
OpenPose [32]. Then, the silhouette sequences are transformed
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Fig. 1. The proposed framework. The silhouettes and skeletons are extracted from gait videos. Then the Long-Term GEI and pose graphs are
constructed and put into the skeleton-silhouette fusion neural network to predict the MDS-UPDRS gait scores. Besides the prediction results, the
framework can also give the saliency values of six body parts. Furthermore, supplementary features are extracted for fine-grained assessment of
gait impairments.

into a form of GEI called Lone-Term GEI [33], while the
skeleton sequences are arranged into undirected pose graphs.
The two-stream network consists of two parts: a silhou-
ette stream and a skeleton stream. The former detects gait
cycle-related lower limb motion features by 2D convolution,
while the latter extracts spatial and temporal Parkinsonian gait
features using graph convolution. Then, all features are fused
by fully connected layers to predict the MDS-UPDRS gait
scores of the participants. Furthermore, to visualize which
joints contribute more to the prediction task, the saliency
values are derived from the skeleton stream. Finally, seven
supplementary features are selected for verifying the saliency
values.

A. Subjects and Experimental Protocols
54 patients with PD and 26 healthy subjects were recruited

for this study. Table I shows their basic information. All gait
scores are given by board-certified clinicians. The gaits of all
healthy subjects are also assessed by board-certified clinicians
to ensure that their gaits are normal, i.e., with a score of
0. Since this study mainly focuses on the assessment of
early-stage Parkinsonian gaits, all recruited PD patients are
with UPDRS scores of 1 or 2. Note that PD patients with
scores of 3 and 4 cannot walk independently [5]. The data
collection is carried out in Huanhu Hospital, Tianjin, China.
All patients’ data are collected during the off-medication

state. All videos are recorded using two smartphones with
a 720p resolution and 25fps frame rate. All procedures are
approved by the Institutional Review Board of Tianjin Huanhu
Hospital with the reference number ChiCTR1900025372. All
participants gave their consent for the experimental procedure.

As shown in Fig. 1, participants are required to walk
approximately 5m away and toward the examiner three times
during one test. Each recorded video is divided into 6 equal
clips in order to efficiently use the acquired data and facilitate
subsequent processing. The turning parts are not included in
the study. A total of 480 video clips are finally involved for
training and validation.

B. Data Processing
1) Graph Construction: The graph is a kind of data that

is suitable to describe human kinematics, as it can reflect
not only the position of each joint but also the physical
connections between joints. An undirected spatial-temporal
graph can be expressed as G = (V, E), where V and E
denote the node and edge sets, respectively. Human joints
extracted from gait videos are employed to construct the pose
graphs. As shown in Fig. 2 (a), a 2D human pose graph,
which consists of 15 joints, can be estimated from the videos
filmed in the sagittal view using the OpenPose framework [32].
Due to the occlusion problem, the left and right sides of the
lower limbs are incorrectly exchanged in some specific cases.
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TABLE I
BASIC STATISTICS OF THE PARTICIPANTS

Fig. 2. Gait data preprocessing. (a) Pose graph with proximal-distal
configuration. (b) Distance between two heels (unit: pixel). The time
interval between the red stars and green stars is recognized as gait
cycles. (c) An example of the LT-GEI during 3 gait cycles.

To address this problem, the coronal videos are used to detect
and correct the incorrectly estimated frames. Note that the eyes
and ears are omitted because they are less related to the gait
movements. Meanwhile, the heels and toes are also omitted to
avoid excessive measurement noises [34].

2) Proximal-Distal Configuration: The node set V is com-
posed of all 2D joint positions extracted from the gait videos.
As for the edge E , a proximal-distal configuration is designed
to divide the edges into three categories. Previous work [26]
considered all natural connections of joints as same edges.
Nevertheless, according to [35], the proximal-to-distal motion
pattern was observed in walking and running, revealing the
fact that different joints and muscle groups assume different
functions in human movements. Given that, we propose to
divide the joint connections into temporal, proximal, and distal
categories to distinguish different joints and their connections.
Note that joints in consecutive frames are connected by
temporal edges to represent temporal dynamics. According
to the definition of the anatomical position, take the center
of the trunk as the origin, the proximal refers to joints and
connections near the origin, and the distal refers to the joints
and connections far from the origin. Hence edges within the
torso, the upper arms, and the thighs parts are assigned to the
proximal group, while the ones within the neck, forearms, and
lower limbs parts are assigned to the distal group. As shown
in Fig. 2 (a), the yellow, green, and red nodes represent the
central, proximal, and distal categories, respectively.

3) Long-Term GEI: For the sake of avoiding extra noises, the
heels and toes are omitted in the previous section. However,
recent studies have shown that foot movements are important
in the assessment of parkinsonian gaits [36], [37]. To replenish

lower limb motion features in the model, human silhouettes are
involved since silhouettes have been proven to be an alternative
to motion capture due to their high accuracy [29]. The Mask
R-CNN framework [31] is used for human silhouette segmen-
tation from sagittal videos. Inspired by [33], the Long-Term
GEI (LT-GEI) is proposed to extract foot movements within
three sequential gait cycles. GEI is commonly used for gait
analysis and has the ability to present both dynamic and static
movement features in one gait cycle. The generation method
of the proposed LT-GEI is expressed as follows:

GEI(x, y) =
1
N

N∑
n=1

Ic(x, y, n) (1)

where Ic(x, y, n) represents the human silhouette of the nth

frame. N represents the number of frames contained in an
image. The transitional GEI cannot represent the reduced stride
length, a typical feature of Parkinsonian gait [38]. However,
the proposed LT-GEI is intended to represent features within
and between several gait cycles. The core idea of LT-GEI is to
compose 6 GEIs extracted from 3 gait cycles into one image.
The construction method is expressed as follows:

LT-GEI(x, y) =

M∑
i=0

1
Ti+1 − Ti

Ti+1∑
n=Ti

Ic(x, y, n) (2)

where Ic(x, y, n) represents the segmentation result of the nth

frame of a gait video. Ti represents the frame in which the
i th heel contact event is detected. M represents the number
of gait cycles required by an LT-GEI. The heels are identified
from the silhouettes, and then the distance di is calculated as
follows:

di = X L − X R (3)

where X L and X R represent the horizontal positions of the left
and right heel in frame i . As shown in Fig.2 (b), the red and
green stars are identified as time stamps Ti of the occurrence
of heel contact. Fig. 2 (c) is an example of the LT-GEI.
By combining 6 GEIs into one image, the LT-GEIs can
characterize gait cadence as well as gait variation.

C. Feature Extraction
The skeleton-stream fusion neural network is designed to

extract features from the poses graphs and LT-GEIs and to
predict the gait scores. An instantiation of the network is
listed in Table II. After testing several two-stream structures
with different numbers of ST-GCN blocks and VGG blocks,
we selected the model structure, which has achieved a trade-off
between the parameter size and the accuracy.
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TABLE II
THE STRUCTURE OF THE SKELETON SILHOUETTE FUSION NETWORK

1) Skeleton Stream: Inspired by the successful application
of ST-GCN in action recognition [39], the ST-GCN model
is investigated to extract spatial and temporal Parkinsonian
gait features from the pose graph sequences. There are two
types of basic operations in the ST-GCN model: spatial
graph convolution and temporal convolution. The former is
introduced to capture posture symptoms such as anticollis
and camptocormia [40], while the latter is utilized to model
time-dependent motion symptoms such as slow pace and arm
swing asymmetry [10], [38].

Following the concepts of the graph convolutional network
proposed in [41], the graph convolutional operation of the
proposed ST-GCN is expressed as follows:

Xout = D−
1
2 AD−

1
2 X inW (4)

where Xout ∈ R15∗2∗L and X in ∈ R15∗2∗L are the output and
input matrices of the graph convolution layer, respectively. L
denotes the input sequence length. A ∈ R15∗15 represents the
normalized adjacency matrix of the pose graph. D ∈ R15∗15

is the degree matrix, which is a diagonal matrix calculated by
Di i = 6 j Ai j . W denotes a layer-specific learnable weight
matrix. The temporal, proximal, and distal connections are
treated differently by using undirected weighted graphs. The
proximal connections are denoted as graph edges with a weight
of 2, while the distal connections are represented by the edges
with a weight of 3. For example, the connection between
Joint 1 and Joint 2 is defined as the proximal connection, then
we set A(1, 2) = A(2, 1) = 2. The temporal connection is
implemented by 1D convolution. For a joint Ji , the temporal
sequence can be represented by Ji1, Ji2, Ji3, . . . , Ji t , then the
temporal convolution over this joint is implemented by 1D
convolution using a 1×9 kernel. Following the concept of 1D

convolution, the temporal convolution is expressed as follows:

Y =

N∑
k=0

Wk ⊗ Xout + B (5)

where Y denotes the output matrix of the temporal convolution
layer. N is the number of convolution kernels, Wk shows the
learnable kernel, B is the learnable bias.

2) Silhouette Stream: Previous studies have shown that
patients with PD have higher step length variability compared
to healthy people [38], [42]. To detect the gait cycle-related
spatial features from the LT-GEI, the convolutional neural
network (CNN) is employed. The VGG16 architecture is
chosen to achieve a compromise between prediction accuracy
and parameter scale. As shown in Tab II, the silhouette stream
consists of 5 VGG blocks and 1 fully connected layer. The
VGG network is good at image classification. However, due to
the huge hyperparameter size, it is computationally expensive.
In the VGG16 network, the convolution layers can extract
patterns from the pixels, while the fully connect layers pick
and fuse these patterns to adapt to specific classification
domains. The model parameters pretrained on the ImageNet
have proved to be effective in detecting natural patterns. Hence
the 5 VGG blocks are initialized with these parameters to
help detect natural body patterns such as neck, arms, and
legs. During the model training procedure, only fully connect
layers parameters are updated to detect Parkinsonian gait
impairments. Thus the computation cost can be reduced.

D. Saliency Analysis and Supplementary Features
To better understand the features of which body parts play

a more important role in predicting patients’ UPDRS scores,
the saliency value is defined as a quantification index. The
saliency value of each joint is derived from the output of
the ST-GCN blocks. Given a pose graph sequence input with
shape (Cin, T, V ), the ST-GCN blocks return a vector of shape
(Cout , T/8, V ). Cin = 2 is the number of channels of each
graph node, T = 64 is the length of the input sequences,
V = 15 is the number of graph nodes (see the network
structure described in Table II). Cout = 256 is the output
channel. Thus the number of graph nodes V is reserved. Then
the saliency vector S ∈ RV is calculated as follows:

S =

T/8∑
t

√√√√Cout∑
i

(
O2

i t
)

(6)

where Oi t is the elements of the output matrix O . The saliency
vector shows the response of each graph node after spatial and
temporal convolution. Si can be considered as the weight index
of Joint Ji (index i see Fig 2(a)). Considering the cooperation
between joints during walking, the joints are divided into six
groups: neck (J0, J1), torso (J1, J8), left arm (J5, J6, J7), right
arm (J2, J3, J4), left leg (J12, J13, J14) and right leg (J9, J10,
J11). In order to determine which body parts contribute more
to the gait score prediction task and facilitate further study,
the average saliency values of every group are calculated and
ranked.
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Based on the six groups proposed, we additionally choose 7
supplementary features to verify the effectiveness of the
saliency value:

1) Neck Forward Bending Angle: the neck is represented
by the link between Joint 0 and Joint 1, then the neck forward
bending angle is obtained by calculating the angle between
the neck and the vertical.

2) Torso Velocity: it is denoted by the horizontal velocity
of Joint 1.

3) Torso Forward Bending Angle: the link between J1 and
J8 represents the torso, then the torso forward bending angle
is denoted by the angle between the torso and the vertical.

4) Arm Swing Amplitude: the arm swing amplitude is
represented by the angle between the upper arm and the
vertical.

5) Arm Swing Asymmetry (ASA): given the average swing
amplitude of the left arm θL and the right arm θR , then θmax =

max(θL , θR), θmin = min(θL , θR). The ASA is calculated as
Equation (7).

AS A =
45◦

− arctan(θmax/θmin)

90◦
(7)

6) Step Length: it is represented by the max distance
between two heels in a gait cycle.

7) Step Time: it is defined as the time interval between peaks
and troughs of the heels distance-time curve (see Figure 2 (c)).

The Spearman correlation coefficients between the features
and the gait scores are utilized to measure the contribution of
each feature to the gait score.

III. EXPERIMENTAL EVALUATION

A. Implementation Details
The cost function of the proposed model is the cross-entropy

loss. By performing the grid search using the stochastic
gradient descent (SGD) method, the optimal hyperparameters
of the model are obtained. All training processes are initialized
with a momentum of 0.9 and a learning rate of 0.01. All
models are developed on the Pytorch framework and run on an
Nvidia GeForce GTX 1660 Ti GPU with 6 GB memory. Each
training epoch takes about 6 seconds, and the best performance
is achieved at 280 epochs with a batch size of 32.

All experiments are conducted on an individual basis, which
means the sub-clips of one subject cannot be separated by
the train and evaluation splits. During the model validation,
a voting mechanism is introduced for the subject-based evalu-
ation [27]. The predicted score of one participant is determined
by the majority of votes among its sub-clips. If the vote
numbers of two scores are the same, the larger one is given.

B. Evaluation Metrics
All evaluations are conducted in a 5-fold cross-validation

scheme. The per-class precision (Pre), recall (Rec), F1 score,
and area under the ROC curve (AUC) are used to evaluate
the proposed method. The confusion matrix and the accu-
racy (Acc) are used to indicate the total prediction results.
In addition, as explained in [27], Cohen’s κ coefficient is
considered a more robust measure compared to the simple per-
cent agreement measure since it considers the possibility that

TABLE III
CLASSIFICATION RESULTS OF THE GAIT SCORE PREDICTING TASK

TABLE IV
ABLATION STUDY RESULTS OF THE PROPOSED METHOD

agreement occurs by chance. Hence we use the κ coefficient
for comparison and evaluation. For all statistical analyses,
p < 0.05 is considered a signal for statistical significance.

C. Age Effects
ANOVA (Analysis of Variance) test and t-test are conducted

to exclude the age effect on the subject groups (see Table I).
Shapiro-Wilk test is done on each group to validate the
normality of the age distributions. The p-values for the three
groups are 0.66, 0.54, and 0.13, respectively, proving that the
ages of all groups obey normal distribution. The ANOVA test
on all three groups returned a p-value of 0.13, which indicates
that there are no significant age differences across groups. The
t-test between classes (0-1, 1-2, and 0-2) returned p-values of
0.288, 0.06, and 0.314, respectively, which suggest that no
significant age difference is found between any two groups.
According to the above results, the age effect is excluded from
this study.

D. Classification Results and Ablation Study
In order to evaluate the method comprehensively, the

sample-based results of each class are summarized in Table III
and Figure 3. The overall classification accuracy is 71.25%
with all AUC values larger than 0.7. Among the 54 patients
in the dataset, only 4 are misclassified as healthy people, which
means the sensitivity of the model to screen patients with PD
has reached a sensitivity of 92.3%. In general, the results imply
that the proposed model has achieved a result comparable to
advanced relevant studies [24], [30].

Furthermore, to verify the necessity and effectiveness of
all strategies proposed in Section II, ablation experiments
are also conducted. The results are given in Table IV. The
two-stream structure is verified by separately disabling the
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Fig. 3. Confusion matrix of the gait score prediction task.

TABLE V
COMPARISON WITH BASELINE METHODS

skeleton and silhouette streams. The precision decreases sig-
nificantly (21.3%) when the skeleton stream is disabled, while
the AUC value drops greatly (7.3%) when the silhouette
stream is disabled. It seems that the skeleton stream works
extremely well in dominant categories, and the silhouette
stream has a more balanced performance for all categories.
The fusion of these two networks is proven to be more efficient
compared to each of them. Then the LT-GEI is replaced by GEI
to put into the silhouette stream. All aforementioned evaluation
indicators decrease, especially the κ coefficient. It implies that
the addition of the LT-GEI increases the robustness of the
model. Finally, we substitute the proximal-distal configuration
with the uniform configuration (all graph edges are considered
to be the same). It is worth noting that the model without
the proximal-distal configuration works even worse than the
skeleton stream itself with a heavy margin, with the exception
of the AUC value.

E. Comparison With Baseline Methods
To further demonstrate the performance of the pro-

posed model, several baseline methods are examined on
the same clinical dataset (see Table V), including Support
Vector Machine (SVM), Random Forest (RF), the SOTA
skeleton-based action recognition model 2s-AGCN [43],
LSTM [44] and the silhouette-based Parkinsonian gait clas-
sification model 3DCNN [24]. The F-1 score, AUC, and κ are
three comprehensive evaluation metrics. For the F-1 score, the
proposed method outperformed the other methods by 15.5%,
10.8%, 4.9%, 8.9%, and 12.2%. For the AUC, the proposed
method outperformed the other methods by 11.3%, 2.9%,

TABLE VI
SUPPLEMENTARY FEATURES

8.7%, 1.6%, and 6.8% (see Table V). The κ coefficient of the
proposed model is 0.569, which is significantly higher than
the other four compared methods.

F. Saliency Analysis
The average saliency values among all PD patients are

shown in Figure 4 (a). It can be observed that the upper body
shows a higher response to the ST-GCN blocks. The neck
(Joint 0), head (Joint 1) and left shoulder (Joint 2) contribute
the most to the prediction of gait scores. The average saliency
values of the proposed six groups are given in Figure 4 (b).
It is obvious that the neck, torso and left arm are the three
body parts with the largest saliency values.

As for the supplementary features, the three most relevant
features are the arm swing amplitude, the torso velocity, and
the neck forward bending angle, with Spearman correlation
coefficients of 0.78, 0.73, and 0.43, respectively. Moreover,
among all proposed supplementary features, only these three
features are found to be significantly correlated to the gait
score (p < 0.05). The statistical results show that the body
parts concerned more by the model are indeed more important
for the prediction task. Thus the efficiency of the proposed
saliency value is proved.

IV. DISCUSSION

The main objective of this study is to develop a video-based
Parkinsonian gait assessment system in two principal ways:
(1) develop a skeleton-silhouette fusion convolutional network
to predict the patients’ UPDRS gait scores and (2) extract
network-derived supplementary features to provide credible
quantification metrics with higher resolution. This section will
be discussed in terms of these two objectives and how the
experimental results compare to those of prior related studies.

A. Classification of Parkinsonian Gait
Accurate assessment of gait impairments for patients with

mild PD symptoms (i.e., with a UPDRS gait score of 1 or
2) is important for efficient treatment and rehabilitation. Mean-
while, studies have shown that it is more difficult to accurately
classify UPDRS gait scores of 1 and 2 compared to other
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TABLE VII
COMPARISON WITH SOTA VIDEO-BASED METHODS

scores [26], [27]. There is a limited number of video-based
methods for predicting MDS-UPDRS gait scores which can
provide a relatively high prediction accuracy. To show the
performance of the proposed approach for predicting the gait
scores of 1 and 2, a comparison with some latest video-based
studies on Parkinsonian gaits, such as [26], [27], and [30],
is carried out (see TableVII). It should be noted that patients
with UPDRS gait score 3 are also included in [26] and [27],
while in [30] and the present study, they are not recruited.
To compare under a same benchmark, only the UPDRS-
0,1,2 classification results are calculated according to the
experimental data provided by [26] and [27].

Guo et al. [26] proposed a neural network named
2s-ST-AGCN for the assessment of Parkinsonian gait. 441 gait
examination video clips of 142 patients with gait scores of 0,
1, 2 and 3 were collected and tested. Based on the 2D
poses estimated by the AlphaPose [45], the method achieved
a balanced recall of 65.66% in the 4-class dataset. The
F-1 score of class-0, 1 and 2 were 72.3%, 57.3%, and 50.8%
respectively, thus the balanced F-1 score for classes 0-2 was
56.2%.

Lu et al. [27] proposed the OF-DDNet (ordinal focal double-
feature double-motion network) to handle class imbalance
and noisy labels of the constructed dataset. In the MDS-
UPDRS gait score estimation task, the number of subjects
with scores 0, 1 2 and 3 were 10, 33, 8 and 4, respectively.
3D skeleton sequences were extracted from gait videos with
VIBE (Video Inference for human Body pose and shape Esti-
mation) [46]. Benefit from the focal loss, the class imbalance
was alleviated, and a balanced accuracy of 72% was achieved
on the 4-class dataset. The classification performance of each
class can be derived from the confusion matrix given in
the study, a balanced F-1 score of 66.1% was achieved for
classes 0-2.

Sabo et al. [30] proposed a two-stage training approach
to evaluate the Parkinsonism of individuals with dementia.
5 types of human pose (i.e. OpenPose, Detectron, Alpha-
Pose, Microsoft Kinect 2D & 3D) and 2 types of models
(i.e. OF-DDNet and ST-GCN) were tested on the 53 subjects
dataset. Note that only patients with UPDRS gait scores of
1 and 2 were included in the study. The best performance
was achieved using Kinect 3D pose and the ST-GCN, with a
balanced F-1 score of 52%.

Class imbalance in the clinical dataset is commonly seen
in previous studies. In [27], the focal loss was leveraged

Fig. 4. The saliency values of the joints and body parts.

to combat the problem. In the present study, we construct
a class-balanced dataset using patients with gait scores of
1 and 2. In addition, some gait impairments (e.g., reduced
strike speed) show a significant link with age. Eliminating
the age effects is crucial to ensure an accurate evaluation
of the UPDRS classification methods. However, it is rarely
taken into account in prior studies. In the present study, there
are no significant age differences across all three groups of
the dataset, which indicates that our results are not related
to age. Finally, the classification results exceed the best
performance of the previous studies [26], [27], [30] on 4 com-
parative metrics including precision (71.3% vs. 66.7%), recall
(71% vs. 68.3%), specificity (85.3% vs. 78.7%) and F-1 score
(71% vs. 66.1%). We have also tested the proposed model on a
balanced dataset with 26 healthy subjects and 26 PD patients,
the total accuracy was 90.4%.

B. Saliency Values and Supplementary Features

Prior studies have analyzed some key gait features for PD
assessment, such as neck bending [40], gait speed, stride
length [47], arm swing amplitude and asymmetry [9], using
motion capture, inertial sensor and accelerometer. Most of
them focused on analyzing the differences between healthy
individuals and PD patients. In the present study, seven
video-based supplementary features are extracted and evalu-
ated, while three of them are found to be strongly correlated
with the gait scores, i.e., the arm swing amplitude, the
torso velocity and the neck forward bending angle (see
Section III-F). The results show great promise in developing
quantitative means with higher resolution for more precise
parkinsonian gait assessments.
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Fig. 5. Boxplots of two proposed supplementary features with the gait
scores. (a) Max arm swing amplitude. (The black circle represents the
outliers.) (b) Gait velocity. (c) Neck forward bending. The ρ represents
the Spearman correlation coefficient between the features and the gait
scores.

The arm swing amplitude is found to be different between
PD patients and healthy controls in [47]. The typical cases
of participants with scores of 0,1,2 are shown in Figure 6(a)-
(b). It can be seen that compared to PD patients, the arm
swing amplitudes of healthy subjects are larger, and the
cadence and bilateral symmetry are also better. However, the
arm swing asymmetry feature shows a low correlation with
the gait scores. One reason is that most of the patients are
diagnosed as H&Y stage 2 and above. Only two patients
are diagnosed as H&Y stage 1. According to [5], H&Y
stage 2 is defined as bilateral involvement without impairment
of balance, which means most of the patients involved are
affected by PD on both sides. Thus it is hard to determine
the relationship between the bilateral arm swing and the gait
scores. On the other side, there is a significant correlation
between the maximum value of the arm swing amplitude and
the gait UPDRS score. The max arm swing amplitude boxplot
of three groups is provided in Figure 5(a). It can be seen that
the median of each group (red lines) shows a decreasing trend
with the gait UPDRS scores. And the Spearman correlation
coefficient is ρ = −0.78, suggesting a significant negative
correlation.

Many studies have shown that PD patients walk slower than
healthy people [38], [47]. In the present study, the horizontal
velocity of the torso is chosen to be a reflection of gait speed,
and shows a significant negative correlation with the gait score
(Spearman correlation coefficient ρ = −0.74; see Figure 5 (b)
and Fig 6 (c)) Note that there exists persistent oscillation in
the velocity curve in Fig 6 (c), since the differential operation
and the short sampling period (0.04s) amplified the noise
introduced by skeleton estimation. However, the noise can
be compressed by averaging. Compared to prior sensor-based
methods detecting gait speed by measuring foot motions, the
proposed method can avoid the common error accumulation
problem.

In [48], a summary index composed of neck and trunk
forward bending angle is proposed to evaluate postural
abnormalities severity in Parkinson’s Disease. A significant
correlation was detected between the index and the total
UPDRS scores (Spearman correlation coefficient ρ = 0.37).
In the present study, the relationship between the neck forward
bending angle and the UPDRS gait score is evaluated. The

Fig. 6. Plots of the supplementary features extracted from the gait
videos. (a) Left arm swing angles. (b) Right arm swing angles. (c) Gait
velocity.

Spearman correlation coefficient between the neck forward
bending angle and the gait score is 0.43, and the bending
angle shows a positive correlation with the gait score (see
Figure 5 (c)).

C. Clinical Application and Future Work
Existing Parkinson’s assessment methods have variously

been proposed as substitutes for clinical testing. The pro-
posed method can not only predict the MDS-UPDRS gait
scores but also provide fine-grained supplementary features
for high-resolution gait quantification. The earliest stages
of Parkinson’s disease can be difficult to recognize, and
assessments administered in clinics can be episodic because
many people with Parkinson’s disease may respond differently
at home than in the hospital. Moreover, the gaits of PD
patients are influenced by factors such as medication intake
and DBS treatments [49]. Benefit from the smartphone-based
data collection, the system holds significant future potential
in the home-based diagnosis of early PD, long-term home-
based assessment of the patient’s symptoms and response
to medical intervention as well as closed-loop feedback for
DBS stimulation adjustment, which are of great importance
in the clinical management of PD. In future works, more PD
patients will be recruited to test the generalization capability
and robustness of the proposed method. In the present study,
patients with Scores 3 and 4 are excluded. In the future,
patients in these classes will be involved. Furthermore, the
measurement accuracy of the supplementary features will be
tested in detail.

V. CONCLUSION

In this study, a video-based method for automatic
and quantitative assessment of gait impairments in PD
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using a skeleton-silhouette fusion neural network. The
skeleton-silhouette neural network is adopted to extract fea-
tures from the gait videos and predict the UPDRS gait scores.
To understand which body parts contribute more in correctly
predicting the gait scores, the saliency values are derived from
the neural network and ranked. Finally, several supplementary
features are designed and examined for the verification of the
saliency values. Extensive experiments are done on a clinical
dataset with 80 participants. The results show that satisfac-
tory prediction accuracy can be achieved using the proposed
method. In addition, three supplementary features are found to
be significantly correlated to the gait scores, thus can be used
as gait disorder quantification metrics with higher resolution.
The data collection can be easily done through smartphones,
and nearly no clinical training is required. In future work,
the proposed method will be tested for home-based early
PD diagnosis. More patients will be involved to examine
the generalization capability and robustness of the proposed
system. Meanwhile, the measurement accuracy of the supple-
mentary features will be tested to guarantee the soundness and
effectiveness of the quantification metrics.
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