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Classification of Epileptic and Psychogenic
Non-Epileptic Seizures Using

Electroencephalography
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Abstract— Patients with psychogenic non-epileptic
seizures (PNES) may exhibit similar clinical features to
patients with epileptic seizures (ES). Misdiagnosis of
PNES and ES can lead to inappropriate treatment and
significant morbidity. This study investigates the use of
machine learning techniques for classification of PNES
and ES based on electroencephalography (EEG) and
electrocardiography (ECG) data. Video-EEG-ECG of 150 ES
events from 16 patients and 96 PNES from 10 patients
were analysed. Four preictal periods (time before event
onset) in EEG and ECG data were selected for each PNES
and ES event (60-45 min, 45-30 min, 30-15 min, 15-0 min).
Time-domain features were extracted from each preictal
data segment in 17 EEG channels and 1 ECG channel.
The classification performance using k-nearest neighbour,
decision tree, random forest, naive Bayes, and support
vector machine classifiers were evaluated. The results
showed the highest classification accuracy was 87.83%
using the random forest on 15-0 min preictal period of
EEG and ECG data. The performance was significantly
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higher using 15-0 min preictal period data than 30-15 min,
45-30 min, and 60-45 min preictal periods (p<0.001). The
classification accuracy was improved from 86.37% to
87.83% by combining ECG data with EEG data (p<0.001).
The study provided an automated classification algorithm
for PNES and ES events using machine learning techniques
on preictal EEG and ECG data.

Index Terms— Classification, epileptic seizures (ES),
electroencephalography (EEG), electrocardiography (ECG),
machine learning, psychogenic non-epileptic seizures
(PNES).

I. INTRODUCTION

PATIENTS with psychogenic non-epileptic seizures
(PNES) are often misdiagnosed as having epilepsy; with

10-20% of patients referred to epilepsy centers are found
to have PNES [1]. Epileptic seizures (ES) are occasionally
misdiagnosed and inappropriately treated as PNES [2]. Differ-
entiation between PNES and ES symptoms can be challenging
since clinical features such as convulsions and alterations in
behavior and consciousness occur in both PNES and ES [2].
Misdiagnosis of PNES can lead to inappropriate treatment
such as prescriptions of anti-seizure medicine with adverse
effects [3].

Electroencephalography (EEG) and electrocardiography
(ECG) analysis is common in ES studies [4], [5], [6]. Ictal,
interictal, and preictal states refer to the periods during a
seizure, between seizures, and the transition during which the
brain dynamics evolve into a seizure [7]. Preictal EEG data
has been used to detect and predict ES with varying success
[8], [9]. ECG-based research is a complementary approach to
improving ES detection and prediction [9], [10].

Since EEG data can be difficult to collect and not widely
available, there has been an increasing interest analysing ECG
data for patients with PNES. Studies have demonstrated that
before the onset of PNES, sympathetic activity increases, while
a rise in parasympathetic activity occurs during the event [11].
These changes in autonomic nervous system activity have
hence been used to detect and predict PNES events [11], [12].

Previous works have attempted to classify PNES and
ES using EEG data mostly focusing on ictal states
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TABLE I
PNES AND ES CLASSIFICATION STUDIES BASED ON EEG AND ECG DATA

[13], [14], [15], [16]. Vinton et al. performed fast Fourier trans-
form on ictal EEG and observed the dominant frequency was
more stable during PNES compared to ES [13]. Seneviratne
et al. compared the ictal EEG duration between PNES and ES,
and the presented classification method achieved a sensitivity
of 65% [14]. A small study involving 5 patients with 19 PNES
used ictal EEG to develop Bayesian network and random
forest classifiers, presenting the highest accuracy of 95% [15].
Another small study involving 6 PNES and 16 ES events used
ictal EEG and achieved the highest accuracy of 95.8% [17].
Santos et al. applied wavelet coefficients from ictal intracranial
EEG data using a support vector machine classifier [16]. The
proposed algorithm achieved accuracy above 95%.

A few studies used interictal EEG recordings for classifica-
tion. Xu et al. studied the coherence, clustering coefficients,
and shortest path length of interictal EEG data, presenting an
accuracy of 92% for 10 focal ES and 15 PNES [18]. Ahmadi
et al. tested decision tree, random forest, and support vector
machine classifiers using complexity features of interictal EEG
data [19]. The result showed that the support vector machine
achieved the best performance with an accuracy of 95%.
A recent study used deep learning technology to classify 42 ES
and PNES events, achieving an accuracy of 85.7% [20].

There has been increased interest to use ictal heart
rate extracted from ECG data to differentiate PNES from
ES [21], [22], [23], [24], [25]. Opherk and Hirsch com-
pared ictal heart rate to distinguish PNES from ES [21].
A sensitivity of 83% was obtained. Zsom et al. developed

a tree-based and regression algorithm using ictal heart rate
to achieve the highest accuracy of 79.5% [22]. Ponnusamy
et al. developed a logistic regression model based on ictal
heart rate variability to classify 88% and 73% of patients with
ES and PNES [23]. Yon et al. investigated ictal heart rate
of PNES and bilateral tonic-clonic ES, achieving an average
area under the receiver-operating characteristic curve (AUC)
of 0.84 [24]. However, some studies had reported conflicting
results showing that ictal heart rate data was not helpful in the
classification of PNES and ES [24], [25]. Studies that used
EEG and ECG data to classify PNES and ES are summarised
in Table I.

Ictal data are often contaminated with artifacts which
are associated with clinical symptoms such as muscular
activity [26] or rhythmic movement [13]. The artifacts are
difficult to remove due to their broad distribution in frequency
bands [26]. Classification of PNES and ES is possible only
when muscle activity is not prominent in PNES [13], [27].
These artifacts are found at the onset rather than before
seizures; therefore, recent studies have indicated that pre-
ictal data may be an alternative to classify PNES and
ES [25], [28], [29]. Patients with PNES showed a decrease
of beta power in preictal EEG data which was not observed
before ES events [28]. In addition, there was a significant dif-
ference in preictal heart rate between PNES and ES [25], [29].

Currently, no classification study has systematically investi-
gated the differences in PNES and ES using features extracted
from preictal EEG and ECG data. While critical slowing cycles
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Fig. 1. Schematic of the study design. ES: epileptic seizure, PNES: psychogenic non-epileptic seizures, RRI: RR interval, the time elapsed between
two successive R-waves on the ECG.

to forecast seizures were considered previously [9], [30], the
classification between ES and PNES has not been addressed.
Classification between ES and PNES using data during a
preictal period is the focus of this study.

Critical slowing is a characteristic of a dynamical system
that is nearing a critical transition [31], [32]. It is hypothesized
that brain and heart activity change from an interictal to an
ictal state in an ES is a such critical transition [31], [33]. Thus,
critical slowing is a phenomenon only observed in preictal
periods. Critical slowing is measured by increases in features
(variance and autocorrelation) of the system’s state during a
preictal period [31], [34]. Critical slowing features extracted
from preictal EEG and ECG data have been used to forecast
the ES onset in recent studies [8], [9], [32]. There are no
published studies investigating critical slowing phenomenon
in classification between ES and PNES events.

In this study, we hypothesize that critical slowing in neural
and cardiovascular systems would be different in patients with
PNES and ES, therefore, critical slowing features from preictal
EEG and ECG data may be potential markers to differentiate
the two conditions. We developed classification algorithms
using machine learning techniques and tested the performances
of different classifiers.

II. MATERIALS AND METHODS

A. Participants
This study was approved by the St Vincent’s Hospital

Melbourne Human Research Ethics Committee (HREC Low
Risk Research 165/19). All patients provided written informed
consent.

Video-EEG-ECG data of 150 ES events from 16 patients
and 96 PNES events from 10 patients were analysed. Patients
diagnosed with PNES have a similar semiology with patients
with epilepsy but no background of epilepsy. All events were
verified by an epileptologist (author MC). The median period
of EEG and ECG recordings was 162.7 hours for ES and
163.4 hours for PNES. The median number of events per
patient during the monitoring period was 9 for ES and 8 for
PNES. The details of patients with PNES and ES are listed in
Table II.

B. Classification Model Design
The schematic diagram of the study design is shown in

Figure 1. There are five steps: pre-processing, preictal period
selection, feature extraction, classification, and performance
evaluation.

TABLE II
PATIENTS CHARACTERISTICS

1) Pre-Processing: The EEG and ECG data of patients with
PNES and ES were pre-processed using an approach previ-
ously described [9]. EEG data were recorded from 17 channels
(Fz, C4, Pz, C3, F3, F4, P4, P3, T4, T3, O2, O1, F7, F8, T6,
T5, Cz). Fp1, Fp2, A1, and A2 channels were excluded due to
ocular and muscular artifacts [35]. The EEG data were filtered
using a 5th-order, zero-phase bandpass Butterworth filter with
a cutoff frequency of 1-30 Hz. The data was collected in
patient’s home without interrupting their daily activity, which
leads to larger noise and unpredictable artefacts. To reduce
high-frequency noise and artefacts, we implement a cut-off
frequency at 30 Hz. ECG data were recorded from the channel
placed in the 5th intercostal space in the axillary line. The
ECG data were filtered using a 5th-order, zero-phase band-
pass Butterworth filter with a cutoff frequency of 3-45 Hz.
RR intervals (RRI: the time elapsed between two successive
R-waves on the ECG) were extracted from ECG data using
an adaptive threshold algorithm [36].
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Fig. 2. Examples of EEG and RRI recordings with PNES and ES
events. (a) Four periods of preictal EEG data with an ES event; the red
triangle represents the onset of the seizure; (b) EEG data with an ES
(black, top trace) and an PNES event (grey, bottom trace); (c) RRI data
with an ES (black, top trace) and an PNES event (grey, bottom trace);
red lines in each subplot represent the onset and offset of the event.

2) Preictal Period Selection: Since there is no clear defi-
nition of a preictal duration [37], we explored classification
performance using four preictal periods: 15-0 min; 30-15 min;
45-30 min; and 60-45 min. Figure 2a shows different preictal
periods of EEG data with an ES event. Figures 2b and 2c
represent EEG and RRI data with one ES (black) and one
PNES (grey) event, respectively. Figure 2b shows significant
discharges in the EEG data of ES (black), which are not found
during the PNES (grey).

3) Feature Extraction: Critical slowing features (variance
and autocorrelation) of each preictal period of EEG and RRI
data were calculated as previously described [9]. Critical
slowing features were calculated in every 15-s. The number of
preictal data points for each event was equal to 15min/15s =

60 data points. The total number of the data segments was
9000 (150*60) for ES and 5760 (96*60) for PNES, respec-
tively. At each data point, we derived 36 features (17 EEG
variance, 17 EEG autocorrelation, 1 RRI variance, and 1 RRI
autocorrelation). The variance (Eq. (1)) and autocorrelation
(Eq. (2)) were computed using following formulas:

Vx =
1
N

N∑
n=1

(xn − x)(xn − x) (1)

Cx =
1
N

∑N−λ
n=1 (xn − x)(xn+λ − x)

Vx
(2)

where, Vx and Cx represent variance and autocorrelation
function of a signal x in each segment respectively, N is
the number of samples in each segment, x is the signal
mean, λ is the lag value in an autocorrelation function. The
autocorrelation was calculated as describe in [8], which equals
the width at half the maximum of the autocorrelation function.

4) Classification: Classification of the preictal data of PNES
and ES was carried out using five classifiers: k-nearest neigh-
bors (KNN), decision tree (DT), random forest (RF), naive
Bayes (NB), and support vector machine (SVM). PNES data
was assigned label 0, whereas ES data was assigned label 1.
The data set was divided into two parts: a training set (80%)
and a testing set (20%). The training set was unbalanced
in the number of samples per class. To alleviate this effect,
we undersampled the ES data set by random selection [38].
The number of neighbors used in the KNN classifier was 5.
The number of trees in the RF classifier was set to 100. The
radial basis Gaussian function (rbf) was used as the kernel for
the SVM classifier.

5) Performance Evaluation: Accuracy was used to evaluate
classification performance. We defined PNES events as true
positives and ES events as false positives in this study. For each
classifier, we split the training and the testing data randomly
and repeat the split process 100 times. Performances using
EEG features (34), ECG features (2), and a combination of
EEG and ECG-based features (36) were computed.

C. Statistical Analysis
The t-test (two-sided) was used to assess the statistical

significance of accuracy for different classifiers and different
preictal data. A p-value < 0.05 was considered statistically
significant.

III. RESULTS

A. Classification Using EEG Data
The classification performance using different preictal inter-

vals for EEG data across classifiers is shown in Figure 3a
and Table III. The highest mean accuracy for each classifier
was 86.37% (RF), 80.23% (KNN), 76.16% (DT), 73.65%
(SVM), and 52.92% (NB), respectively. On average, the RF
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TABLE III
CLASSIFICATION PERFORMANCES USING EEG DATA

classifier was the best classifier resulting in a significantly
higher accuracy compared to other classifiers (t-test, p-value <

0.001). The accuracy using 15-0 min interval for EEG data for
the RF classifier was the highest (mean: 86.37%), which was
significantly higher than those using 30-15 min interval (mean:
85.41%, p-value=2.3e-24), 45-30 min interval (mean: 85.57%,
p-value=2.0e-19), and 60-45 min interval (mean: 85.48%,
p-value=1.3e-21), although the effect size is small.

For the best performing algorithm, RF, we compared the
classification performance when ES are divided into focal and
generalised seizures. The accuracy using 15-0 min interval for
the RF classifier to classify generalised ES and PNES events
(mean: 90.22%) was significantly higher than classifications
between focal ES and PNES events (mean: 86.92%, p-value =

1.17e-95).

B. Classification Using ECG Data
The classification performance using different preictal inter-

vals for ECG data across classifiers is shown in Figure 3b
and Table IV. The highest mean accuracy for each classifier
was 54.13% (KNN), 53.98% (DT), 53.89% (RF), 51.79%
(SVM), and 49.76% (NB), respectively. On average, the KNN
classifier was the best classifier. The accuracy using 60-45 min
interval for ECG data for the KNN classifier was the highest
(mean: 54.13%), which was significantly higher than those
using 15-0 min interval (mean: 52.66%, p-value = 8.3e-26),
30-15 min interval (mean: 51.49%, p-value = 6.8e-59), and
45-30 min interval (mean: 52.16%, p-value = 4.9e-41).

For the best performing algorithm, KNN, we compared the
classification performance when ES seizures are divided into
focal and generalised seizures. The accuracy using 60-45 min
interval for the KNN classifier to classify generalised ES and
PNES events (mean: 53.76%) was significantly lower than
classification performance between focal ES and PNES events
(mean: 56.26%, p-value = 8.73e-54).

C. Classification Using Combined EEG and ECG Data
The classification performance using different preictal inter-

vals for EEG and ECG data across classifiers is shown in
Figure 3c and Table V. The highest mean accuracy for each
classifier was 87.83% (RF), 80.83% (KNN), 77.22% (DT),

TABLE IV
CLASSIFICATION PERFORMANCES USING ECG DATA

TABLE V
CLASSIFICATION PERFORMANCES USING COMBINED

EEG AND ECG DATA

73.80% (SVM), and 53.32% (NB), respectively. On aver-
age, the RF classifier achieved the highest performance
(p-value < 0.001). The accuracy using 15-0 min interval for
EEG and ECG data for the RF classifier was the highest
(mean: 87.83%), which was significantly higher than those
using 30-15 min interval (mean: 86.81%, p-value = 2.4e-17),
45-30 min interval (mean: 86.94%, p-value = 1.9e-08), and
60-45 min interval (mean: 87.21%, p-value = 2.4e-4).

For the best performing algorithm, RF, we compared the
classification performance when ES seizures are divided into
focal and generalised seizures. The accuracy using 15-0 min
interval for the RF classifier to classify generalised ES and
PNES events (mean: 91.07%) was significantly higher than
classification between focal ES and PNES events (mean:
89.06%, p-value = 1.06e-67).

The classification performance was significantly improved
by combining ECG data with EEG data for the RF classi-
fier for 15-0 min interval (p-value = 1.6e-47), 30-15 min
interval (p-value = 1.5e-47), 45-30 min interval (p-value =

1.6e-46), and 60-45 min interval (p-value = 1.5e-57); the
KNN classifier for 15-0 min interval (p-value = 2.5e-14),
30-15 min interval (p-value = 3.1e-09), and 60-45 min interval
(p-value = 1.4e-04); and the DT classifier for 15-0 min interval
(p-value = 4.0e-10), 30-15 min interval (p-value = 3.2e-32),
45-30 min interval (p-value = 1.1e-07), and 60-45 min interval
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Fig. 3. Classification performances using different classifiers based
on (a) EEG data, (b) ECG data, (c) EEG and ECG data. KNN: k-nearest
neighbors, DT: decision tree, RF: random forest, NB: naive Bayes, SVM:
support vector machine.

(p-value = 1.0e-10). For the NB and SVM classifiers, the
accuracy was not significantly different compared to using
EEG data for four intervals (t-test, p-value > 0.05).

D. Comparison With Existing Algorithms
To compare our results using existing algorithms for bio-

logical data classification, we run an experiment using the
methodology proposed in [16]. In short, the wavelet coef-
ficients were derived from ictal EEG data and fed into
various classifiers. The results are presented in Table VI.
The results indicate that the accuracy using wavelet clas-
sification is around 56%, which is significantly lower than
classification based on critical slowing features with EEG
data 88%.

TABLE VI
CLASSIFICATION PERFORMANCES USING WAVELET

COEFFICIENTS FROM EEG DATA

IV. DISCUSSION

The study investigated the use of machine learning tech-
niques for automatic classification of PNES and ES. Critical
slowing features extracted from preictal EEG and ECG data
were used either independently or in combination to develop
classification models. The results showed that the RF classifier
achieved the highest accuracy of 87.83% using EEG and
ECG data. The performance was significantly improved by
combining ECG data with EEG data using RF, DT and
KNN classifiers. The accuracy was significantly higher using
15-0 min preictal EEG data or a combination of EEG and
ECG data compared to 30-15 min, 45-30 min, and 60-45 min
preictal periods.

The present study demonstrated that a combination of
preictal EEG and ECG data can classify ES and PNES
events. As it is difficult to differentiate PNES from ES
without highly specialized clinical assessment, misdiagnosis
and delayed diagnosis of PNES can lead to high morbidity [19]
and considerable healthcare costs [39]. Clinicians commonly
utilize semiologic features such as eye closure, side-to-side
head movement, and event duration (longer than 2 min) to
differentiate PNES from ES. However, these clinical signs
had been shown to not always be reliable [14], [39]. The
present study yielded a classification accuracy of 87.83%,
indicating that the preictal EEG and ECG data is a promising
tool to distinguish between PNES and ES. This finding can
aid early recognition of PNES, appropriate treatment delivery,
and unnecessary health costs reduction.

The high classification accuracy using EEG critical slowing
features (Table III) suggested that critical slowing in the neural
system was different in patients with PNES and ES. Previous
studies had investigated critical slowing in ES [8], [9], which
suggested that brain activity changed from an interictal to
an ictal state in an ES is a critical transition [31], [33].
When the neural system approaches a critical point at a state
transition [32], it returns more slowly to its steady-state after
perturbations than at other states [32], [34]. This phenomenon
is called critical slowing. The previously published results
suggested that critical slowing is detectable in ES events.
Table III showed that the classification model using EEG
critical slowing features achieved a high performance, which
means EEG critical slowing features were different during
the transition state to PNES and ES events in the neural
system and hence may be used for classification. The accuracy
using ECG critical slowing features was low (Table IV),
which indicated that critical slowing may not be significantly
different during the transition state to PNES and ES events in
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the cardiovascular system. However, the presented study did
not provide evidence of whether PNES demonstrates critical
slowing in the neural or cardiovascular systems. The results
only indicated the differences during the transition state to
PNES and ES events.

The performance was improved by combining information
from both EEG and ECG data. As opposed to previous
research that utilized only ECG or EEG data, we proposed
a classification algorithm using both EEG and ECG data. The
performance changed from 86.37% to 87.83% when ECG
data was combined with EEG data using the RF classifier
(Table V). Although the accuracy when using combined EEG
and ECG data, compared to only EEG data, increased only
slightly, it highlighted a possibility of using multi-modal
data [40], such as ECG or data from wearable devices such as
holter monitoring, to improve the classification performance.

It was found that the features from the 15-0 min preictal
interval achieved the best performance using EEG data and a
combination of EEG and ECG data. However, we noted the
performance dropped only slightly from 86.37% to 85.48%
using EEG data (Table III), 87.83% to 87.21% using EEG
and ECG data (Table V) when selected data from 15-0 min
to 60-45 min periods before events. This result showed that
critical slowing phenomenon could be happening up to 1 hour
prior to events. Currently, there is no clear definition of
timescale of critical slowing in epilepsy studies, which could
range from 90 seconds [32] to 4 hours [41]. Future work could
be translating this method to intervals more than 1 hour before
events.

Previous studies analyzed either focal or generalised
seizures [13], [15], [18], [21], [24]. In this work, we analysed
both focal and generalised seizures (Table II). Our results
showed that the classification performance between gener-
alised seizures and PNES was higher than that between focal
seizures and PNES. A similar approach using a mix of seizure
types have been reported in the literature [22], which showed
an accuracy of 76.5-79.5%. The present study achieved higher
performance. Therefore, the proposed algorithms could be
applied to patients with variable seizure types.

Machine learning techniques were applied to classify
patients with PNES from ES. Previous studies have employed
KNN [27], DT [19], [27], RF [19], [27], [42], NB [42], and
SVM [18], [19] classifiers to achieve various quality of per-
formance. Our study achieved a comparable accuracy, which
was higher than the accuracy of 81% and 87% previously
reported [27], [42]. The previous results showed that the
best classifier was the SVM with an accuracy of 95% [19],
higher than our performance. However, it should be noted
that hundreds of EEG features were used in the previous
study which required a high computational cost. Moreover,
whilst the previous study analysed 20 patients with ES and
20 patients with PNES, the number of seizures were not
provided. We generated the classification results based on the
method presented in [16] using our EEG data. The accuracy
was around 56% which was much lower than 87.83% in the
present study.

In a preliminary analysis, we tested different parameters
in classifiers. The results showed that different parameters in

KNN and RF classifiers had a trivial effect on classification
performance. The accuracy remained stable when the number
of neighbors in KNN was set to 3, 5, and 10, and the
number of trees in RF was set to 50, 100, and 200 using
15-0 min intervals for EEG and ECG data. However, the
SVM classifier with linear and sigmoid kernels generated
unsatisfactory results. The current parameters used generated
the best classification performance.

Our study has some limitations. The number of patients
and seizures was relatively small compared to previous stud-
ies [14], [39]. Thereby the proposed approach needs to
increase the number of patients and seizure events. The
current results did not provide insight into the differences in
underlying pathophysiology between PNES and ES. Future
work will focus on investigating the underlying mechanisms
of PNES and ES events such as generation mechanism and
evidence of critical slowing in PNES. Moreover, the study did
not investigate channel selection. The reduced channels may
be more practical for use in an emergency situation, and a
step towards application of a wearable device. Future work
will look at using reduced number of channels and further
improving the performance. We analysed 15 min duration
data to avoid computational complexity. Future work will
investigate if different duration of data affects the classification
performance. Furthermore, as deep learning has been used
to classify PNES and ES [43], this approach may allow
widespread deployment in the clinical environment.

V. CONCLUSION

In this paper we reported the results using machine learning
techniques on critical slowing features of EEG and ECG
data to classify PNES and ES. We tested different preictal
data and found the features from a 15-0 min preictal period
could achieve the best performance, although performance
only dropped slightly when looking up to one hour before the
event. The results showed that the classification performance
of the RF classifier was the best. The study indicated that the
performance can be improved by a combination of EEG and
ECG data compared to EEG data only. The reported algorithm
showed the highest accuracy of 87.83%.
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