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Development of a High-SNR Stochastic sEMG
Processor in a Multiple Muscle Elbow Joint
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Abstract— In the robotics and rehabilitation engineering
fields, surface electromyography (sEMG) signals have been
widely studied to estimate muscle activation and utilized as
control inputs for robotic devices because of their advanta-
geous noninvasiveness. However, the stochastic property
of sEMG results in a low signal-to-noise ratio (SNR) and
impedes sEMG from being used as a stable and contin-
uous control input for robotic devices. As a traditional
method, time-average filters (e.g., low-pass filters) can
improve the SNR of sEMG, but time-average filters suffer
from latency problems, making real-time robot control dif-
ficult. In this study, we propose a stochastic myoproces-
sor using a rescaling method extended from a whitening
method used in previous studies to enhance the SNR of
sEMG without the latency problem that affects traditional
time average filter-based myoprocessors. The developed
stochastic myoprocessor uses 16 channel electrodes to
use the ensemble average, 8 of which are used to measure
and decompose deep muscle activation. To validate the
performance of the developed myoprocessor, the elbow
joint is selected, and the flexion torque is estimated. The
experimental results indicate that the estimation results of
the developed myoprocessor show an RMS error of 6.17[%],
which is an improvement with respect to previous methods.
Thus, the rescaling method with multichannel electrodes
proposed in this study is promising and can be applied
in robotic rehabilitation engineering to generate rapid and
accurate control input for robotic devices.

Index Terms— Surface electromyography, decomposi-
tion, elbow, torque estimation, rescaling method.

I. INTRODUCTION

SURFACE electromyography (sEMG) has been studied in
many different fields, such as prosthesis or exoskeleton
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suit control [1], [2], clinical biomechanics [3], and ergonomics
assessment. As a noninvasive method, sEMG can be used to
represent muscle activation levels and estimate joint torque.
The magnitude of sEMG shows a proportional relation to
the muscle force because the magnitude of muscle force is
mainly determined by the number of active motor units, their
size (cross-sectional area), and their firing rate. However, this
complex principle of sEMG introduces variability in joint
torque estimation, and this variability impedes sEMG from
being used as a stable control input of robotic devices. For
this reason, many previous studies have utilized multiple
sEMG features to generate stable control input. For exam-
ple, Hudgins [4] used the slope sign change rate and zero
crossing rate to classify previously defined tasks. However,
a continuous torque estimator has been required to meet the
increasing demand of torque control applications of recent
robotic devices.

For the continuous estimation of joint torques using
sEMG signals, various signal processing techniques have been
proposed and applied in several areas. The most famous con-
ventional method is rectification with a low-pass filtering algo-
rithm to increase the signal-to-noise ratio (SNR). However,
there exists a strong trade-off between the SNR and response
time due to the phase delay induced by the low-pass filtering
algorithm. The rapid response of the myoprocessor is signifi-
cant if sEMG is utilized as a control input of robotic devices
such as prostheses [1], [5] and exoskeleton suits [2], [6], [7],
[8] because control input latency can induce severe instability
and low performance problems. From previous studies [9],
[10], [11], it is known that the sEMG signal typically precedes
50-100[ms] before the mechanical activity of muscle, which is
called electromechanical delay (EMD). This suggests that the
myoprocessor has to finish torque estimation within the EMD
for high-performance robotic device control. For this reason,
100[ms] is treated as the standard latency (i.e., sampling time)
of the myoprocessor in this study. In a previous study, Sanger
[12] used a Bayesian filter to estimate torque by solving the
Fokker-Planck partial differential equation for rapid response.
However, this filter requires the model parameters and works
only for previously defined motion.

To overcome the trade-off relation between the SNR and
response time in the continuous torque estimation prob-
lem, multichannel electrode techniques have been introduced.
Because the multichannel electrode uses the ensemble average
instead of the time average, the SNR can be improved without
loss of rapid response. Using 4-channel electrodes, Hogan
[13], [14] proved that the maximum likelihood estimator of
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the standard deviation of the sEMG signal is the root mean
squared value (since the sEMG signal follows a zero-mean
Gaussian distribution [15]) and experimentally demonstrated
that the SNR can be improved by a novel signal whitening
method. Because the whitening method makes the magnitudes
of uncorrelated sEMG signals equal (i.e., small sEMG signals
can be amplified), this method has been utilized in many
previous studies [16], [17], [18], [19], [20], [21] to improve the
SNR. However, the whitening method theoretically assumes
that a muscle consists of independent muscle units of equal
sizes, which means that the anatomical structure of the muscles
is not taken into account. Furthermore, activation of deep
muscles, which is difficult to measure by sEMG devices, has
not been considered to estimate joint torque. In a previous
study, Staudenmann [22] used 7-channel sEMG and demon-
strated that appropriate placement of electrodes could reduce
interference from the biceps brachii (superficial muscle) and
make it possible to assess the activation of the brachialis (deep
muscle) with sEMG.

Inspired by these previous results, in this study, we propose
a simple new torque estimation algorithm, named the rescaling
method. The developed algorithm is less sensitive to the loca-
tion of the electrode but shows higher SNR than conventional
algorithms because it utilizes multiple electrodes distributed
all over the multiple muscles with a simple calibration step
to measure the independent muscle unit signals and estimate
joint torque. The rescaling method assumes that each muscle,
including deep muscles, is split into independent compart-
ments (called the muscle units in this study). Additionally,
it is assumed that the activation of each muscle unit is linearly
proportional to the contraction force of the muscle unit. Based
on these two assumptions, the proposed rescaling method
introduces two parameters: a linearizing factor and a rescaling
factor. Using these two parameters, the torque estimation error
with respect to the reference torque sensor is minimized,
which contributes to a high SNR. The performance of the
proposed method is evaluated with respect to dynamic elbow
flexion torque estimation in isometric conditions (i.e., multiple
muscle joints) and compared to other joint torque estimation
methods, such as moving average and whitening. Additionally,
the physiological and anatomical meaning of the rescaling
method is discussed.

II. JOINT TORQUE ESTIMATION METHOD

A. Model of the Stationary sEMG Signal
The sEMG signal results from the spatial and temporal

superposition of the motor unit action potentials within the
detection region of the electrode. An analytical model of the
sEMG signal is difficult to obtain because of its stochastic
property (i.e., timing of each action potential, different muscle
unit sizes, and the location of an electrode on skin). For this
reason, in this paper, we use a stochastic model of sEMG
signals to estimate muscle activation. The stochastic model
of sEMG was first investigated in detail by Clancy [15].
He suggested that the sEMG signal is a stochastic signal
whose probability density function can be expressed as a

Fig. 1. (a) Conditional probability density function of a stationary sEMG
signal (zero-mean Gaussian distribution). (b) Concepts of the neural
drive, muscle force and sEMG models. ci is a constant.

Gaussian (normal) distribution of which the mean value is
always 0, as shown in Fig. 1-(a). Then, the conditional prob-
ability density function of the sEMG signal can be expressed
as follows:

P(m | σ) =
1

√
2πσ 2

e−
m2

2σ2 (1)

where m is the measured sEMG signal sample and σ is
the population standard deviation of the sEMG signal. It is
assumed that muscle activation does not vary with time evo-
lution (i.e., the sEMG signal is a stationary random process).
(1) indicates the prior probability that the sEMG signal is
measured as m under the condition that the population standard
deviation is given as σ . Since the mean value of the sEMG
signal is always 0 and independent of muscle activation, the
standard deviation σ in (1) is the only parameter of muscle
activation. Thus, the estimation of the population standard
deviation σ is related to the estimation of muscle activation,
and muscle activation is generally observed as a nonlinear
function of σ in most previous studies. Therefore, in this paper,
we assume that σ represents distorted muscle activation due
to the sEMG interface, that the neural drive ν is a nonlinear
function of σ , and that the muscle force f is a linear function
of ν. In this assumption, σ should be estimated first in order to
estimate the neural drive ν and muscle force f (see Fig. 1(b)).

To statistically estimate the population standard deviation
σ from the measured sEMG signal m, maximum likelihood
estimation can be used. The maximum likelihood estimator for
a Gaussian distribution can be obtained by two different meth-
ods. One is the time average σ̄ calculated using time series
data from a fixed i-th electrode, and the other is the ensemble
average σ̂ using ensemble data from multiple electrodes at
fixed time t.

Time average:

σ̄ (i) =

√
1
τ

∫ τ

0
m2

i (t)dt (2)
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Ensemble average:

σ̂ (t) =

√√√√ 1
N − 1

N∑
i=1

m2
i (t) (3)

where mi (t) is the sEMG signal of the i-th electrode at time t,
τ is the time record length (sampling time), and N is the total
number of electrodes. These two estimates are theoretically
equal in the case of an ergodic signal [24]. Estimating the
population standard deviation σ via the time average σ̄ has
the advantage that a large number of samples for accurate
estimation can be acquired easily, but this requires a large
time record length, which induces a time delay of the signal
processor (i.e., a low-pass filter). On the other hand, the
ensemble average σ̂ does not induce time delay because it
collects more data from more electrodes without time delay.
However, ensemble averaging also has limitations because
electrodes cannot be added arbitrarily due to limited space to
allocate the electrodes on the surface of the skin. Thus, in this
study, both the ensemble average σ̂ and the time average σ̄

are used as the maximum likelihood estimators to improve the
estimation accuracy of the population standard deviation σ .
Then, the expectation and variance of each estimate are given
as follows [24]:

Time average:

E
[
σ̄ 2

]
= σ 2, V

[
σ̄ 2

]
≈

2σ 4

Bτ
(4)

Ensemble average:

E
[
σ̂ 2

]
= σ 2, V

[
σ̂ 2

]
=

2σ 4

N − 1
(5)

where B is the sampling bandwidth of the signal. From
(4) and (5), the expectations of both σ̄ 2 and σ̂ 2 are equal to
the population variance σ 2, which implies unbiased estimators.
To obtain an accurate estimation of σ , the variance of estimates
(i.e., V

[
σ̄ 2] and V

[
σ̂ 2]) should be minimized. According to

(4) and (5), the sampling bandwidth B and the number of
electrodes N should be maximized to minimize the variance
of estimates if the tolerable time delay of the processor is given
(i.e., the maximum τ is given). From previous research [25],
the effective bandwidth of the sEMG signal is approximately
known as 0.5 [kHz], which requires just a 1.0 [kHz] sampling
rate as a result of the Nyquist sampling theorem. The number
of electrodes N is selected as 16 by considering muscle
size and limited space on skin. Thus, in this study, sEMG
data are sampled from 16 electrodes at a 1.0 [kHz] sampling
rate.

The relation in (4) and (5) clearly shows that variances
of σ̂ 2 and σ̄ 2 are proportional to the square of the pop-
ulation variance σ 2 (i.e., σ 4) and inversely proportional to
the sampling bandwidth B, time record length τ and number
of electrodes N. This means that the estimation accuracy of
σ drops with increasing muscle activation and decreasing
number of electrodes and time record length τ . Because
a long record length τ can induce a time delay, the use
of multichannel electrodes (N > 1) can play a significant
role in increasing the estimation accuracy with minimal time
delay.

Fig. 2. Concept of muscle unit decomposition and rescaling method.
(a) Correlated sEMG signals mi. (b) Independent sEMG signals di.
(c) Rescaled muscle unit force signals fi.

B. Muscle Unit Decomposition

To estimate the population standard deviation σ using
ensemble samples, independence between electrodes should
be satisfied. However, it is difficult to obtain independent
sEMG data in practice because sEMG signals depend on
the location of the electrode. In the case of a Gaussian
distribution, an uncorrelated sample is equivalent to an inde-
pendent sample. Thus, as in previous studies [13], [14],
uncorrelated sEMG signals di (t) can be extracted from the
correlated sEMG signals mi (t). As shown in Fig. 2-(a), each
electrode on the skin receives a sum of the action potentials
of muscle units (MUs). However, this sum can be distorted
because the distances from an electrode to different mus-
cle units may be different. To investigate this, the RN×N

covariance matrix Cm among electrodes can be calculated as
follows:

Cm =

 σ 2
m11

· · · σ 2
m1 N

...
. . .

...

σ 2
mN1

· · · σ 2
mNN

 , σ 2
mij

= E
[
mimj

]
(6)

In (6), the diagonal elements (i.e., σ 2
mii

) are the squares of
the estimated standard deviations from the i-th electrode,
and the nondiagonal elements (i.e., σ 2

mij
) are the covari-

ances between the i-th and j-th electrodes and generally
take nonzero values, which means that the two correspond-
ing channels are mutually correlated. To extract uncorrelated
signals, the eigenvalue decomposition technique is used. As a
result, the eigenvalue and eigenvector matrix can be derived
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from Cm as follows:

Cm = V−13V

Cm =

 v2
11 · · · v1 N
...

. . .
...

v2
N1 · · · vNN

 , 3 =

 λ2
1 0

. . .

0 λ2
N

 (7)

where V and 3 are the RN×N eigenvector and eigen-
value matrices, respectively. V is physically related to the
locations of the electrodes, and independent sEMG signals
can be extracted using this information. Using this eigen-
vector matrix V, the independent sEMG signal d (t) is
obtained as follows:

d (t) = Vm (t) d1(t)
...

dN(t)

 =

 v11 . . . v1 N
...

. . .
...

vN1 . . . vNN


 m1(t)

...

mN(t)

 (8)

It is assumed that eigenvector V is a constant (i.e., time-
invariant) matrix regardless of the muscle activation level if the
location of electrodes is fixed. The validity of this assumption
is experimentally demonstrated in section III. From an engi-
neering point of view, this assumption is significant because if
the eigenvector is a function of muscle activation, an infinite
number of eigenvector matrices with respect to every muscle
activation level is required to obtain an independent sEMG
signal d (t). Then, the RN×N covariance matrix Cd between
di (t) and dj (t) can be calculated as follows:

Cd =

 σ 2
d1

0
. . .

0 σ 2
dN

 , σ 2
di

= E [didi] (9)

Because the autocovariance σ 2
di

(i.e., square of eigenvalue
λi) corresponds to the square of independent sEMG di,
Cd becomes a diagonal matrix. However, it should be noted
that σdi does not contain true magnitude information of the i-th
muscle unit because sEMG signals are the result of distortion
due to different fat layer thicknesses between muscle units
and electrodes (see Fig. 2-(b)). For this reason, many previous
studies [23], [26], [27], [28], [29] have reported that the
relationship between muscle force and the standard deviation
of the sEMG signal σ is not always linear. Thus, based on
a previous study [29], the muscle force is assumed to be a
power function of σdi in this study, as follows:

F(t) =

n∑
i=1

fi(t) =

n∑
i=1

µivi(t) =

n∑
i=1

µiσ
ξi
di

(t) (10)

where F is the muscle force, νi is the neural drive of the
i-th muscle unit, fi is the force of the i-th muscle unit, and
µi and ξi are rescaling and linearizing constants, respectively,
to compensate for the distances between the electrodes and
muscle units (see Fig. 2-(c)). However, in practice, it is
difficult to obtain µi and ξi from the muscle model because
they vary with anatomical muscle conditions and electrode
patterns. This physical limitation originates from the fact that
sEMG signals have to be measured on the surface of the

skin rather than inside the muscle. Therefore, in this paper,
a calibration procedure under isometric conditions is used in
practice to obtain µi and ξi. The method is explained in the
next section.

C. Rescaling Method Under Isometric Conditions
The total joint torque T, which is generated by n synergist

muscles, can be simply modeled as follows [30]:

T
(
θ, θ, σdi

)
=

n∑
i=1

Ti =

n∑
i=1

rifi (11)

where T is the net joint torque, and ri and fi are the length of
the moment arm and the force of the i-th muscle, respectively.
Physiologically, it is well known that the muscle force is a
function of the joint angle θ , angular velocity θ̇ and muscle
activation σdi (i.e., fi = fi

(
θ, θ̇ , σdi

)
). However, if isometric

conditions are assumed (i.e., θ , θ̇ and ri are constant), then
the joint torque T depends solely on muscle activation, which
means that this torque can be estimated from sEMG data
(muscle activation) as follows:

T̂
(
σdi

)
=

n∑
i=1

rifi =

n∑
i=1

riµivi =

n∑
i=1

γiσ
ξi
di

(12)

where T̂ is the estimated torque, and γi = riµi is a pos-
itive constant. From (12), it can be considered that σdi is
decomposed from the measured sEMG signal and that νi =

σ
ξi
di

represents muscle activation (i.e., neural drive), which
compensates for the distortion of the sEMG signal. In (12), γi
and ξi can be estimated because the joint torque T and σdi can
be measured by a torque sensor and from the sEMG signal,
respectively. However, γi and ξi cannot be uniquely determined
by T and σdi . Therefore, in this study, γi and ξi are determined
such that the torque estimation error ε between the measured
torque T and the torque T̂ estimated in the calibration step is
minimized, as follows:

min
[
ε2

]
=

E
[
(̂T − T)2]

T2 =

E
[(∑n

i=1 γiσ
ξi
di

− T
)2

]
T2 (13)

The rescaling procedure in this study has the advantage of
estimating joint torque, which is generated by several synergist
muscles. For example, human elbow flexion torque is mainly
generated by two muscles. One is the biceps brachii, which
is located near the surface of the skin, and the other is the
brachialis, which is located deep under the biceps. Muscle unit
activation signals from the brachialis are easily diminished
on their way to the surface of skin, making it difficult to
estimate the activation of the brachialis. However, the rescaling
procedure can be used to reconstruct the original magnitude
of deep muscle unit activation.

D. Noise Reduction Algorithm
It is important to suppress noise from the power line and

motion artifacts to improve the estimation accuracy of σ .
In general, a notch filter with a bandstop frequency of 60 [Hz]
and a high-pass filter with a cutoff frequency of 20 [Hz] are
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Fig. 3. Nonstationary sEMG signal estimation. The F test rejects the
null hypothesis σ̄2(t1) = σ̄2(t2), indicating that σ̄2(t) should be updated,
if F > F0 or F < 1/F0.

used to reduce the effects of power line noise and motion arti-
facts, respectively. However, these two filters cannot remove
all baseline noise, which can appear even when muscles are
not activated. Thus, the sEMG signal mi can be modeled as
follows:

mi(t) = si(t) + ni(t) (14)

where the index i denotes the electrode number, mi is the
measured sEMG signal contaminated by noise, si is the pure
sEMG signal, and ni is noise. Then, the covariance between
sEMG signals mi and mj can be calculated as follows:

E
[
mimj

]
= E

[
sisj

]
+ E

[
ninj

]
→ σ 2

mij
= σ 2

sij
+ σ 2

nij
(15)

where σ 2
mij

is the measured sEMG covariance, σ 2
sij

is the pure
sEMG covariance, and σ 2

nij
is the noise covariance between

the two electrodes. It is assumed that the noise ni and pure
sEMG si are mutually uncorrelated. From (4), the pure sEMG
covariance can be expressed in matrix form as follows:

Cs =


σ 2

s11
. . . σ 2

sij
...

. . .
...

σ 2
sji

. . . σ 2
sNN

 , σ 2
sij

= σ 2
mij

− σ 2
nij

(16)

The noise covariance σ 2
nij

can be experimentally obtained
from sEMG data measured when the muscle is not activated
(i.e., σ 2

mij
= σ 2

nij
if σ 2

sij
= 0). Thus, a pure sEMG signal can be

theoretically extracted from sEMG measurements. This result
shows the advantage of the stochastic sEMG processor in noise
reduction compared with traditional time domain approaches
such as low-pass filter algorithms.

E. Nonstationary sEMG Signal Estimation
The methods mentioned in the previous sections are valid

only if the sEMG signal is a stationary process, which means
that the muscle torque does not vary with time evolution; σ 2 (t)
is constant. However, the sEMG signal becomes a nonsta-
tionary process if muscle torque dynamically varies with time
evolution; σ 2 (t) is time varying. To estimate the time-varying
population variance σ 2 (t), the method of analysis of variance
(i.e., F test) is used in this study (see Fig. 3).

First, it is assumed that there are two different variances
σ̄ 2 (t1) and σ̄ 2 (t2) which are estimated by the time average in
Table II at different times t1 < t2 as follows:

σ̄ 2 (t1) =
1
τ

∫ t1

t1−τ

m2(t)dt,

σ̄ 2 (t2) =
1
τ

∫ t2

t2−τ

m2(t)dt (17)

Then, a null hypothesis that σ̄ 2 (t2) is identical to σ̄ 2 (t1) can
be developed. To test this hypothesis, a new variable F can be
introduced as follows:

1
F0

> F =
σ̄ 2 (t2)
σ̄ 2 (t1)

> F0 (18)

F0 is a constant that determines the significance level.
According to the F test, F follows the F distribution with
(n − 1, n − 1) degrees of freedom, and the null hypothesis
is rejected if the inequality in (18) is satisfied. By setting
an appropriate level of significance F0, σ̄ 2 (t) can be updated
in real time with high accuracy. The advantage of the F test
is improving the SNR by preventing uncertain updates. The
accuracy of the F test can be increased by collecting a large
number of samples n because this makes it easier to reject the
null hypothesis with respect to the same level of significance
F0, but doing so can also induce a long estimation delay
(i.e., there is a trade-off between delay and accuracy). Thus,
in this study, taking into account the human EMD, F0 is set
to 1.4 with 100 samples, which corresponding to the 5 [%]
significance level (i.e., p < 0.05). Note that this accuracy is
obtained when a single electrode is used alone. In this study,
16 electrodes are utilized to collect more samples within the
same time to improve the SNR, which is the reason why
multichannel electrodes play a significant role in this study.
Fig. 4 shows the overall torque estimation algorithm proposed
in this study.

III. EXPERIMENTAL METHODS

A. Experimental Setup
For this study, 15 healthy subjects (10 males and 5 females)

who had no previous experience in our experiments were
recruited. The subjects were encouraged to generate a torque
profile by following visual feedback of the desired torque
profile, which was displayed on a monitor (see Fig. 5-(a)). The
desired torque profiles were trapezoidal functions with 4 [s]
static contractions and 2 [s] ascending/descending contractions
with respect to 7 linearly increasing torque levels (i.e., level
1 is 11.4 [%] and level 7 is 80[%] of the maximum voluntary
contraction torque) and free force-varying contractions under
isometric conditions. To prevent muscle fatigue, 3 [s] rest time
was given between contractions.

sEMG signals were measured while the subjects performed
elbow flexion. The upper arm was tightly fixed in a custom-
made brace, and the elbow and shoulder joint angles were fixed
at 135 [◦] and 90 [◦], respectively. Four cross-shaped 4-channel
electrodes (dEMG sensors, Delsys, USA) were used as sEMG
sensors to collect sEMG samples (i.e., a total of 16 electrodes).
As shown in Fig. 5-(b), sensors 1 and 2 were located over the
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Fig. 4. The overall algorithm for joint torque estimation.

Fig. 5. (a) Experimental setup and procedure (b) Electrode locations
over biceps brachii and brachialis, and cross-section of muscles.

proximal part of the long and short head of the biceps brachii.
Sensors 3 and 4 were located over the medial and lateral sides
of the distal upper arm where the brachialis muscle becomes
close to the skin (see Fig. 5-(b)) [22]. The ground electrode
was attached to the elbow joint of the left arm. The elbow
flexion torque was measured by a torque sensor (TCN16-20K,

Dacell, Korea), and the torque sensor signal was sampled at
1.0 [kHz]. The sEMG signals were also sampled at 1.0 [kHz]
and high-pass filtered with a 20 [Hz] cutoff frequency, and
a notch filter was utilized to eliminate 60 [Hz] power line
noise [32].

B. Experimental Procedure
The experimental procedure involved two main steps: the

calibration step and the validation step. At the beginning
of the calibration step, the subjects were asked to generate
the maximum elbow flexion torque in order to measure the
maximum voluntary contraction torque. Then, the subjects
were asked to produce elbow flexion torque following the
profile displayed on the monitor. After the experiment was
finished, the eigenvector matrix V was extracted from the
covariance matrix Cm to be decomposed into 16 independent
sEMG signals. Although it is assumed that V is a constant
matrix, it may change slightly in practice depending on
the torque level. Therefore, the 4th torque level data among
the 7 torque levels (i.e., 50[%] of the maximum voluntary
contraction torque) were used to calculate Cm to minimize
the changes in V among the torque levels.

Then, the independent muscle unit signals di were calculated
using (8), and the standard deviation of each independent
muscle unit σdi was obtained using an equation analogous
to Table II with an averaging time of 100 [ms]. Because σdi

contains a noise component σni , the pure signal σsi was
extracted from (16). Subsequently, the nonlinear index ξi was
estimated via the nonlinear regression method to maximize
the correlation (i.e., linearity) between T and the sum of σ

ξi
si

by using the mean values at each of the 7 static torque levels.
Finally, the γi that would minimize the torque estimation error
ε in (13) was calculated to complete the calibration step.

In the validation step, the subjects were also asked to
produce elbow flexion torque as in the calibration step, but
the torque was estimated online by using the parameters γi,
ξi, and V obtained in the calibration step. Finally, the torque
estimation error ε in (13) and the SNR were validated.

IV. EXPERIMENTAL RESULTS

A. Experimental Results
Fig. 6 shows the raw sEMG data mi of subject 1. The sEMG

signals from channels 1 to 8, which are located over the biceps
brachii, and the signals from channels 9 to 16, which are
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TABLE I
PARAMETERS USED IN THE STOCHASTIC SEMG PROCESSOR FOR SUBJECT 1

Fig. 6. Measured raw sEMG data mi of subject 1. (a) Signals from
electrodes numbered 1 to 8 (Biceps brachii). (b) Signals from electrodes
number 9 to 16 (Brachialis).

located over the brachialis, are shown in Fig. 6-(a) and (b),
respectively. Fig. 7 shows the decomposed independent sEMG
data di of subject 1, which were calculated from mi using V.
These 16 di signals are labeled by the size of the eigenvalues.
V was extracted from torque level 4 (middle) resulting in the
smallest correlations at torque levels 1 (lowest) and 7 (highest).
Table I shows the parameters estimated in the rescaling pro-
cedure. Using these parameters, the relationships between the
measured torque T and the standard deviation of di (i.e., σdi)

were linearized. Finally, Fig. 8 shows the experimental results
in the validation step. In Fig. 8-(a), the blue curve shows the
result of the rescaling method in this study, while the gray and
yellow curves show the results of the moving average filter and
the whitening method proposed in previous studies [1], [14],
[17]. The sampling time was fixed to 100[ms] to ensure that
the latency of each myoprocessor would be identical and to
compare the RMS error. Fig. 8-(b) shows an enlarged version
of Fig. 8-(a) for torque level 4. The averaged RMS error
with respect to the maximum voluntary contraction torque in

Fig. 7. Decomposed independent sEMG data di of subject 1.
(a) The 8 signals with higher amplitudes. (b) The 8 signals with lower
amplitudes.

each experiment in Fig. 8 is calculated and summarized in
Table II. The calculated average RMS error is 6.17 [%] (male:
4.59 [%], female: 9.32 [%]), representing an improvement over
the results of the two conventional algorithms (P-values are
significant according to the t-test. ∗∗∗p ≤ 0.001). Fig. 8-(a)
shows the results for free force-varying (dynamic) contractions
under isometric conditions. Similarly, the proposed rescaling
method (the blue curve) shows the least RMS error.

In Fig. 9-(a), the blue curve shows the result of the proposed
16 channels (i.e., biceps brachii and brachialis) with the
rescaling method in this study, while the other curves show
the results of the case in which only 1, 4 and 8 channels
are used (i.e., biceps brachii only with the rescaling method).
Fig. 9-(b) shows an enlarged version of Fig. 9-(a) for torque
level 4. As shown in the figure, the RMS error decreases as
the number of electrodes increases (i.e., gray, green, yellow
curve). Furthermore, the figure shows that additional elec-
trodes located over the brachialis can further improve the
RMS error. However, the results also show that the efficiency



CHANG et al.: DEVELOPMENT OF A HIGH-SNR STOCHASTIC sEMG PROCESSOR 2661

TABLE II
EXPERIMENTAL RESULTS

of the additional electrode is decreased and almost saturated
with 8 channels on the biceps brachii (see the green and
blue curves). Fig. 10 summarizes the experimental results with
respect to the RMS error of subject 1. The rescaling method
with 16 electrodes shows the most accurate torque estimation
results. These results are discussed further in the next section.

V. DISCUSSIONS

A. sEMG-Torque Relationship and Rescaling Method
In this study, we assume that the joint torque T and neural

drive ν have a linear relationship, which can be distorted in the
process of measuring the neural drive on the skin surface as
a form of sEMG σ . To compensate for this distortion and
estimate the neural drive, a rescaling method is proposed.
In previous studies, the relationship between the standard devi-
ation of the sEMG signal and the force has been determined
to exhibit both linear and nonlinear relationships. Woods
[33] reported that a linear relationship between sEMG and
torque was found in the pollicis and soleus, while a nonlinear
relationship was found in the biceps and triceps. Bigland [34]
reported that a linear relationship can be found in muscles that
control the fingers. However, Lawrence [23] reported that the
relationship is closer to a parabolic shape in other muscles.
Furthermore, Fuglevand [35] performed a simulation study
and found that the relationship can vary depending on the
recruitment strategy (narrow or broad range) and uniformity
among the peak firing rates of the different motor units, and
Farina [36] also showed that the sEMG-force relationship can
vary depending on the locations of the motor units. From
the results of previous studies, therefore, it is considered that
the characteristics of the target muscle generally influence the
relationship between sEMG and torque, and this relationship is
difficult to generalize. In this study, we also found a nonlinear
relationship between sEMG and torque. This relationship is
shown at the muscle unit level (i.e., decomposed sEMG di),

Fig. 8. The results of the validation step (subject 1). (a) Experimental
results with respect to different torque estimation algorithms. (b) Torque
estimation results on torque level 4. (c) Dynamic torque estimation
results (sinusoidal function).

as shown in Fig. 11-(a). In most subjects, the standard devi-
ation of relatively strong muscle units (e.g., σd1 and σd2)

shows a nonlinear relationship with respect to joint torque,
while other muscle units show an almost linear relationship.
In this paper, this nonlinear relationship is corrected to a linear
relationship, and the neural drive is estimated via the rescaling
method, as shown in Fig. 11-(b). As a result, the error between
the estimated and measured torque can be minimized.

The rescaling method introduced in this study can be used
to estimate the signal sources of the muscle units. In Fig. 11,
the shapes of the markers indicate the estimated origins of
the muscle units; circles indicate the brachialis, and triangles
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Fig. 9. The results of the validation step (subject 1). (a) Experimental
results with respect to the number of electrodes. (b) Torque estimation
results for torque level 4. The blue curve is same as in Fig. 8.

Fig. 10. The results for the RMS errors with respect to different numbers
of electrodes and signal processing algorithms. BB: Biceps brachii, BR:
Brachialis.

indicate the biceps brachii. As shown in (19), estimation of
the origin of the i-th decomposed sEMG component di is
performed by calculating the magnitude sum of the 1st to
8th elements in the i-th row (i.e., electrodes on the biceps
brachii) of the eigenvector matrix V and comparing it to that
of the 9th to 16th elements in the i-th row (i.e., electrodes
on the brachialis). If the latter is larger than the former, this
implies that di originates from the brachialis, and otherwise,

Fig. 11. Relation between eigenvalues and measured torque with
respect to subject 1. (a) Normalized and decomposed σdi . (b) Normal-
ized and rescaled Ti = γiνi. The circle and triangle markers indicate
estimated origins of muscle units in the BB and BR, respectively.

it originates from the biceps brachii. d1
...

d16



=


V(1,1) · · · V(1,8)

...
...

...

V(16,1) · · · V(16,8)︸ ︷︷ ︸
Biceps brachii

V(1,9) · · · V(1,16)

...
...

...

V(16,9) · · · V(16,16)︸ ︷︷ ︸
Brachialis





m1
...

m8
m9
...

m16


(19)

According to this estimation, the two strongest muscle units
after decomposition (see Fig. 11-(a)) originate from the biceps
brachii. However, after rescaling, muscle units from the
brachialis have almost the same magnitude as those from
the biceps brachii (see Fig. 11-(b)). For example, in Fig. 11
of subject 1, σd4 is estimated as the 4th strongest muscle
unit after decomposition, but after rescaling, T4 becomes the
2nd strongest estimated torque level. In most subjects, it is
estimated that the 2nd strongest muscle unit after rescaling
originates from the brachialis. This result suggests that the
rescaling method may restore muscle units in the brachialis to
closer to their true magnitudes and implies that sEMG signals
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Fig. 12. Correlation coefficients (R2) among sEMG channels with respect to subject 1. The upper and lower triangles show the correlations
among the raw sEMG signals mi and decomposed sEMG signals di, respectively. The eigenvector V is extracted from torque level 4 (50[% ] MVC).
(a) Torque level 1. (b) Torque level 3. (c) Torque level 5. (d) Torque level 7.

from the brachialis play significant role in accurate torque
estimation, although the sEMG signals from the brachialis are
relatively small, which belies the significance of the brachialis.

B. Eigenvector and Muscle Units
In this study, eigenvector matrix V in (8) is extracted from

torque level 4 (50[%] of MVC) and assumed to be a constant
matrix. Due to this assumption, the rescaling method can be
simply utilized without the need to store an infinite number
of eigenvector matrices with respect to every level of muscle
activation. This assumption is supported by the experimental
results of calculating the correlation among channels with
respect to muscle activation level (see Fig. 12). In Fig. 12, the
upper triangle shows the correlation coefficient among the
measured sEMG signals mi, and the lower triangle shows
the correlation coefficient among the decomposed sEMG sig-
nals di. The cross-correlation of the lower triangle remains
closer to the zero matrix over the whole torque level, although
the eigenvector is extracted from torque level 4. This result
suggests that V rarely varies with respect to the muscle
activation level, and is an almost constant matrix. In other
words, V can be considered centers of activation of indepen-
dent muscle units, and these centers are fixed regardless of
activation.

From the experimental results in this study, it can be
deduced that no muscle unit is newly generated as activation
increases. If that happens, V has to vary due to the signals
from the new muscle unit. In previous studies [37], [38], the
neuromuscular compartment in a large muscle group such as
the biceps was reported. Regarding these previous studies,
it is considered that the invariant property of the muscle
units (i.e., the fixed eigenvector V) observed in this paper is
strongly related to the neuromuscular compartment. However,
the variation in the eigenvector matrix V should be further
investigated under dynamic conditions (i.e., varying muscle
length) because the relative locations of the muscle units with
respect to the electrodes can change as a muscle contracts.
We plan to investigate this topic in future work.

VI. CONCLUSION

In this study, a high-SNR stochastic sEMG processor with a
multichannel electrode was inspired by the whitening method.

The principle of the sEMG processor is theoretically intro-
duced, and experimentally verified with respect to multiple
muscle human elbow joints. With multichannel electrodes for
measuring the activation of deep muscle, muscle unit decom-
position, and a linearization algorithm of the rescaling method,
the developed sEMG processor shows the most accurate
torque estimation result without compromising the time delay
problems. From the experimental results, it is considered that
the proposed rescaling method with multichannel electrodes
is promising and can be applied in robotic rehabilitation engi-
neering to generate rapid and accurate control input signals
for robotic devices. To further verify the performance of
the developed sEMG processor, in future work, we plan to
conduct additional studies with respect to agonist antagonist
co-contraction and other multiple muscle joints.
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