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Iterative Self-Training Based Domain Adaptation
for Cross-User sEMG Gesture Recognition
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Abstract— Surface electromyography (sEMG) based ges-
ture recognition has received broad attention and applica-
tion in rehabilitation areas for its direct and fine-grained
sensing ability. sEMG signals exhibit strong user depen-
dence properties among users with different physiology,
causing the inapplicability of the recognition model on
new users. Domain adaptation is the most representative
method to reduce the user gap with feature decoupling
to acquire motion-related features. However, the exist-
ing domain adaptation method shows awful decoupling
results when handling complex time-series physiologi-
cal signals. Therefore, this paper proposes an Iterative
Self-Training based Domain Adaptation method (STDA)
to supervise the feature decoupling process with the
pseudo-label generated by self-training and to explore
cross-user sEMG gesture recognition. STDA mainly con-
sists of two parts, discrepancy-based domain adaptation
(DDA) and pseudo-label iterative update (PIU). DDA aligns
existing users’ data and new users’ unlabeled data with a
Gaussian kernel-based distance constraint. PIU Iteratively
continuously updates pseudo-labels to generate more
accurate labelled data on new users with category balance.
Detailed experiments are performed on publicly available
benchmark datasets, including the NinaPro dataset (DB-1
and DB-5) and the CapgMyo dataset (DB-a, DB-b, and DB-c).
Experimental results show that the proposed method
achieves significant performance improvement compared
with existing sEMG gesture recognition and domain adap-
tion methods.
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I. INTRODUCTION

AS THE most flexible part of the human body, the hand
can complete a variety of complex movements and is

essential to an individual’s life, study and work [36]. Rehabil-
itation of hand function after an injury or chronic disease is
crucial in rehabilitation medicine because it affects not only
hand movement but also other related body parts (i.e., wrist,
upper limb) and even cognitive abilities (i.e., working memory,
executive function, and thinking ability) [19], [38]. Among
various hand rehabilitation techniques, surface electromyogra-
phy (sEMG) based gesture recognition is a crucial technology
to measure human behavioural ability and further perceive
human intentions [16]. Furthermore, this technology has been
widely studied because it can directly perceive and analyze
human upper limb muscle activity [48]. Gesture recognition
based on sEMG has a wide range of applications. For example,
intelligent prostheses based on sEMG can help upper limb
amputees regain some of their original function [35] and
promote cognitive improvement.

sEMG gesture recognition is a multi-classification
machine learning problem. As early as 2008, Kim et al. [20]
proposed using traditional machine learning methods for
sEMG gesture recognition, with an accuracy rate of 94%.
Tsinganos et al. [37] pointed out that with the robust feature
learning ability of deep learning, many researchers have also
achieved high recognition accuracy through models such as
convolutional neural networks in recent years. Although high
accuracy rates have been reported in laboratory settings, most
have not been translated into clinical applications [49]. The
main reason for the failure is the inconsistency of statistics.
Several factors contribute to the inconsistent distribution of
data. The main reasons are limb position offset, electrode
offset, and especially physiological differences between users
(such as muscle fatigue, skin resistance, and muscle strength).
The above factors lead to the failure of the previously trained
model to adapt to new users. Even if the same movement is
performed, the signals from different users will significantly
differ.

Domain adaptation is an effective method to solve the
inconsistency between two data distributions [11]. Domain
adaptation is derived initially from computer vision and has
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achieved splendid results. The success of domain adaptation in
computer vision may be due to the potential label correlation
between the source domain and target domain images. How-
ever, sEMG signals from two different people with the same
movement did not show a significant correlation. The existing
domain adaptation methods have poor adaptation effects on
sEMG signals and fail to decouple the information related
to motion well. Only a limited number of gestures can be
recognized, their validity has yet to be verified on public
datasets [49], or a certain amount of target domain data is
required for adaptation [31].

Therefore, this paper considers adding a small amount of
supervision information to guide the decoupling process and
proposes an Iterative Self-Training based Domain Adapta-
tion to explore cross-user sEMG gesture recognition, namely
STDA. In detail, STDA includes two parts: discrepancy-based
domain adaptation (DDA) and pseudo-label iterative update
(PIU). DDA uses a Gaussian kernel-based distance constraint
to reduce the distance between source and target domains. PIU
uses an iterative self-training loop to produce more accurate
pseudo labels. Overall, the STDA method outperforms the
state-of-the-art on the five sub-datasets. Our method provides
over 25% improvement over baseline, over 5% over supervised
domain adaptation, and over 24% over unsupervised domain
adaptation.

The significant advantages of the proposed method are as
follows: 1) We propose a novel data decoupling method, which
uses self-training to supervise domain adaptation and achieves
marvellous decoupling results. 2) We propose an adjustment
mechanism to deal with the pseudo-label imbalance during
model training, which makes the model more accurate. 3)
Experimental results on five publicly available datasets show
that our model generally outperforms state-of-the-art methods
for sEMG gesture recognition and domain adaptation.

The remainder of this paper is organized as follows.
Section II overviews existing sEMG gesture recognition,
self-training, and transfer learning methods. Section III
gives the formulation of the problem. Section IV sets out
our motivation. Section V presents the STDA method and
architecture diagram. Section VI gives the experimental setup
and analysis. Finally, Section VII summarizes the entire paper
and gives plans.

II. RELATED WORK

The proposed STDA method is mainly related to sEMG ges-
ture recognition, self-training, and transfer learning. Therefore,
this section will review the latest research in these fields and
their intersection.

A. sEMG Based Gesture Recognition
According to the sensing solution, gesture recogni-

tion can be divided into vision-based, accelerometer-based,
data glove-based, sEMG-based, WiFi-based, radar-based,
etc [2], [3], [14], [32], [33], [40]. Simultaneously, according to
the performing procedure, the gesture contains two types, i.e.,
the static gesture and the dynamic gesture. For example, three
subsets of CapgMyo (including DB-a, DB-b and DB-c) are

static gestures, and two subsets of NinaPro (including DB-1
and DB-5) are dynamic gestures. Compared with other gesture
recognition solutions, the one based on sEMG has many
advantages. sEMG signal can perceive and analyze human
muscle activity directly, and sEMG-based gesture recognition
is also insensitive to light. Thus, sEMG gesture recognition
has wide applications, especially in the rehabilitation medicine
area. For example, Wang et al. [44] used sEMG signals to
capture human motion intentions, converted them into control
commands and sent them to the prosthetic control system to
complete the grasp of objects, with an average accuracy of
about 96%. Cruz-Sá nchez et al. [9] used the signals collected
by the myoelectric armband as the command to control the
hand exoskeleton to assist in recovering hand impairment.
Experimental results showed that an accuracy of about 81%
was obtained using the K-nearest neighbour classification
algorithm. Oñ a et al. [26] explored the practicability of using
sEMG signals to control games to help young people with
multiple sclerosis. Adebayo et al. [1] used the recurrent neural
network (RNN), long short-term memory (LSTM), based on
sEMG signals to control electric wheelchairs to help disabled
and older people become unaided in life.

Generally speaking, we can model sEMG gesture recogni-
tion as a machine learning process, and the processing flow
includes pre-processing, feature extraction, and classification.
As sEMG signals have the non-stationary property and their
intrinsic characteristics can not be expressed well with a
separate domain, some time-frequency transformation methods
(e.g., Fourier transforms and Wavelet transforms) are gener-
ally used to convert the original signals into time-frequency
maps [27], [28]. Besides the traditional machine learning
methods that extract sEMG features and construct classifica-
tion models separately, many end-to-end deep learning models
have been applied to sEMG gesture recognition, including
the convolutional neural network (CNN) and recurrent neural
network (RNN). At the same time, some of their variants and
improvements have also been created. Wang et al. [40] pro-
posed a variant method of CNN to improve gesture recognition
accuracy by optimizing the convolution kernel. The exper-
iments in Ninapro DB-1 showed recognition improvement
compared with the traditional CNN method. Bai et al. [5]
fused the CNN and LSTM methods to build a convolu-
tional recurrent neural network that achieved an accuracy of
about 91%. Recently, attention-based models have also been
employed for sEMG gesture recognition. Josephs et al. [15]
proposed a model based on an attention mechanism that can
outperform previous complex models based on CNN in the
recognition task with 53 gestures. Lv et al. [24] proposed a
deep learning architecture that fused the attention mechanism
and CNN and achieved an accuracy higher than 97% on their
own and public-available datasets.

However, influenced by the distribution differences of differ-
ent users’ sEMG signals, the sEMG gesture recognition model
encounters severe user-dependent problems. Specifically, if the
model established by existing users is directly applied to new
users, the accuracy will drop significantly. Zhang et al. [50]
reported only about 40% recognition accuracy on cross-user
gesture recognition tasks involving five gestures. Similarly,
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Kanoga et al. [17] reported a similar low result on cross-user
recognition tasks. Ketykó et al. [18] reported that gesture
recognition accuracy drops below 50% in the presence of
domain shift.

B. Self-Training

In recent years, due to the available large amount of labelled
data, supervised learning has been successfully applied in
many fields, such as computer vision, natural language
processing, human activity recognition, sEMG gesture recog-
nition, etc. However, acquiring large amounts of labelled
data in real-world scenarios is labour-intensive and material-
intensive, especially in medical systems.

The emergence of semi-supervision is to solve the above
difficulties [52]. Semi-supervised learning mainly thinks about
constructing a model with a small amount of supervised data
while using other unlabeled data. Although there are no labels
for unlabeled data, a large amount of data can provide addi-
tional distributional information, which is still beneficial for
model training. Generally speaking, semi-supervised learning
can be roughly divided into the following four categories: self-
training-based, entropy regularization-based, clustering-based,
and graph-based.

Semi-supervised learning relies on model assumptions, and
when the model assumptions are correct, unlabeled samples
can help improve learning performance. The commonly-used
model assumptions are as follows:

• Smoothness Assumption [25]: The class labels of two
closely spaced examples in a dense data region are
similar. When two examples are connected by an edge
in a lush data region, they have a high probability of
having the same class label.

• Clustering Assumption [21]: When two samples are in
the same cluster, they have the same class label with a
high probability.

• Manifold Assumption [39]: If embedding
high-dimensional data into a low-dimensional manifold,
two examples have similar class labels when they
lie within a small local neighbourhood in the low-
dimensional manifold.

Self-training is a simple and effective semi-supervised learn-
ing method. The method based on self-training is simple and
effective and is widely used. For example, Sahito et al. [34]
used self-training to solve the image classification problem
and evaluated it on three benchmark datasets. Yang et al. [47]
proposed a teacher-student model to generate image cap-
tions. Bi et al. [6] used self-training to realize human activity
recognition, advancing research in digital health. The general
process of self-training can be summarized as follows: First,
train a model with labelled data; Second, use the trained model
to predict unlabeled data, usually using the head of the model
(i.e., a linear classifier), and the resulting label is called a
pseudo-label; Then, select reliable labelled data with a specific
strategy, such as selecting samples with higher confidence;
Finally, the model is retrained on the labelled data along with
the pseudo-labelled data, and so on until the model converges.

Some researchers have also explored sEMG gesture recog-
nition using semi-supervised learning. Guo et al. [13] achieved
about 93% accuracy on single-finger movements using a
semi-supervised learning algorithm. Xu et al. [46] explore
using semi-supervised learning to control hand orthoses to help
stroke patients. Du et al. [10] achieved decent performance on
three public datasets using semi-supervised learning.

C. Transfer Learning
Besides the dependence on a large amount of labelled data,

the success of traditional machine learning methods is also
based on the assumption that the training and the testing
data obey independent and identically distributed. To meet the
challenges brought by the time and labour consumption of
data labelling, transfer learning is proposed and increases wide
attention. Transfer learning defines a new machine learning
paradigm, which can learn knowledge from the source tasks
and transfer the learned knowledge to the target tasks [29].
Recently, the more challenging problem of domain general-
ization has attracted the interest of researchers, where one or
more distinct but related domains are known, and the goal is
to generalize directly to an unseen domain [41].

Specifically, transfer learning refers to a given source
domain and source task. The purpose is to use the source
domain and source task to help it learn a good model on the
target domain, satisfying that the source domain is not equal
to the target domain or the source task is not equal to the
target task [29]. Transfer learning can be divided into three
categories: instance-based transfer, parameter sharing-based
transfer, and feature-based transfer. Instance-based transfer
focuses on selecting the most favourable samples from the
source domain and re-weighting them. Parameter-based trans-
fer focuses on how to find standard parameters and prior
distributions between the two. Feature-based transfer focuses
on how to find the shared feature space of the source
and target domains. The feature-based transfer has received
more attention and can be further refined into the follow-
ing sub-categories: discrepancy-based, adversarial-based, and
reconstruction-based [42]. Discrepancy-based transfer learn-
ing aligns the source and target domains in feature space;
Adversarial-based transfer learning utilizes the idea of the
Generative Adversarial Network to construct a feature extrac-
tor and a domain discriminator for adversarial training;
Reconstruction-based transfer learning constructs a reconstruc-
tion task based on the auto-encoder to ensure that the features
are invariant.

Transfer learning has been successfully applied in many
fields, such as natural language processing, computer vision,
medical health, and so on. For example, Prottasha et al. [30]
used BERT-based transfer learning for sentiment analysis.
Ghorbanali et al. [12] explored sentiment analysis based on
CNN-based transfer learning. Ayana et al. [4] used transfer
learning to classify breast cancer images. Li et al. [22]
explored the use of transfer learning for pest image classi-
fication. In this paper, we focus on the research of transfer
learning on sEMG gesture recognition. Many factors, such
as electrode shift and user differences, can lead to inconsis-
tencies in data distribution. Campbell et al. [7] proposed a
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neural network architecture based on batch normalization and
adversarial transfer learning strategies. With a small amount
of target user data provided, the classification accuracy of
healthy users is greater than 86%, and the classification
accuracy of disabled users is greater than 64% on ten ges-
tures. Zhang et al. [49] proposed a feature-alignment transfer
learning method based on an adaptive sampling method, which
achieved an average accuracy of about 90% on the six gestures
collected. Rahimian et al. [31] also reported that experiments
on Ninapro DB-5 showed that in cross-session scenarios, the
accuracy of domain adaptation decreases as the number of
samples given by the target domain decreases. Zheng et al. [51]
also reported that the model for existing users could not
be directly generalized to new users, and they proposed an
adaptive K-nearest neighbour algorithm that achieved about
68%, 73%, and 83% classification accuracy on 12, 8, and
4 gestures, respectively. The 2-step domain adaptation pro-
posed by Ketykó et al. [18] achieves a classification accuracy
of about 65% on the NinaPro DB-1 dataset. Chan et al. [8]
reported that electrode shift decreased recognition accuracy
and proposed an unsupervised domain adaptation method to
achieve an accuracy improvement of about 8%.

However, in cross-session and cross-user scenarios, it is still
challenging to build a model with good generalization perfor-
mance and many gestures without using target annotation data
or with little target annotation data.

III. PROBLEM FORMULATION

The proposed STDA method aims to explore the effective
usages of semi-supervised domain adaptation on sEMG ges-
ture recognition problem. The data from all existing users
constitute the source domain S, where S =

{
(xs

i , ys
i )
}Ns

i=1,
Ns represents the number of samples in the source domain, xs

i
indicates the i th sample of the source domain, and ys

i indicates
the label corresponding to the i th sample of the source domain.
The data from the target user constitutes the target domain T ,
T = Tl

⋃
Tu
⋃
Tte. Tl represents a small amount of labelled

data in the target domain (for a C (C ∈ N+) classification
problem, it has only C samples), Tu represents a relatively
large amount of unlabeled data in the target domain, and Tte
represents the target domain test data. The three of them satisfy
the identically independent distribution. And the number of
samples in Tu is larger than that in Tl , i.e., |Tu | > |Tl |.

Tl =
{
(xtl

j , ytl
j )
}Nl

j=1
, where Nl represents the number of

labelled samples in the target domain. Tu =
{
(xtu

k )
}Nu

k=1,
where Nu represents the number of unlabelled samples in
the target domain. Tte =

{
(xte

m )
}Nte

m=1, where Nte represents
the number of test samples in the target domain. In cross-
user scenarios, there is a domain shift, i.e., the distribution is
inconsistent (PS ̸= PT ). The above xs, xt are the data vector,
i.e., xs, xt ∈ R(d1×d2×d3×d4). The above ys, yt are the category
label, i.e., ys, yt ∈ N. The goal of cross-user sEMG gesture
recognition is to use the data of existing users in the source
domain S, a small amount of labelled data in the target domain
Tl , and relatively large amount of unlabeled data in the target
domain Tu to obtain accurate labels, {ym}

Nte
m=1, on the test data

Tte.

IV. MOTIVATION

A. User Dependent Properties of sEMG Signal
Compared with the distribution differences among differ-

ent domains in the standard machine learning settings, the
sEMG signal shows more serious user-dependent properties
among users (i.e., domains). As shown in Fig. 1(a), we use
t-distributed stochastic neighbourhood embedding (t-SNE)
to reduce two users’ high-dimensional sEMG data features
extracted by deep neural networks to two dimensions for
visualization. The square represents the features of the first
user, and the circle represents the features of the second user.
The same colour represents the same gesture. It can be seen
from the observation that under the same gesture, the features
between different users are far apart. It shows that sEMG data
has strong user dependence.

In addition, we also visualize the distribution differences in
the standard machine learning settings. As shown in Fig. 1(b),
the data of MNIST and MNIST_M are also reduced to
two dimensions for visualization. The square represents the
MNIST dataset, the circle represents the MNIST_M dataset,
and the same colour represents the consistent category. As can
be seen from the graph, the same categories are close to each
other. From the analysis above, we can see that sEMG signals
suffer more user-dependent severe properties.

B. Pre-Experiment With Unsupervised Domain
Adaptation

Unsupervised domain adaptation is an effective method
to solve domain shift, which has been widely studied and
made good progress in computer vision and natural language
processing. We have briefly explored this on the sEMG dataset,
and we know that sEMG signals are mainly composed of two
parts, the user-related and motion-related parts. We attempt to
address the cross-user problem through unsupervised domain
adaptation. We map the source and target domain signals into a
shared space, hoping to train a user-independent classifier only
related to gesture actions. However, the results could be better.
We also tried an adversarial-based approach, and the results
could have been better. We also tried an adversarial-based
approach, and the results were not ideal either. We present
partial experimental results of feature alignment based on
kernel space distance, as shown in Fig 3. Observing the graph,
we can see that the Maximum Mean Discrepancy (MMD)
distance is regarded as the loss of model optimization, and it
does not decrease but increases on the sEMG dataset. It shows
that sEMG data has very extreme user dependence. Based on
this, we believe the user’s personalized information is still
relatively critical. We still introduce very little labelled data
of the target domain and have completed the personalized
migration of target users. It should be emphasized that we
use self-training to reduce the training burden of new users
on the one hand. On the other hand, it is more conducive to
domain adaptation to decouple action-related information.

V. ITERATIVE SELF-TRAINING BASED DOMAIN
ADAPTATION METHOD

Motivated by the pre-experiment above, we propose the Iter-
ative Self-Training-based Domain Adaptation method (STDA).
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Fig. 1. T-SNE embedding of (a) sEMG signal and (b) Image data. The shape represents the domain, i.e., squares represent data from the first
domain, and circles represent data from the second domain. The colour represents the class, i.e., the different gestures or different types of pictures.

Fig. 2. Framework of the proposed STDA. STDA mainly consists of two parts, discrepancy-based domain adaptation (DDA) and pseudo-label
iterative update (PIU). DDA aligns source and target domain features via distance constraints, and PIU iteratively generates target domain pseudo-
labels.

Fig. 3. Trend of mmd loss during training.

This section will present the proposed STDA method. The
framework of STDA is shown in Fig. 2. The method generally
has two parts, discrepancy-based domain adaptation (DDA)
and pseudo-label iterative update (PIU). DDA pursues the

feature alignment of source and target domains, and PIU
pursues iterative self-training. It should be emphasized that our
model did not use the data used in the training phase during the
test phase. In the following part, we will first give the feature
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alignment on the source and target domains in Section V-A.
Second, we introduce iterative self-training in Section V-B.
Then, we propose category rebalancing after each iteration in
Section V-C. Finally, we give the implementation process of
the algorithm in Section V-D.

A. Source and Target Align
Although the distribution of the source domain and the

target domain is inconsistent in the original data space (as
shown in Fig. 4), it is possible to narrow the distance between
the source domain and the target domain in specific feature
spaces. The goal is to realize that the model trained in the
source domain performs excellently in the target domain.
Discrepancy-based domain adaptation is a simple and effective
method widely adopted in text data, image data, time series
signals, etc. Therefore, in a cross-user scenario, the existing
user’s labelled data and the new user’s unlabeled data can be
aligned to realize gesture recognition.

The source domain can be denoted as S =
{
(xs

i , ys
i )
}Ns

i=1.

The target domain can be denoted as T =

{
(xt

j )
}Nt

j=1
.

In addition, the input space (i.e. X ) and the label space (i.e. Y )
are consistent, but the probability distributions of the two are
inconsistent, i.e., Ps ̸= Pt . The purpose of feature alignment
is to learn a good mapping ( f ) to simultaneously map the
source and target domains to a shared space (H), in which the
distance between the two is relatively close (||Ds − Dt || < ϵ

(ϵ ∈ R, ϵ > 0)). Ds represents the distance from the source
domain sample point to the origin in high-dimensional space,
and Dt represents the distance from the target domain sample
point to the origin.

The kernel learning method based on maximum mean
discrepancy effectively measures the distribution difference.
Maximum mean discrepancy measures the distance between
two distributions in Reproducing Kernel Hilbert Space
(RKHS). The distance between two distributions, Ps and Pt ,
can be defined as follows:

D(F , Ps, Pt ) = sup f ∈F (Exs∼Ps [ f (xs)] − Ext∼Pt [ f (xt )])

(1)

where F represents a function set under RKHS, Ex∼· rep-
resents the expectation under the source or target domain,
xs represents a sample point in the source domain, and xt
represents a sample point in the target domain. When the
distribution of the source and target domains is close, the
distance D approaches 0. The MMD between the source and
target domains can be calculated as:

M M D(S, T ) =

∥∥∥∥∥∥ 1
Ns

Ns∑
i=1

φ(xs
i )−

1
Nt

Nt∑
j=1

φ(xt
j )

∥∥∥∥∥∥
H

=

(
1

Ns
2

Ns∑
i=1

Ns∑
i ′=1

k(xs
i , xs

i ′)−
2

Ns Nt

Ns∑
i=1

Nt∑
j=1

k(xs
i , xt

j )+
1

Nt
2

Nt∑
j=1

Nt∑
j ′=1

k(xt
j , xt

j ′)


1
2

(2)

Fig. 4. Domain shift on source and target domains.

where φ represents a function that maps the original data to
H, φ(x) = k(·, x), and k generally takes the Gaussian kernel
function. The distribution difference between two domains in
a batch of samples can be measured with the distance in this
high-dimensional space.

We know that the shallow layers of deep learning can learn
general features, while the features learned by high layers are
task-specific. Therefore, the MMD distance is often regarded
as a loss, embedded in a particular layer of the inverse of the
deep network and then optimized. The above is the alignment
of the source domain and the target domain.

B. Iterative Self Training
Labelling data is time-consuming and labour-intensive and

will seriously increase users’ burdens. In recent years, self-
training has been successfully applied in many fields to
alleviate the dilemma of insufficient labelled data. Self-training
has received constant attention as an effective semi-supervised
learning method. The basic idea is to train a classifier with
a small amount of labelled data. The classifier predicts the
unlabeled data, and the prediction result is called a pseudo-
label (as shown in Fig. 5), and then the two are combined to
train the model. Specifically, the self-training process in this
paper is as follows:

1) Train a model with a small amount of labelled data;
2) Use the trained model to predict the class labels of

unlabeled samples;
3) Use a threshold to select pseudo-labels whose confi-

dence level satisfies the condition;
4) Train the model jointly with labelled and pseudo-

labelled data, and repeat 1)-4) until the model converges.
The training of the source domain model is a multi-
classification problem. For multi-classification problems,
cross-entropy is often used, and the calculation formula is as
follows:

Llog(Y, Ŷ ) = −
1

Ns

Ns∑
i=1

C∑
k=1

yi,klogpi,k (3)

where Y represents the actual label, Ŷ represents the predicted
output, C represents the total number of classifications, and
pi,k represents the probability that the i th sample is predicted
to be the kth class. For each sample in a multi-class (C
classification) problem, xtu

k ∈ Tu , and the pseudo-labels (based
on softmax confidence) are calculated as follows:

ŷ =

{
c(c ∈ C), i f thres(xtu

k ) > threshold;

pass, else.
(4)
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Fig. 5. Self-training process. The amount of unlabeled data is greater
than the amount of labeled data, that is, Nu > Nl. Each iteration of
unlabeled data re-labels all the data.

The algorithm flow of self-training is presented in Algorithm 1.
The self-training proposed in this paper uses very few labeled
data to train the model, labels the unlabeled data with the
model, and then conducts joint training until the model con-
verges.

Algorithm 1 Self-Training Process

Input: S =
{
(xs

i , ys
i )
}Ns

i=1, Tu =
{
(xtu

k )
}Nu

k=1
Output: f

1: repeat
2: f ← S // Train the model
3: U ′ ← { f (x), x ∈ Tu} // Predict unlabeled data
4: Upse ←

{
thres(x), x ∈ U ′

}
// Generate pseudo

labels
5: S ← S ∪ Upse // Combine the two data
6: until convergence ← f

C. Category Re-Balance
If the categories are unbalanced in image recognition,

we know the model will be adversely affected. During the
experiment, we found that such a problem exists in the surface
EMG data set. Fig. 6 shows a histogram of unprocessed
pseudo-label categories after a certain iteration in the training
process, showing extreme imbalance across categories. If this
adequately deals with this effect, the model’s accuracy can
be improved. A pseudo-labelled class with many samples is
called a majority class, and a pseudo-labelled class with a
small number of samples is called a minority class. This paper
adopts an oversampling method to make the minority class
samples comparable to the majority class samples through
oversampling.

At the same time, to keep the original public dataset from
losing its balance property during training, we define a balance
loss, which is equivalent to a variance. Assuming that the
number of output gesture categories in a set is x1, x2, · · · , xn ,
the equilibrium loss is calculated as follows:

x =
x1 + x2 + · · · + xn

n

var =
n∑

i=1

(xi − x)2

n
(5)

Optimizing var as part of the overall optimization loss
minimizes it to prevent violating the balance properties of the
public dataset itself.

Fig. 6. Category imbalance on 12 gestures.

D. Method Implementation
The whole process of the STDA method proposed in this

paper is described in Algorithm 2, which is a cross-user
framework based on sEMG signals. The framework mainly
involves three types of losses, including multi-class loss,
maximum mean discrepancy loss, and equilibrium loss.

VI. EXPERIMENT

We conduct extensive experiments on two public datasets,
NinaPro and CapgMyo. All experimental programs are writ-
ten in PyCharm 2021.3.2 Professional Edition, compiled
with Python 3.8.3, and mainly use torch library, version
“1.10.2+cu113”. The experiment uses GPU for accelerated
training, and the GPU model is NVIDIA RTX A5000 (24GB).

A. Experimental Setup
1) Datasets and Preprocessing: A summary of the dataset is

shown in Table I. NinaPro is the most commonly used dataset
for sEMG gesture recognition and contains ten sub-datasets.
We use two sub-datasets (i.e., DB-1 and DB-5) for detailed

Algorithm 2 The Whole Process of STDA Method

Input: Existing user data: S =
{
(xs

i , ys
i )
}Ns

i=1, New user

labeled data: Tl =
{
(xtl

j , ytl
j )
}Nl

j=1
, New user unlabeled

data: Tu =
{
(xtu

k )
}Nu

k=1, New user test data: Tm ={
(xte

m )
}Nte

m=1, Parameters of the model: 2

Output: Prediction results for new user test data:
{
( yte

m )
}Nte

m=1
1: repeat
2: cl f _loss ← S, calculated by Formula (3)
3: mmd_loss ← S and Tu , calculated by Formula (2)
4: var_loss ← Tu , calculated by Formula (5)
5: cl f _loss_2 ← Tl , calculated by Formula (3)
6: if Upse ̸= ∅: cl f _loss_3 ← Upse, calculated by

Formula (3) else: cl f _loss_3 = 0.0, calculated by
Algorithm 1

7: Calculate total loss
loss = cl f _loss + mmd_loss + var_loss +
cl f _loss_2 + cl f _loss_3, optimize the parameters by
Adam

8: until Iterate until model convergence
9: Predict the results:

{
( yte

m )
}Nte

m=1
2
←−

{
(xte

m )
}Nte

m=1
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Fig. 7. Visualization of the STDA method early and late in the training process (using T-SNE). The upward triangle represents the source domain,
and the downward triangle represents the target domain; different colours represent different categories, and there are eight categories in total.

Fig. 8. Visualization of the Multi-Stream’ method early and late in the training process (using T-SNE). The upward triangle represents the source
domain, and the downward triangle represents the target domain; different colors represent different categories, and there are eight categories in
total.

experiments. The sEMG data of DB-1 and DB-5 are collected
by sparse electrode sensing devices. The DB-1 dataset contains
ten channels, and the DB-5 contains 16 channels. The DB-
1 sub-dataset includes 27 healthy subjects with a total of
52 gestures. Among them, 12 basic finger movements were
collected in the first collection; eight basic hand movements
and nine basic wrist movements were collected in the second
collection; grasping and functional movements were collected
in the third collection, with 23 gestures. Each gesture repeats
ten times. The sampling frequency of DB-1 is 100Hz. The
DB-5 dataset’s sampling frequency is 200Hz, and the subject
number is ten. The number and type of gestures are the
same as those of DB-1, but each gesture only repeats six
times. The dataset can be obtained from the following URL:
http://ninapro.hevs.ch/.

CapgMyo is sEMG data collected by a high-density elec-
trode array sensing device. One hundred twenty-eight channels
of high-density sEMG data were collected from 23 healthy

subjects at a sampling frequency of 1000 Hz. This dataset
includes three sub-datasets, namely DB-a, DB-b and DB-c.
DB-a contains eight finger gestures from 18 subjects; DB-b
contains eight gestures from 10 subjects collected twice in two
different periods; Db-c contains 12 basic finger gestures from
10 subjects. The eight gestures for DB-a and DB-b are from
Nos. 13-20 in NinaPro. The 12 gestures in DB-c have derived
from basic finger movements Nos. 1-12 in NinaPro. The
dataset can be obtained from the following URL: http://zju-
capg.org.

In order to obtain more helpful information, the original
one-dimensional sEMG time-series signals are processed by
the fast Fourier transform based on the Hann window. This
transform method can convert the raw sEMG signal to spectral
form, i.e., from R(n,c,h) to R(n,t,c, f ), where n represents the
number of samples, c represents the number of channels of
sEMG data, h represents the length of the original sEMG
signal, t represents time, and f represents frequency.



2982 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Fig. 9. Confusion matrix analysis.

TABLE I
SUMMARY OF THE EXPERIMENTAL DATASET

Here, we emphasize our division of the target domain.
We take the dataset DB-a as an example. DB-a includes
18 users, each with eight gestures, and each gesture is repeated
ten times. The target user (one user) is first split into two parts
according to the ratio of 8:2. Specifically, the eight gesture data
of the 9th and 10th repetitions are divided into the test part, Tte,
and the remaining part is called the training part. We removed
all the data labels in the training part and assigned them to
Tu . We divide the training part into Tl after taking a labeled
sample for each gesture, and there are only eight samples in
total.

2) Parameter Settings: As the incorrect pseudo-labels will
lead to significant deviations in the model’s learning process,
we set the model’s confidence parameter in the experiment as
0.99. First, by utilizing the uncertainty of the deep learning
model, we make two consecutive pseudo-label sets for the
same data set with a confidence level of 0.99. Then, the two
sets of sets are intersected to reduce the number of erroneous

pseudo-labels further. Practice in deep learning shows that the
pre-trained models perform better and converge faster. This
experiment uses the source domain data to pre-train the model
for 400 epochs. Using the balance property of the dataset itself,
each batch on the target domain is set to a multiple of the total
number of gestures in the current dataset. For example, on an
8-category dataset such as DB-a, the batch is set to 48 (8×6)
or 56 (8×7), etc. For all datasets, we use leave-one-out cross-
validation. In other words, each user is regarded as the target
domain once, and all other users are regarded as the source
domain. The Adam optimizer optimizes the parameters, and
the learning rate is 0.001.

3) Comparison Methods: We compared the STDA method
with seven methods. These include two baseline methods, one
deep learning method based on fine-tuning, two sEMG gesture
recognition methods based on domain adaptation, and two
unsupervised domain adaptation methods.

• Only-Source: This is a baseline method. A variant of
STDA that uses only the source domain to train the
model.

• Only-Target: This is a baseline method. A variant of
STDA that uses only the target domain to train the model.

• Multi-Stream’: This is a fine-tuning method. First, the
raw multi-channel surface EMG signal is decomposed
into multiple equal-sized blocks, and each block is called



WANG et al.: ITERATIVE STDA FOR CROSS-USER sEMG GESTURE RECOGNITION 2983

a stream. Second, each stream learns features through a
convolutional neural network. Finally, all the features are
fused to train a classifier. We borrow its architecture to
train on the source domain data and fine-tune it by adding
a small amount of data from the target domain [45].

• MDSDA: This is a method of supervised domain adap-
tation. A Two-Stream Supervised Domain Adaptation
Architecture [35]. Specifically, MDSDA is a CNN-based
two-stream architecture. Each stream mainly comprises a
convolutional layer, a BN layer, a ReLU layer, a Max-
Pool2d layer, and a fully connected layer. It is divided into
two networks, the source network and the target network.
They are structurally consistent but computationally inde-
pendent of them. The classification loss on both the
source and target domains is optimized using the cross-
entropy function, and the domain variance loss between
the two domains is optimized using the maximum mean
discrepancy.

• SGAS: This is a method of unsupervised domain adap-
tation. A domain adaptation method based on kernel
space distance [49]. Specifically, SGAS only screens out
data pairs beneficial to the model to update the model,
using reliable sample pairs so that the classifier can
correctly align the source domain and target domain data
distribution.

• Self-Tuning: This is a method for unsupervised domain
adaptation. An unsupervised domain adaptation method
with a pseudo-group contrast mechanism [43]. Specif-
ically, a pseudo-group contrast mechanism is proposed
in Self-Tuning, which reduces the dependence on
pseudo-labels and improves the tolerance to wrong labels.
It is an effective mechanism to solve the challenge of
confirmation bias in self-training.

• CST: This is a method for unsupervised domain
adaptation. A recurrent self-training domain adaptation
method [23]. More specifically, CST uses the classifier
trained in the source domain to generate target domain
pseudo-labels, then uses the target domain pseudo-labels
to train the target domain classifier, and finally updates the
shared representation to make the target domain classifier
perform better on the source domain data.

B. Comparative Experiment Results
Using accuracy as an evaluation metric for classification,

we evaluate the STDA method. The accuracy rates of STDA
and the other seven methods are shown in Table II.

Overall, our STDA method is effective. The highest recog-
nition accuracies on DB-5, DB-a, DB-b and DB-c datasets
are 52.69%, 76.31%, 79.86% and 60.44%, respectively. Multi-
Stream’ is an improved method based on the referenced article.
The original multi-stream convolutional network is a pure
sEMG gesture recognition method. To evaluate the effective-
ness of our approach, we compared it with eight methods.
Overall, our method outperforms other methods. Compared
with the baseline methods, there is an improvement of more
than 25%. Compared with the fine-tuning techniques, there is
an improvement of more than 8%, except for the DB-1 dataset.
Compared with the supervised domain adaptation methods,

TABLE II
COMPARISON OF AVERAGE ACCURACY RATES ON ALL DATASETS

there is an improvement of more than 5%. There is more than
a 24% improvement compared with the unsupervised domain
adaptation methods.

C. Visualization of Distribution changes
To evaluate the performance of the STDA method, we visu-

alize the data distribution on the source and target domains
during training using T-distributed random neighbour embed-
dings. As shown in Fig 7 and Fig 8, we show the comparison
between the Multi-Stream’ method and our STDA method
during the training process and visualize the data distribution
of the source domain and the target domain with a comparable
amount of data (one user’s data). The experiment was carried
out on the data set DB-a, the left picture (a) is the early
stage of training, and the right picture (b) is the later stage
of training. Different colours represent different categories,
and there are eight categories in total. The lower triangles
represent samples on the target domain, and the upper triangles
represent samples on the source domain. Compared with the
Multi-Stream’ method, our STDA method does have a closer
effect on the distribution distance of different domains in the
later stage. Visualizations of the rest of the methods are given
in the appendix.

D. Confusion Matrix Analysis
Furthermore, we performed a confusion matrix analysis on

five datasets. The analysis methods are shown in Fig. 9. From
the confusion matrices on the DB-1 and DB-5 datasets, and
it can be seen that the 28th and the 51st gestures on DB-1
obtain higher accuracy than other gestures; the 1st, 4th, 16th,
24th and 27th gestures on DB-5 obtained higher accuracy than
other gestures, indicating that in the construction of gesture
recognition system, an elaborate gesture set design is also
crucially important. In addition, it is easy to confuse some
gestures. For example, on the DB-1 dataset, the 50th gesture
has about a 24% probability of being misjudged as the 49th
gesture. Similarly, the 14th gesture is also easily misjudged
into the 13th gesture. An analogous phenomenon also occurs
on the DB-5 dataset. For example, the 8th gesture is easily
misjudged as the 10th gesture, and the 13th gesture is easily
misjudged as the 14th gesture. The false positive rate is as high
as 30%. Similar conclusions are also obtained on CapgMyo’s
three sub-datasets, i.e., DB-a, DB-b and DB-c.

As can be seen from the two 8-class datasets,DB-a and
DB-b of the CapgMyo dataset, the fifth gesture achieved the
highest accuracy rate of 71.6% in DB-a, the fifth gesture
achieved the second highest accuracy, which is very close to
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Fig. 10. Parameter sensitivity analysis.

Fig. 11. Visualization of the Only-Source method early and late in
the training process (using T-SNE). The upward triangle represents
the source domain, and the downward triangle represents the target
domain; different colours represent different categories, and there are
eight categories in total.

the highest accuracy of 81.7% in DB-b. Meanwhile, the third
gesture had the lowest accuracy in DB-a and DB-b, with 35.2%
accuracy on DB-a and 57.5% on DB-b. One possible reason
is that the fifth gesture is relatively different from the other
seven gestures, and the third gesture is very similar to several
of the remaining seven gestures.

E. Ablation Experiment Analysis
To explore the contribution of each part, we performed

ablation experiments. The SDTA method is mainly composed
of two modules. The alignment of the feature space is referred
to as mmd, and the iterative update of the pseudo-label is

Fig. 12. Visualization of the Only-Target method early and late in
the training process (using T-SNE). The upward triangle represents
the source domain, and the downward triangle represents the target
domain; different colours represent different categories, and there are
eight categories in total.

referred to as self-training. Experiments on five datasets are
shown in Table III.
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Fig. 13. Visualization of the MDSDA method early and late in
the training process (using T-SNE). The upward triangle represents
the source domain, and the downward triangle represents the target
domain; different colours represent different categories, and there are
eight categories in total.

TABLE III
ABLATION ON ALL DATASETS

In general, the STDA method combining feature alignment
and self-training achieves the best performance, demonstrating
our method’s effectiveness. At the same time, the experimental
results show that the iterative self-training strategy has the
most outstanding contribution to DB-5, DB-a, DB-b and DB-c
datasets. On the DB-1 dataset, the significant contribution is
the alignment of the feature space.

F. Parameter Sensitivity Analysis
The SDTA method is mainly sensitive to two parameters, the

number of pre-training epochs (abbreviated as “epoch”) and
the confidence threshold of iterative self-training (abbreviated
as “thres”). To evaluate the effect of parameters on the per-
formance of the STDA method, we used a univariate method,
in other words, changing one variable while keeping the other
constant. The experimental results are shown in Fig. 10. The
range of the parameter epoch is set to {50, 100, 200, 400,

Fig. 14. Visualization of the SGAS method early and late in the training
process (using T-SNE). The upward triangle represents the source
domain, and the downward triangle represents the target domain; differ-
ent colours represent different categories, and there are eight categories
in total.

600, 800}, as shown in Fig. 10(a). The range of parameter
threshold is set to {0.7, 0.8, 0.9, 0.95, 0.99}, as shown in
Fig. 10(b). The red triangle in the figure is the optimal value.
From Fig. 10(a), it can be seen that when the epoch is 100,
the STDA method performs best. Moreover, when the epoch
is 600, the performance is the worst. Proper pre-training is
beneficial to model learning, and excessive pre-training may
lead to model overfitting on source domain data. It can be
seen from Fig. 10(b) that when the thres is 0.95, the STDA
method achieves the best performance, and when the thres
is 0.8, the STDA method has the worst performance. A low
confidence level can lead to many false labels, misleading the
learning of the model, and overconfidence can also adversely
affect the model.

VII. CONCLUSION AND FUTURE WORKS

This paper proposes an Iterative Self-Training-based
Domain Adaptation method (STDA) to solve the cross-user
problem. Our motivation is to address the distribution incon-
sistency of sEMG signal among different subjects through
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Fig. 15. Visualization of the Self-Tuning method early and late in
the training process (using T-SNE). The upward triangle represents
the source domain, and the downward triangle represents the target
domain; different colours represent different categories, and there are
eight categories in total.

domain adaptation. The STDA method mainly consists of two
parts, discrepancy-based domain adaptation and pseudo-label
iterative update. Discrepancy-based domain adaptation short-
ens the distance between domains through distance constraints
in high-dimensional space. Pseudo-label iterative update itera-
tively generates more accurate pseudo-labels. Apart from that,
We compared with the current state-of-the-art methods on five
sEMG data sets, and the experimental results showed the pro-
gressive nature of our method. Meanwhile, the experimental
results of confusion matrix analysis, ablation experiment and
parameter sensitivity analysis show the role played by DDA
and PIU and the effectiveness of our approach.

However, our method still requires very little labelled data,
and the recognition accuracy must be improved before it can be
applied to practical systems. In the future, we plan to explore
other methods for unsupervised domain adaptation to further
reduce the user training burden. Furthermore, we will explore
methods for domain generalization to avoid the training burden
for new users completely.

Fig. 16. Visualization of the CST method early and late in the training
process (using T-SNE). The upward triangle represents the source
domain, and the downward triangle represents the target domain; differ-
ent colours represent different categories, and there are eight categories
in total.

APPENDIX

A. Early and Late Visualization During Model Training for
Other Methods (including Only-Source, Only-Target,
MDSDA, SGAS, Self-Tuning and CST)

See Figs. 11–16.
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