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Effects of Microstate Dynamic Brain Network
Disruption in Different Stages of Schizophrenia
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Abstract— Schizophrenia is a heterogeneous mental
disorder with unknown etiology or pathological char-
acteristics. Microstate analysis of the electroencephalo-
gram (EEG) signal has shown significant potential value
for clinical research. Importantly, significant changes
in microstate-specific parameters have been extensively
reported; however, these studies have ignored the infor-
mation interactions within the microstate network in dif-
ferent stages of schizophrenia. Based on recent findings,
since rich information about the functional organization
of the brain can be revealed by functional connectivity
dynamics, we use the first-order autoregressive model
to construct the functional connectivity of intra- and
intermicrostate networks to identify information interac-
tions among microstate networks. We demonstrate that,
beyond abnormal parameters, disrupted organization of the
microstate networks plays a crucial role in different stages
of the disease by 128-channel EEG data collected from
individuals with first-episode schizophrenia, ultrahigh-risk,
familial high-risk, and healthy controls. According to the
characteristics of the microstates of patients at differ-
ent stages, the parameters of microstate class A are
reduced, those of class C are increased, and the transi-
tions from intra- to intermicrostate functional connectivity
are gradually disrupted. Furthermore, decreased integra-
tion of intermicrostate information might lead to cognitive
deficits in individuals with schizophrenia and those in high-
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risk states. Taken together, these findings illustrate that
the dynamic functional connectivity of intra- and intermi-
crostate networks captures more components of disease
pathophysiology. Our work sheds new light on the charac-
terization of dynamic functional brain networks based on
EEG signals and provides a new interpretation of aberrant
brain function in different stages of schizophrenia from the
perspective of microstates.

Index Terms— Dynamic brain network, information inter-
action, microstates, resting-state EEG, schizophrenia
stages.

I. INTRODUCTION

SCHIZOPHRENIA is a heterogeneous mental disorder
with unknown etiology or pathological characteristics

[1]. According to the description of the neurodevelopmental
model, the trajectory of schizophrenia is divided into four
stages. The first stage is defined as the high-risk (HR) stage
before a detectable defect, such as being a first-degree relative
of a person with schizophrenia. The second stage is called the
ultrahigh-risk (UHR) stage and represents the period before
the first-episode of schizophrenia (FES). Imaging studies have
shown that brain networks in schizophrenia are aberrant and
remain elusive [2].

As a promising method for studying the neurophysiology
of the brain, electroencephalogram (EEG) microstates (MSs)
can be used to classify and evaluate brain network dynamics
in health and disease at millisecond-level timescales, and
these techniques have gained increasing popularity in recent
years [3], [4]. EEG MSs have provided enticing early results
on their potential clinical value under certain conditions of
schizophrenia [5]. In the past 15 years, a growing num-
ber of studies have reported significant differences in the
spatiotemporal characteristics of EEG MS in patients with
schizophrenia or psychosis compared with healthy controls
[6], [7], [8], [9], [10], [11], [12]. The most commonly
discussed in the literature is the increase in MS class C
activity and the decrease in MS class D activity. However,
the results of all studies are different, and the influence
of the data processing method and selection of the control
group cannot be ruled out. Two studies have mentioned
that schizophrenia patients employ different concatenations
of MSs [13], [14]. EEG MSs have also been identified as
a potential biomarker for early diagnosis and predictive risk
of schizophrenia [5], [15]. Nevertheless, less attention has
been given to simultaneously assessing the impact of MSs
in different stages of schizophrenia on clinical symptoms and
cognitive function.
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In addition, since EEG MSs have been referred to as a
conceptual analogy, they reflect the coordinated activity of
neural ensembles in the brain [16]. A few recent studies
have suggested that MS maps correlate with the activity
of particular resting-state networks (RSNs) identified by
functional magnetic resonance imaging (fMRI). In particular,
MS classes A, B, C, and D are reported to correspond to
RSNs recognized as phonological processing, visual network,
salience network, and attention network, respectively, and
may share the same neurophysiological substrates. MS time
series may correspond to different functional connections
(FCs) between RSNs [17]. The characteristics of EEG MSs
can be used to quantify the operation of large-scale brain
networks, and the transitions of different MS classes reflect
the dynamics of brain activity states [18]. Resting-state EEG
MSs are thought to reflect local instantaneous states and
global interactions of distributed neural networks in the brain
[12]. Furthermore, studies have shown that EEG MSs are
better conceptualized as spatial and temporal continuity [19]
and provide novel information about the architecture of brain
connections not available with fMRI [20], [21]. Therefore,
abnormal MSs in schizophrenia may indicate disruption of
normal network activities that underlie disease pathogenesis.
Recently, only a few studies have focused on the relationship
between MSs and brain networks. Yao et al. constructed
a brain functional network using 64 scalp electrodes and
phase-locked values of MS time series to discriminate
differences in working memory between schizophrenia
patients and healthy controls while reducing time complexity
[22]. A combination of MS analysis and entropy measures
revealed abnormally chaotic transitions between brain
networks in early-course psychosis patients [20].

However, despite these encouraging findings on the EEG
functional network by EEG MS time series, the relationships
between EEG MS connectivity networks and clinical charac-
teristics of psychosis patients remain ambiguous. According
to the “atoms of thought” hypothesis, MS syntax contains
important information about underlying neural generators, and
MSs are constantly changing even when the brain is resting
[16]. The information interactions within the same types of
MSs and between different types of MSs, which represent a
special class of connection states arising from microscopic
dynamics, can be assumed to implement the maintenance of
and dynamic changes in brain states, respectively. Therefore,
here, we introduce a novel approach to explore the intra- or
intermicrostate FCs derived from the same or different types
of MSs. Different from traditional FC studies that analyzed
the comprehensive connectivity patterns in brain activity, the
intra- and intermicrostate FCs reveal how the brain changes
and maintains microstates, respectively, which are essential
for the normal function of the brain. Importantly, we applied
the method to explore the intra- and intermicrostate properties
of FC across the FES, UHR, HR, and healthy control (HC)
groups. These findings shed new light on the pathological
mechanisms revealed in schizophrenia and high-risk states
from the perspective of EEG MSs.

The major merits of this work are shown below:
1) We proposed a novel approach to explore brain net-

works based on intra- and intermicrostates; that is, we

constructed dynamic FCs (dFCs) from the same or
different types of MS time series, which were extracted
from the original MS time series.

2) We discovered that the organization of dFCs of intra- and
intermicrostate networks, characterized by topological
metrics, is gradually disrupted with different disease
stages.

3) We compared the brain networks constructed by tradi-
tional methods and those of MSs proposed by us and
discovered that intra- and intermicrostate brain networks
were closely related to patients’ cognitive decline and
disease status, which could better reflect underlying
disease processes.

The remainder of this article is organized as follows. Section II
introduces the conventional MS analysis method, which
obtains the MS time series and calculates its spatiotemporal
characteristics. Section III introduces our MS brain networks
and provides analyses of topological metrics and interpretabil-
ity of the disease state. Section IV verifies the effect of our
methods on resting-state EEG datasets and clinical scores
across different stages of schizophrenia and discovers that the
MS brain networks reveal more disease information than tra-
ditional networks. Section V provides some further discussion
about our experiments. Section VI concludes this work.

II. PRELIMINARY KNOWLEDGE

Brain activity processes vary in the subsecond range, and
EEG can be measured in milliseconds with satisfactory tempo-
ral resolution. Traditionally, the analysis of EEG data focuses
more on the time domain, which reflects the high temporal
resolution of EEG data while ignoring the information at
the topological level. The instantaneous spatial configuration
of the brain’s electric field directly reflects the dynamic
state of the brain. Since changes in the EEG configuration
are discontinuous, while a given field configuration tends to
remain quasistable for subsecond periods, it rapidly changes
to a different configuration. These periods of quasisteady-state
field configuration, known as MS, characterize fundamental
steps in the brain’s information processing [15], [23].

EEG MS analysis is able to simultaneously consider signals
from all electrodes throughout the brain to create a global rep-
resentation of functional state, while being suggested to reflect
the resting-state spontaneous activity of the human brain and
its event-related effects on stimulus processing. Furthermore,
the observed MS configurations are concentrated in several
classes of field configurations, which can be identified by
spatial clustering [16], [24].

The EEG MS analyses described here exactly followed the
procedures of a previous study [25]. Calculate the standard
deviation of the electrical potential across all electrodes of the
preprocessed EEG data as global field power (GFP) (formula
(1), which is used to describe the intensity of the electric field
of a topographic map.

G F P i =

√∑N

i
(xi (t) − xmean (t))2

/
N (1)

where N is the number of electrodes, xi (t) represents the
instantaneous potentials of electrode i at time t , and xmean (t)
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is the mean instantaneous potential of all electrodes at time
t . Only the EEG topography at the peak (local maximum)
of the GFP was subsequently analyzed, as the topography
of the EEG map remained stable around the peak of the
GFP. Modified K-means clustering was performed on the
GFP-restricted data to identify the most dominant topographies
as classes of MS. The algorithm was randomly initialized
30 times. Global explained variance as a measure of fit for
microstate segmentation. The algorithm stops when the relative
change in error between iterations drops below the threshold
of 10−6 or the number of iterations reaches 1000. Clustering
analysis was performed at the individual level in each group.
Each group will obtain its own MS class model maps. Four
MS classes have been reported in most studies to explain
the variance in EEG data of healthy individuals and patients
with psychotic disorders [7]. The resulting class-labeled group
model maps were finally used as templates to assign individual
model maps from each individual to four MS classes. The
MS parameters, namely, duration, occurrence, coverage, and
transition percentage, were calculated for the four MS classes
in each group. Duration refers to the total time a given MS
remains stable, which indicates the stability of subcortical
neurons. Occurrence is the frequency of occurrence of a
given MS class, which is thought to present a tendency for
the nervous system to be activated. Coverage refers to the
percentage of total record time for a given MS class. Transition
percentage refers to the transition probabilities of a given MS
class to any other MS class [14].

III. MICROSTATE BRAIN NETWORK CONSTRUCTION

In this section, the methods of construction, the properties,
and the applications of the MS brain network are introduced
separately. First, MS brain networks were constructed based
on the dFC of intramicrostates and intermicrostates by the
autoregressive (AR) model. Then, graph theory analysis was
used to characterize the MS brain network topological met-
rics, indicating information integration and separation of the
brain network. Finally, the correlation between the MS brain
networks and disease pathological information was analyzed
by the variance component model.

A. Dynamic Functional Connectivity
Brain networks of the EEG MSs were constructed from

the intramicrostate FCs (intramsFCs) and intermicrostate FCs
(intermsFCs) based on the same or different adjacent MS
time series, respectively (Fig. 1). Specifically, according to
the individual model map by MS analysis, each time point
for an individual’s entire time series was marked as MS class
A (MS-A), MS-B, MS-C, or MS-D. Based on the different
MSs, 6 different types of adjacent MS time series (i.e., MS-
A&B, MS-A&C, MS-A&D, MS-B&C, MS-B&D, MS-C&D)
and 4 kinds of adjacent MSs of the same type (i.e., MS-A&A,
MS-B&B, MS-C&C, MS-D&D) were extracted. Combining
these time series, a total of 10 new time series were obtained.

Previous studies evaluating dFC were primarily based on
the entire original time series, but we defined two new types
of MS FCs, including intramsFCs and intermsFCs, based on

Fig. 1. The methodology assessing functional connections of intra- and
intermicrostate dynamic functional connectivity (FC). A: microstate class
A; B: microstate class B; C: microstate class C; D: microstate class D;
msFC: FC of intra- or intermicrostates; AR(1): first-order autoregressive
model. Four kinds of intramicrostate FCs: AA-msFC, BB-msFC, CC-
msFC, and DD-msFC. Six kinds of intermicrostate FCs: AB-msFC, AC-
msFC, AD-msFC, BC-msFC, BD-msFC, and CD-msFC.

the same or different types of MS time series. Typical dFC
was also calculated as the comparison result of our algorithm.

MS network was established by the first-order AR (AR(1)
model [26], [27], which is a dynamic measure of resting-state
FC that is not limited by the classical sliding-window approach
and can be used to explore the correlation of human behavior
with resting-state brain function [28], as shown in formula (2):

x̃t = Wt · x̃ t−1 + et (2)

In formula (2), x̃t∈RN×1 represents the electrode vector at
time point t in the newly composed time series; Wt∈RN×N

represents the parameter in the model that encodes the linear
relationship between xt−1 and xt ; et∈RN×1 represents an error
vector at time t ; and N is the number of electrodes. Formula
(2) can be written as all-time points; each time point t has a
Wt (except the first time point). A matrix was built to represent
all the Wt values in a time series. Concatenating formula (2)
at each time point yields the following matrix form:

X̃2:T = W̄ · X̃1:T −1 + E (3)

In formula (3), X̃∈RN×T represents the newly composed
time-series matrix of electrodes; N is the number of elec-
trodes; and T is the number of time points. X2:T ∈RN×T −1

represents the second column to the last column of X , and
X1:T −1∈RN×T −1 represents the first column to the penulti-
mate column of X . W̄∈RN×N represents the comprehensive
FC between nodes in the EEG time series, which is used for
subsequent analysis. E∈RN×T −1 represents the error matrix
in the model. W̄ can be identified from the multivariate time
series in formula (3) through the least squares method.
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According to the types of MS classes, the 10 newly com-
posed time series were input into formula (3). As a result,
intramsFCs, including AA-msFC, BB-msFC, CC-msFC and
DD-msFC, were generated. IntermsFCs, including AB-msFC,
AC-msFC, AD-msFC, BC-msFC, BD-msFC, and CD-msFC,
were generated. It is worth noting that we averaged the two
alternate pairs, such as AB-msFC and BA-msFC, eventually
resulting in only one type of msFC.

In addition, to verify that AR is a suitable method to
construct FCs based on MS time series, we used the phase
lag index (PLI) and Pearson correlation coefficient (PCC) for
comparison. PCC measures the linear relationship between two
random variables, which reflects the average functional organi-
zation of the entire neuroimaging recording. PLI measures the
asymmetry in the distribution of the phase difference between
two signals in the frequency domain [29], [30].

B. Graph Theoretical Analysis
Several network metrics based on graph theory, which has

a special advantage in that it easily allows the formulation and
evaluation of generative models, were calculated and analyzed
here [31]. To characterize the features of three types of FC
(intramsFCs, intermsFCs, and dFC), which were constructed
based on the AR(1) model of formula (3), three main network
(node) topological metrics were calculated using graph theory,
which included global efficiency (Eglobal), local efficiency
(Elocal), and clustering coefficient (CC ). Considering that the
three metrics can measure the communication efficiency of
brain networks, among which Eglobal describes functional
integration and Elocal and CC describe functional segregation
[32], we can comprehensively characterize the information
interaction in intramsFCs and intermsFCs from local and
global perspectives.

First, a multiple thresholds approach was performed with
the threshold being 0.1 to 0.4 and the step size being 0.01 on
the 4 kinds of intramsFCs, 6 types of intermsFCs, and dFC.
The threshold represents the percentage of the retained value
based on the data in each matrix (e.g., 0.1 represents the
maximum value of the first 10% of the data). It is worth
noting that the multithreshold approach is more reliable than
the specific threshold approach when examining schizophrenia
and other psychiatric disorders [33]. Then, each type of FC
generated 31 sparse matrices, which were put into formulas
(4), (5), and (6).

Eglobali =

∑
j∈N S, j ̸=i

(
dw

i j

)−1

N − 1
(4)

Elocali =

∑
j∈N S, j ̸=i

(
wi jwih

[
dw

jh (N Si )
]−1

)1/3

N − 1
(5)

Cci =
2twi

ki (ki − 1)
(6)

twi =
1
2

∑
j,h∈N S

(wi jwihw jh)
1
3 (7)

For each sparse matrix, Eglobal , Elocal , or CC is the vector of
N × 1. NS is the set of all nodes in the network, and N is the
number of nodes (electrodes). wi j is the connection weight

between node i and node j . dw
i j is the shortest weighted path

length between node i and node j . dw
jh(N Si ) is the length of

the shortest path between node j and node h, which contains
only neighbors of node i . Here, FC is directional. tw

i is the
weighted geometric mean of triangles around i , as shown in
formula (7). ki is the degree of node i. The final results were
obtained by calculating the area under the curve (AUC) of
the network topological metrics under each threshold [34].

The detailed calculation methods for CC , Eglobal , and Elocal

were described in some previous literature [35]. The CC is a
measure of the degree to which nodes in a graph tend to cluster
together and is considered a metric of network segregation.
Eglobal is a scalar measure of information flow, which is used
to measure the speed and efficiency of information transfer
over the whole network to reflect the transfer capacity. Elocal
can be considered the average efficiency of local subgraphs.

C. Variance Component Model
To explore the physiological information contained in FCs

(dFC, intramsFC, and intermsFC), we applied a multivariate
variance component model to correlate network topological
metrics with pathological information data. Network met-
rics were considered independent variables, and physiological
information data were considered dependent variables.

The multivariate variance component model developed by
Ge et al. [36] was used as shown in formula (8):

Y = E + U (8)

where Y , E, or U is the matrix of S × H . S is the number of
individuals in each group, and H is the amount of pathological
index information. Y is a multidimensional trait of S individ-
uals. In this study, Y is the pathological index matrix. E and
U represent common environmental factors and unique envi-
ronmental factors, respectively, as shown in formulas (9)-(11):

F(i, j) = Corr(vec(T M i ), vec(T M j )) (9)
vec (E) ∼ N (0, 6e ⊗ F) (10)
vec (U ) ∼ N (0, 6u ⊗ I ) (11)

where F(i, j) encodes the similarity of network topological
metrics (Egobal , Elocal, or Cc) between individuals i and
j. Corr indicates the Pearson correlation analysis. vec (.)

is the matrix vectorization operator that converts a matrix
into a vector by stacking its columns. T M ∈ RN×T F is
the topology metrics matrix of FCs, which is calculated by
formulas (4), (5), or (6). N is the number of nodes. TF is the
number of types of FCs; here, TF is the value of 6 (number
of intermsFCs), 4 (number of intramsFCs) or 1 (number of
dFCs). ∼N () means that a vector is normally distributed. ⊗ is
the Kronecker product of matrices. F ∈ RS×S is a similarity
matrix, which is generated by formula (9). I is an identity
matrix, 6e ∈ RH×H is a common environmental covariance
matrix, and 6u ∈ RH×H is the unique environmental
covariance matrix, which is to be estimated from F and Y.
The variance explained by network topological metrics of
FC, denoted by M , was computed as shown in formula (12):

M =
T r(6e)

T r (6e) + T r(6u)
(12)
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where T r(.) is the trace operator, measuring the explanatory
variance in the network topological metrics of msFC vari-
ability with the clinical performance of individuals. For each
network topological metric (Eglobal , Elocal , or Cc), 3 kinds
of FCs are used, namely, inter-all-msFC, intra-all-msFC,
and dFC, and three different Ms are calculated by formula
(12). In the regression analysis of the multidimensional
pathological index, the sex and age of individuals were used
as basic covariates. Moreover, the parameters (durations,
occurrences, and coverages) of four MS classes were used as
additional covariates when analyzing the msFCs.

IV. EXPERIMENTS AND RESULTS

For this section, we collected clinical data of patients with
schizophrenia at different stages to verify the application of our
proposed MS brain networks in revealing disease mechanisms
and their advantages compared to traditional dynamic brain
networks. First, individual resting-state EEG data and clinical
scale information were collected, statistical analysis was per-
formed, and the clinical performance (disease characteristics
and cognitive function) of each group of individuals was
quantified. The spatiotemporal characteristics of MSs and the
differences in the topological metrics (Eglobal , Elocal , and
CC ) of the brain networks constructed by dFC and msFCs
(intra and inter) were compared and analyzed. Finally, the
degree of interpretation of clinical performance by the three
types of brain networks was evaluated, which highlighted the
value of MS brain networks in revealing underlying disease
mechanisms.

A. Participant Recruitment
We applied the intra- and intermicrostate brain network

methodology in the dataset obtained from 99 individuals,
including 30 individuals with FES, 21 at UHR, 17 with
familial HR, and 31 HC individuals. FES patients were diag-
nosed according to the Diagnostic and Statistical Manual of
Mental Disorders, Fourth Edition (DSM-IV); UHR individuals
were assessed by the Structured Interview of Psychosis-risk
Syndrome (SIPS); unaffected first-degree relatives of individ-
uals with schizophrenia who met DSM-IV diagnostic criteria
served as HR individuals, and the HC group was recruited
from the community. The clinical characteristics of individuals
with FES were assessed based on the Positive and Negative
Syndrome Scale (PANSS). The prodromal syndromes for the
individuals of UHR, HR, and HC were assessed using SIPS.
The exclusion criteria were education < 6 years, significant
intellectual disability (IQ < 70), a history of head trauma,
any psychiatric disorder, neurological disease, and substance
abuse. All individuals were not using drugs, and therefore,
the effects of antipsychotic drugs on cognitive outcomes were
ruled out. This study was approved by the Science and Ethics
Committee of the Beijing Anding Hospital of Capital Medical
University by the Declaration of Helsinki, and all individuals
provided informed consent. Kruskal–Wallis with post hoc
tests were performed on the demographic data (sex, age,
education and IQ) and clinical data (Calgary Depression Scale
for Schizophrenia (CDSS) and SIPS), and significance values
were adjusted by the Bonferroni correction for multiple tests

(p < 0.05). Demographic and clinical details are summarized
in Supplemental Table 1.

B. Dataset Construction
For the four groups of individuals recruited, resting-state

EEG data collection was contained in dataset 1, and cogni-
tive function assessments by the Measurement and Treatment
Research to Improve Cognition in Schizophrenia (MATRICS)
Consensus Cognitive Battery (MCCB) and clinical charac-
teristics based on PANSS for those with schizophrenia were
contained in dataset 2.

Dataset 1: Resting-state EEG data. The EEG was recorded
for each individual in the four groups from a 128-scalp elec-
trode (Electrical Geodesic Inc., EGI, Eugene, OR) attached to
the entire scalp by the international 10-20 system at 1000 Hz,
and a reference electrode was Cz. The EEG acquisition
impedance was kept below 5 k�. All individuals recorded
three minutes of resting-state data with eyes closed. EEG
data preprocessing was performed, and artifact rejection meth-
ods were implemented utilizing algorithms in the MATLAB
(Version 2017a, The MathWorks, Natick, MA, United States)
toolbox EEGLab [37]. Independent component analysis was
used to identify and remove the artifacts from raw EEG
signals. Artifact-free EEG data were downsampled to 128 Hz
and bandpass filtered from 1-40 Hz using a basic finite impulse
response filter [9].

Dataset 2: Physiological index information (MCCB and
PANSS). The neurocognitive domain performance of all the
individuals was assessed by the MCCB, which is a stan-
dardized battery for patients with schizophrenia and related
disorders [38]. The MCCB includes nine standardized neuro-
physiologic tests that reflect seven cognitive domains. Specif-
ically, speed of processing (Brief Assessment of Cognition
in Schizophrenia-Symbol Coding, Category Fluency-Animal
Naming, and Trail Making Test-Part A), attention/vigilance
(Continuous Performance Test), working memory (Wechsler
Memory Scale-Spatial Span), verbal learning (Hopkin’s Ver-
bal Learning Test-Revised), visual learning (Brief Visuospa-
tial Memory Test-Revised), reasoning and problem-solving
(Neuropsychological Assessment Battery-Mazes), and social
cognition (Mayer-Salovey-Caruso Emotional Intelligence Test-
Managing Emotions) [5]. The PANSS is a rating scale that
helps researchers and clinicians measure the severity of psy-
chiatric symptoms in patients with schizophrenia (FES group).

C. Cognitive Performance
One-way ANOVA or Kruskal-Wallis with post hoc tests

were performed on MCCB scores in each group (Fig. 2). The
results of the statistical analyses between groups showed that
the four groups had significant differences in the following
cognitive abilities: speed of processing (F = 9.947, p < 0.001),
attention/vigilance (F = 15.289, p < 0.001), working memory
(H = 15.185, p = 0.002), verbal learning (H = 14.086, p =

0.003), social cognition (F = 3.039, p = 0.033) and MCCB
total score (H = 26.041, p < 0.001); however, there were
no significant differences in visual learning (H = 4.683, p >

0.05) or reasoning and problem learning (H = 3.362, p >

0.05). Cognitive performance in the FES group displayed the
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Fig. 2. Cognitive test performance in the four groups (FES, UHR, HR,
and HC) was evaluated by the MCCB test. Bar graphs display the mean
(standard error) scores on the MCCB test. Comparisons with the HC
group are indicated by black lines, and comparisons with the FES group
are indicated by red lines. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. All p
values are corrected with Bonferroni correction.

lowest score among the four groups, especially for the speed
of processing, attention/vigilance, working memory, verbal
learning, social cognition (FES vs HR, p = 0.05) and total
score on the MCCB. The post hoc test results are shown in
detail in Supplemental Table 2.

D. Microstate Spatiotemporal Characteristics
Grand mean model MS maps for the four groups (FES,

UHR, HR, and HC) are displayed in Fig. 3A. The extracted
MSs closely resembled the canonical four MS classes A to D.
For each individual in the four groups, three parameters per
MS class were computed: time coverage, mean duration, and
frequency of occurrence. Group average statistics are depicted
in Fig. 3B. One-way ANOVA or Kruskal–Wallis with post
hoc tests were performed on MS parameters. The predominant
differences in parameters among the four groups were in MS-
A (group effects: coverage: H = 17.400, p = 0.001; duration:
H = 11.889, p = 0.008; occurrence: H = 18.149, p < 0.001)
and MS-C (coverage: F = 3.507, p =0.018; duration: H =

12.126, p = 0.007). There were no significant differences
across groups in MS-B and MS-D (p > 0.05).

Compared to the HC group, the FES group showed signifi-
cantly decreased time coverage (p = 0.001), slower occurrence
(p < 0.05) and shorter duration (p = 0.015) in MS-A and
increased time coverage (p = 0.025) and longer duration (p =

0.018) in MS-C. The UHR and exhibited significantly lower
coverage (p = 0.028) and slower occurrence (p = 0.028)
in MS-A. And the HR groups showed significantly lower
coverage (p = 0.034) and duration (p = 0.047) in MS-A.

E. Network Topological Metrics
Here, 6 kinds of intermsFCs (i.e., between two different

MSs) and 4 kinds of intramsFCs (i.e., within two identical
MSs) based on the AR(1) model were constructed. As a
comparison, typical FCs based on the entire time series (dFCs)
were built for four groups. The results in Fig. 4 display the
group differences in the network topological metrics, i.e.,
Eglobal , Elocal , and CC , of dFCs and msFCs (inter and intra).
The detailed statistical analysis results of Kruskal–Wallis and

Fig. 3. The spatial configuration of microstate classes A-D and
microstate parameters. EEG topo plots showing microstate topogra-
phies derived from quiet rest EEG recordings in the four groups (FES,
UHR, HR, and HC) (A). Although red is positive and blue is negative,
microstate analysis ignores polarity. Dot plots display the mean (stan-
dard error) of the time coverage, occurrence, and duration in the four
groups (B). Comparisons with the HC group are indicated by black lines.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. All p values are corrected with
Bonferroni correction.

post hoc tests across groups in network topological metrics
are shown in Supplemental Table 3. In the FES and UHR
groups, significant reductions in Eglobal were observed in all
intramsFCs and some intermsFCs. For the HR group, only the
Eglobal values of intramsFCs (AAmsFCs) were significantly
higher than those in the UHR group (Fig. 4A). There was no
significant difference across groups in Elocal of msFCs (intra
and inter) in the four groups (Fig. 4B). For the individuals
in the FES and UHR groups, the CC values of msFCs (intra
and inter) were significantly higher than those in the HC group
(Fig. 4C). However, there was no significant difference in dFC
(Eglobal , Elocal , or CC ) among the four groups.

F. Brain Network Encoding Clinical Performance
To further explore the impact of functional network topolog-

ical metrics on clinical performance, the correlations between
Eglobal , Elobal , and Cc with MCCB and PANSS total scores
were computed (Fig. 5). We used the delete-1 jackknife
approach to evaluate significant differences between the vari-
ance explained by three different methods of FCs (intermsFC,
intramsFC, and dFC). Specifically, the M derived from inter-
and intramsFCs and dFC were compared. During the period,
subject i was randomly removed from each set of data, Mi was
calculated with the above formula (12), S values of M were
generated by looping S times, and then one-way ANOVA was
used for comparison.

The results in Fig. 5A show that the cognitive performance
of the healthy subjects was better explained by Eglobal of dFC
than that of all-msFC subjects (intermsFC and intramsFC).
However, for the patient groups (FES, UHR, and HR), the
h2 values of Eglobal were contrary to those of the HC
group, and cognitive performance was better explained by
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Fig. 4. Group differences in network topological metrics of msFCs and dFCs across the four groups. Bar graphs display the mean (standard error)
of the Eglobal (A), Elocal (B), and CC (C) indices in the four groups (FES, UHR, HR and HC). Compared with the HC group, ∗ p < 0.05, ∗∗ p <
0.01. All p values are corrected with Scheffe correction. Four kinds of intramsFCs: AA-msFC, BB-msFC, CC-msFC, and DD-msFC. Six kinds of
intermsFCs: AB-msFC, AC-msFC, AD-msFC, BC-msFC, BD-msFC, and CD-msFC.

inter-all-msFCs and intra-all-msFCs. Regarding Elocal and
CC (Fig. 5B-C), all-msFCs contributed a higher association
with cognitive performance; specifically, intermsFCs showed
the highest association among the three kinds of FCs in the
four groups. In addition, PANSS total scores in the FES group
were better explained by Eglobal of inter all-msFCs, which
showed the highest h 2 -value among the three kinds of FCs
(Fig. 5D). The detailed statistical analysis results are shown
in Supplemental Tables 4 and 5.

V. DISCUSSION

EEG MSs have been shown to reflect many cogni-
tive processes and to be associated with the pathology of
schizophrenia. FC analysis of resting neural activity (such as
blood oxygen level-dependent signals, EEG data, etc.) can
characterize the nature of interactions of brain networks and
help reveal brain activity patterns. In this study, we aimed
to explore the differences in the dynamic brain networks of
EEG MSs in the different stages of schizophrenia and the
impact on individuals’ cognitive deficits. Finally, we con-
firmed the cognitive status and MS characteristics of the four
groups (FES, UHR, HR, and HC), constructed intra- and
intermicrostate networks and finally explored the relationship
between MS network topological metrics and cognitive deficits
in individuals with schizophrenia and those in a high-risk state.

A. Clinical Symptoms and Cognitive Deficits
Here, we administered clinical assessments and cognitive

tests in four groups of individuals, namely, those with FES,
UHR, HR, and HC, using the CDSS, SIPS, PANSS, and
MCCB. The evaluation of depression level by the CDSS
showed that compared with the HC group, the three other
groups (FES, UHR, and HR) exhibited significantly more
depressive symptoms. Notably, the UHR group had the highest
CDSS scores. The SIPS was used to assess the prodromal
stages of schizophrenia, and our results showed that the
clinical symptoms gradually increased as schizophrenia pro-
gressed (UHR > HR), which showed that the score increased

Fig. 5. The explain ability of network topology metrics for clinical pre-
sentation. One -way ANOVA is used to compare the variance explained
(h2 value) of different types of FC in same group. Bar graphs display
the mean (standard error) of variance explained (h2 value) between the
Eglobal, Elobal, and CC of dFCs and all-msFCs (inter and intra) with
MCCB scores in four groups (FES, UHR, HR, and HC) (A-C). ∗ p< 0.05,
∗∗ p < 0.01, ∗∗∗ p < 0.001. All p values are corrected with Bonferroni
correction. Box graphs display the mean (standard deviation) of the h2

value between the dFCs and all-msFCs (inter and intra) with PANSS
total scores (D).

compared with the HC group. The FES group was assessed
for clinical symptoms by the PANSS, and the total PANSS
score (mean = 85.23, SD = 12.52) was considered “mod-
erately ill”, which was higher than a PANSS score of 75
[39] (Supplemental Table 1). In addition, we investigated
the cognitive deficits evaluated with the MCCB in the four
groups. Consistent with previous studies, cognitive deficits
are the central feature of schizophrenia, and individuals in
a high-risk state exhibit cognitive deficits as commonly as
those with schizophrenia [5], [40]. Fig. 2 shows that the FES
group had the most serious cognitive deficits, especially for
speed of processing, attention/vigilance, working memory and
verbal learning (FES vs HC: p < 0.05). And the UHR or HR
group was significantly different from the FES group in speed
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of processing or attention/vigilance (p < 0.05). Our findings
suggest that in addition to clinical symptoms, cognitive deficits
gradually become more severe as the individual progresses
through stages of schizophrenia.

B. Importance of MS-A and MS-C
The majority of studies have reported that the EEG MSs

measured in patients with schizophrenia had abnormal time
dynamics compared with controls. However, it is worth inves-
tigating the EEG MSs in schizophrenia stages I, II, and III
at the same time to provide potential biomarkers for early
diagnosis and intervention. Here, we divided the MSs observed
in the four groups (FES, UHR, HR, and HC) into four classes,
A, B, C, and D, in which the optimal number of MS classes
depends on the dataset analyzed and previous work (Fig. 3).
A meta-analysis revealed that patients with schizophrenia
have a higher frequency and longer duration of MS-C and
a lower frequency and shorter duration of MS-D than controls
[41]. In addition, previous studies have shown that high-risk
individuals displayed more coverage and occurrence of MS-A
than first-episode patients with schizophrenia [12], and patients
with early-course psychosis had a decreased frequency of MS-
A [20]. Several studies combining simultaneous fMRI and
EEG recordings have demonstrated that MS-A is related to
auditory networks, and MS-C is related to the salience network
[17]; interestingly, patients with recent-onset schizophrenia
have decreased FC in the auditory networks compared to
HCs [42]. Furthermore, aberrant FC in the default mode
and salience networks correlates with psychotic symptoms in
schizophrenia [43], [44], [45]. The patients with schizophrenia
and individuals in the high-risk state showed similar abnor-
malities in EEG MSs. Consistent with some previous studies,
our results showed that FES individuals exhibited significantly
decreased time coverage, occurrence, and duration in MS-A
and significantly increased time coverage and duration in
MS-C compared with HCs. Regarding the UHR and HR
groups, the results showed that only MS-A patients displayed
significant differences compared with the HC group. Some
studies have found that adolescents with 22q11.2 deletion
syndrome with elevated MS-C have a 30% risk of develop-
ing schizophrenia. Moreover, MS-C and MS-D of EEG are
considered candidate endophenotypes for schizophrenia, and
more MS-C and less MS-D were shown in schizophrenia
patients and their siblings [9]. It was found in our results
that the duration in MS-C of the HR group (p = 0.056 with
corrected) was marginally significant compared with the FES
group. Therefore, we support MS-C as a potential biomarker
for conversion to schizophrenia. Our results mainly suggest
that MS-A plays a key role in schizophrenia and high-risk
stages.

C. Disrupted Organization of msFCs
Previous results on disrupted functional brain networks in

schizophrenia have been inconsistent. Several possible reasons
might have caused these discrepancies. The variations in
methods used to define FC play a key role. The present study is
the first to explore dynamic information interactions from the

view of intra- and intermicrostates of EEG in different stages
of schizophrenia. We constructed dynamic brain networks for
6 kinds of intermicrostates and 4 kinds of intramicrostates in
four groups (FES, UHR, HR, and HC) using the AR(1) model
(Fig. 1), which was motivated by accounting for the memory
present (i.e., X t depends on X t−1) in the MS time series
[27]. The dynamic model considers the known biophysical
properties of the neuron population in simulating the dynamics
of brain function, and it is better for shaping resting-state brain
function to characterize the dynamic connection [46], [47].
Furthermore, we constructed brain networks based on the
PLI and PCC methods, and the results of topological metrics
showed that there were no significant group effects in the brain
network based on PLI, and the PCC network only exhibited
a significant difference in CC (Supplemental Table 6). How-
ever, AR network topological metrics have significant group
effects, which is more conducive to capturing the pathological
features in the intermsFCs or intramsFCs. Our Eglobal results
showed that there was a predominant decrease in FCs in the
patients, which suggested that the speed and efficiency of
information integration decreased. With the progression of the
disease, there was gradual destruction from the intramicrostate
networks to the intermicrostate networks. In contrast, the
results with the CC values exhibited a significant increase in
msFCs (intra and inter) in the patients compared with the
HC group, which reflected the increase in segregation and
greater templating of the network (Fig. 4). Our results are
consistent with some previous studies evaluating EEG or fMRI
functional networks [48]. Network studies of graph theory
have revealed longer average path lengths and correspond-
ing reductions in global communication efficiency, indicating
decreased communication between more segregated parts of
the brain in schizophrenia patients [49], [50]. Structural studies
have found increased segregation (i.e., clustering) and reduced
integration in patients with psychosis (i.e., lower Eglobal) [51].
Empirical findings have shown that patients with schizophrenia
show a lower clustering in cognitive tasks and a higher
clustering in the baseline period when a larger integration of
cortical activity among distant brain regions is needed [52].
Whole-brain studies of FC changes have shown widespread
reductions during rest in chronic patients [53]. Furthermore,
in the present study, dFC failed to discriminate differences
in brain networks between patients and healthy individuals
(p > 0.05). We tried to detect patients by support vector
machine using the metric of msFC and evaluated the area
under the curve values to evaluate the classification effect. And
the results in Supplemental Table 7 show that compared with
previously constructed classification models for patients with
schizophrenia in different stages based on EEG features [54]
and even microstate features [15], [55], [18], the msFC-based
classification model can achieve better performance in distin-
guishing FES, UHR, or HR with HC (AUC: 92.50%, 97.22%,
or 88.63%) (Supplemental Table 8). It seems that the msFCs
of MSs might be better at exhibiting changes during the
progression of the disease. Above all, our findings suggest that
there was a gradually disrupted organization of intramsFCs to
intermsFCs as the stage of schizophrenia increased, resulting
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in new insights revealing abnormal connectivity of MSs in
neurodevelopmental disorders.

D. Effects of msFCs on Cognitive Deficits
Variations in brain network organization are robustly asso-

ciated with individual differences in cognitive function [56].
In this study, we attempted to explore how the msFCs of
MSs relate to cognitive deficits and performance in individuals
with FES, UHR, and HR and HCs. The results showed
that Eglobal of intermicrostate networks and Elocal , CC of
intramicrostate networks encode more regarding cognitive
performance (i.e., MCCB scores) than a common dFC metric
in patients (FES, UHR, and HR). These results might suggest
that the integration of information of intermicrostate networks
and segregation of the intramicrostate networks well explain
cognitive performance in patients. However, the Eglobal results
in the HC group were exactly the opposite of those in the
patients, in which the correlation between FC and MCCB
scores ranked as dFC > intramsFC > intermsFC (Fig. 5).
Elocal and CC msFCs showed higher associations than dFC,
which was similar to those in the patient groups (FES,
UHR, and HR). In addition, the Eglobal of FCs might play
a core role in patients with cognitive deficits compared to
HC individuals, which supports the notion, based on con-
ceptual studies, that abnormal connectivity and disruption of
information integration may be core aspects of the disease
[57], [58]. Furthermore, our results showed that Eglobal in FES
individuals contributed the most to the association between a
functional network of intermicrostates and clinical symptoms
(i.e., PANSS total scores), which supports the notion that FC
alterations might also capture stable or intrinsic components
of disease pathophysiology [59]. Therefore, our findings argue
that the decrease in the integration of information intermi-
crostate networks might have a crucial role in the cognitive
deficits of patients in different stages of schizophrenia.

E. Limitations and Future Work
Considering the lack of knowledge regarding “real” func-

tional networks to provide the gold standard for evaluation
of these results, it is inappropriate to be too confident about
which FC construction algorithm is best. The AR(1) model
was used for the first time to explore EEG MS networks.
Although we used two other traditional methods (PLI and
PCC) for constructing brain networks for comparison, and pre-
vious studies have shown that the behavioral information with
AR(1)-based FC dynamic coding in MRI is significantly more
than the common static FC index, it is essential to evaluate
the stability of the algorithm using public datasets. Nighty-nine
individuals who included those with FES, UHR, HR, and HC
were recruited in this study, which is the largest number of
subjects in the current study to simultaneously include differ-
ent schizophrenia disease stages to our knowledge, increasing
the sample size and balancing the number of groups will be
one of the effective methods to further verify the reliability of
model. In addition, cognitive integration in resting-state FC has
been shown to encode, self-reports have lower requirements
for information integration compared with complex cognitive

tasks. Many studies have shown that there are differences in
the network characteristics of cognitive processing in patients
with schizophrenia. Exploring the intra- and intermicrostate
networks in the context of cognitive task performance might be
better for revealing differences in the changes in FC dynamics
and supplementing our current understanding of the neural
mechanisms underlying cognitive deficits in different stages
of schizophrenia.

VI. CONCLUSION

The results presented in this paper yield new insights into
the dynamic changes in brain networks in different stages
of schizophrenia. In addition to explaining the importance of
the parameters of MS classes A and C in the progression of
the disease, our results provide a new perspective regarding
EEG MSs from information interactions. Our findings suggest
that disrupted organization of brain networks from intrami-
crostates to intermicrostates with disease progression and
decreased integration of information intermicrostates might
lead to cognitive deficits in schizophrenia and individuals in
high-risk states. This work contributes to the characterization
of dynamic functional brain networks based on EEG signals
from a new perspective and provides a new interpretation of
pathological brains, especially for schizophrenia.
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