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Abstract— The field of spatial cognitive training and
evaluation has rapidly evolved. However, the low learning
motivation and engagement of the subjects hinder the
widespread use of spatial cognitive training. This study
designed a home-based spatial cognitive training and eval-
uation system (SCTES), which aimed to train subjects on
spatial cognitive tasks for 20 days, and compared the brain
activities before and after the training. This study also eval-
uated the feasibility of using a portable all-in-one prototype
for cognitive training that combined a virtual reality (VR)
head-mounted display with high-quality electroencephalo-
gram (EEG) recording. During the course of training, the
length of the navigation path and the distance between
the starting position and the platform position revealed

Manuscript received 7 August 2022; revised 16 January 2023 and
2 May 2023; accepted 27 May 2023. Date of publication 6 June 2023;
date of current version 20 June 2023. This work was supported in
part by the National Natural Science Foundation of China under Grant
62276022, Grant 62206014, Grant 61876165, and Grant 61503326;
and in part by the National Key Research and Development Pro-
gram of China under Grant 2021YFF1200603. (Corresponding authors:
Yanhong Zhou; Fangzhou Xu; Tzyy-Ping Jung.)

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted
by the Ethics Committee of First Hospital of Qinhuangdao in Hebei
Province, China, under Application No. 2018B006, in 2018.

Dong Wen and Xianglong Wan are with the Key Laboratory of Per-
ception and Control of Intelligent Bionic Unmanned Systems, Ministry of
Education, School of Intelligence Science and Technology, University of
Science and Technology Beijing, Beijing 100083, China.

Jingpeng Yuan, Jingjing Li, Yue Sun, Xianpu Wang, and Ruihang
Shi are with the Key Laboratory for Computer Virtual Technology and
System Integration of Hebei Province, School of Information Science
and Engineering, Yanshan University, Qinhuangdao, Hebei 066004,
China.

Yanhong Zhou is with the School of Mathematics and Infor-
mation Science and Technology, Hebei Normal University of Sci-
ence and Technology, Qinhuangdao, Hebei 066004, China (e-mail:
yhzhou168@163.com).

Haiqing Song is with the Department of Neurology, Xuanwu Hospital
of Capital Medical University, Beijing 100053, China.

Xianling Dong is with the Hebei Key Laboratory of Nerve Injury and
Repair, Chengde Medical University, Chengde, Hebei 067000, China.

Fangzhou Xu is with the School of Optoelectronic Engineering Interna-
tional, Qilu University of Technology (Shandong Academy of Sciences),
Jinan, Shandong 250353, China (e-mail: xfz@qlu.edu.cn).

Xifa Lan is with the Department of Neurology, First Hospital of Qin-
huangdao, Qinhuangdao, Hebei 066000, China.

Tzyy-Ping Jung is with the Swartz Center for Computational Neuro-
science, University of California, San Diego, San Diego, CA 92093 USA
(e-mail: jungtp2013@gmail.com).

Digital Object Identifier 10.1109/TNSRE.2023.3283328

significant behavioral differences. In the testing sessions,
the subjects showed significant behavioral differences in
the time it took to complete the test task before and
after training. After only four days of training, the subjects
demonstrated significant differences in the Granger causal-
ity analysis (GCA) characteristics of brain regions in the δ,
θ , α1, β2, and γ frequency bands of the EEG, as well as
significant differences in the GCA of the EEG in the β1, β2,
and γ frequency bands between the two test sessions. The
proposed SCTES used a compact and all-in-one form factor
to train and evaluate spatial cognition and collect EEG
signals and behavioral data simultaneously. The recorded
EEG data can be used to quantitatively assess the effi-
cacy of spatial training in patients with spatial cognitive
impairments.

Index Terms— EEG, spatial cognition training and evalu-
ation system, virtual reality head-mounted display.

I. INTRODUCTION

SPATIAL cognition is a high-order cognitive function that
includes spatial observation, spatial memory, spatial imag-

ination, spatial thinking, and other abilities. It is responsible
for recording information related to the environment, spa-
tial direction, and spatial relationships, which is reflected in
working memory, both short-term and long-term memory [1],
[2]. Spatial cognitive training and evaluation is a rapidly
growing field in cognitive science [3], [4], [5] and is also
of great significance in the diagnosis and rehabilitation of
mild cognitive impairment (MCI) patients who often have
problems with spatial orientation [6], [7]. An effective spatial
cognition training requires subjects’ full engagement and the
training content should be closely related to the subjects’ daily
lives [8], [9].

Virtual reality (VR) [9] and brain-computer interfaces
(BCIs) [10] are emerging technologies in spatial cognitive
training and evaluation [11], [12]. VR meets the subjects’
social requirements, and may be used as the primary method
for spatial cognitive training (SCT) [8], [9], [11], [12], [13],
[14]. However, the previous studies did not assess the effi-
cacy of the training in near-real-time, making it difficult
to adjust or optimize the training accordingly. BCIs based
on electroencephalogram (EEG) signals have been used for
spatial cognitive training and evaluation in near real-time [15],

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-8094-2863
https://orcid.org/0000-0002-9478-6088
https://orcid.org/0000-0001-8572-2632
https://orcid.org/0000-0001-7660-1206
https://orcid.org/0000-0002-8377-2166


2706 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Fig. 1. EEG-HMD system instance diagram.

[16], [17], [18]. Therefore, it is natural to combine BCIs
and VR [19], [20], [21], [22], [23], [24] for spatial cognitive
training and evaluation. The preliminary studies [25], [26],
[27], [28] showed that BCI-VR is a promising tool for spatial
cognitive training and evaluation. However, this tool is still
in its infancy, and the technical merit of BCI-VR has not
been fully evaluated in these studies. Furthermore, the perfor-
mance of spatial cognitive training and evaluation needs to be
improved. Therefore, to promote the healthy development of
the spatial cognitive training and evaluation research field, it is
necessary and important to find an effective way to standardize
the application of BCI and VR.

Following the basic design principle of the cognitive train-
ing system [29], [30], [31], [32], [33] and the research in the
Morris water maze task [3], [34], this study used EEG-HMD
(head-mounted display) -VR to develop a spatial cognitive
training and evaluation system. To be more specific, the
system implements the VR water maze task to train the user’s
spatial cognition and a virtual city roaming task to assess the
training’s efficacy (i.e., pre-training and post-training tests).
This study aims to validate the effectiveness of using a portable
EEG device and HMD to collect high-quality EEG during
VR-based cognitive training and quantitatively monitor the
changes in neural plasticity during the cognitive training,
which could assess the training’s efficacy and optimize indi-
vidualized spatial cognitive training. This work’s contribution
may be summed up as follows:

(1) An EEG-HMD is used to build a system for training
and assessing spatial cognition.

(2) It has been demonstrated that a portable integrated
HMD can collect high-quality EEG during cognitive training
in virtual reality, allowing for the objective and quantitative
monitoring of changes in neuroplasticity.

II. MATERIALS AND METHODS

A. System Platform and Architecture Design
The proposed spatial cognitive training and evaluation sys-

tem is composed of both software and hardware. The hardware
comprises an OpenBCI EEG device, HTC Vive Focus head-
mounted display (HMD), a control handle, and a desktop
computer, as shown in Fig. 1. The OpenBCI device is used to
collect the EEG signals during the experiment. The sampling
rate of the device is 125Hz. The wireless OpenBCI module
was used to collect 16 channels of EEG data using wet
electrodes with an impedance below 10k. The virtual task
scene was presented using the HTC Vive Focus HMD. The
device is portable and runs on Android 6.0, with a display
resolution of 2880∗1600 and a refresh rate of 75Hz. A Vive

Fig. 2. The architecture diagram of the EEG-HMD -VR system.

Focus control handle was used to interact with the VR scene
during the experiment.

The software of the system is developed using the Unity
3D game engine, MATLAB programming software platform,
and PyCharm development environment. The Unity 3D game
engine is used to create 3D virtual task scenarios. The
MATLAB software platform is used to analyze the collected
EEG signals, and the PyCharm development environment
receives synchronized EEG and behavioral data.

Fig. 2 shows the system architecture. The EEG device sends
the EEG signals to the computer via Bluetooth. The VR HMD
sends the subjects’ behavioral data during the task to the com-
puter through the transmission control protocol/Internet proto-
col (TCP/IP) protocol. The computer receives EEG signals and
behavioral data synchronously. Specifically, the computer uses
the Lab Streaming Layer (LSL) protocol to broadcast the EEG
signals received from the serial port buffer to the local area
network. The TCP client parses the behavioral data, forwards
the parsed action tags to the local area network through
the LSL protocol, and adds the time-stamps to the position
coordinate data. Then, the LSL protocol client synchronously
receives and aligns the EEG signals and action tags. Finally,
spatial cognition is quantitatively evaluated from two aspects:
EEG characteristics and path information.

B. VR-Based Spatial Cognitive Training Task
1) Task Design: This system imitates the Morris water maze

experiment, which is used to study the spatial cognition and
spatial learning ability of rats [34] and transfers the experimen-
tal environment to a virtual scene. Inspired by Astur et al. [35]
and Horecka [36], a virtual Morris Water Maze (VMWM) is
constructed to train spatial cognition, which is similar to the
rat water maze task [34], [37]. The subjects repeat the training
tasks with different contents to improve their spatial cognitive
ability. Each subject attends a training session every day for
20 days.

During the VMWM training, subjects donned the VR HMD
and used remote cues (prompt routes) to find the targets in
the virtual pool setting (the scene seen in the VR device).
In particular, the experiment was divided into two modes:
a position navigation mode and a space exploration mode.
During the position navigation mode, subjects entered the
virtual pool from various locations and began looking for the
hidden platform, and the time they spent boarding the platform
was recorded. The subjects’ spatial cognition and learning
ability were evaluated according to the time of multiple
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Fig. 3. The scenario interface of the VMWM task.

experiments. The space exploration experiment mainly tested
the subject’s memory of where the platform was located. In the
experiment, the platform is removed from the pool, and the
distance between the subject’s selected platform location and
the actual platform location was recorded as a measure of their
spatial cognitive ability. The training process was divided into
three stages, depending on whether the platform was visible:

(1) Visible platform stage. It allows the subjects to learn the
task requirements and the platform’s location in relation to the
remote clues.

(2) Hidden platform stage. It was a repetitive task. To train
their spatial cognitive navigation ability, the subjects started
from different starting locations and viewing directions, and
used the remote clues to find the hidden platform.

(3) Exploratory stage. The platform was removed and
the subject used his/her spatial memory to navigate to the
platform.

2) Scene Design: The VMWM task consists of two scenes:
the menu scene and the task scene. The main functions of the
menu scene record (1) basic training information, such as the
subject’s ID, and the training days; (2) training task selection,
such as the entrance of the VMWM with a visible platform,
the entrance of the VMWM with an invisible platform, and
the entrance of the VMWM during the exploration stage. The
task scene (shown in Fig. 3) is set in a square room and
uses identical brown bricks on the walls and floors to initially
construct a virtual environment without any reference object.
Then, a circular pool with a radius of 18 meters was placed in
the center of the scene coordinates, and water surface effects of
waves and highlights are added to mimic the pool environment
used for cognitive experiments. Various objects are scattered
around the pool as spatial cues for navigation. Then, a cuboid
with the length of 2 meters, the width of 2 meters and the
height of 3 meters is placed in the pool as a platform for
the Morris water maze experiment. The initial position of the
platform is below the water level.

3) Settings of Task Parameters: Because the VMWM task
lasts for 20 days, the position of the platform varies daily.
Fig. 4(a) shows 20 different locations for all the 20 days.
In one day, the positions for the three stages are the same,
but the starting positions and direction parameters of the
subjects are different. In the visible platform phase, the starting
position of the subject is the center of the scene coordinate,
the direction parameter is 0, the platform can be triggered
to rise, and the task has no time limit. In the hidden platform
stage, the position of the platform is at one of the 20 locations,
as shown in Fig. 4(a). The starting positions can be one of the
five locations centered at the maximum interval on the arc

Fig. 4. The map of the VMWM task platform and location.

Fig. 5. The map of VCW task road.

of a circle of radius 20 meters from the platform (the blue
point in Fig. 4(b)). But, within each day, some randomness is
introduced to the starting points (by placing the subject along
the circle of radius 1 meter (centering at each of the blue dots),
as shown by the red dots in Fig. 4(b). That is, across all the
trials of the hidden platform stage, one of the five candidate
points is randomly selected as the starting position of the
subject, and the direction candidate point arc corresponding to
the point is taken as the starting direction radiance parameter
of the subject. The task time was limited to 2 minutes, and
the average time for the subjects to accomplish this activity
was less than one minute, so it follows that the platform rises
on command from the participant. The starting position and
direction parameters in the exploration phase are selected in
the same way as they are in the hidden platform stage, but
the platform cannot be triggered to rise, and the task time is
limited to one minute.

C. VR-Based Spatial Cognition Test Task Design
The subject needs to remember the walking route and the

surrounding environment. In the testing mode, the green sign
of the route is hidden and the subject navigates using the
environmental references and his/her cognitive map, which is a
mental representation of the spatial layout of an environment.

The VCW task uses a 3D city model with seven symmetrical
streets. From a first-person perspective, the subjects use the
direction key to control the character object’s advancement
and left-right rotation. The forward speed is set to 5 m/s, and
the rotational angular velocity is set to 10 rad/s. To ensure
the consistency of the difficulty levels of the pre-training
and the post-training, the two routes are mirror-reversed, that
is, the post-training route is the pre-training one rotated by
180 degrees with the middle longitudinal street as the axis.
Fig. 5(a) and Fig. 5(b) show the pre-training and post-training
routes, respectively.
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TABLE I
VR SERVER BEHAVIOR DATA ENCAPSULATION PROTOCOL

D. Data Collection
1) EEG Acquisition: The subjects participated in the spatial

cognitive task in a quiet room for collecting their EEG data.
The subjects first wore the OpenBCI EEG cap of the 16 wet
electrodes placed on the scalp at Fp1/Fp2, F7/ F8, F3/F4,
Fz, FCz, C3/C4, Cz, P7/P8, Pz, O1/O2 according to the
international 10-20 system, referenced to the bilateral earlobes.
The data collection was approved by the Ethics Committee of
First Hospital of Qinhuangdao in Hebei Province, China (The
approval number was 2018B006 in 2018).

2) Collection of Behavioral Data: To analyze the condition
of the subjects’ task execution and the changes in spatial
cognitive ability, we recorded their behavioral data during the
experiment. After establishing a connection with the client,
the server uses a polling method to detect the movements
of the role object in the task scenario, the button responses
on the control handle, and the progress of the task, and sends
the information to the client. Table I shows the contents of the
recorded behavioral data.

When the server detects the movements of the character
object, it adds the comma character to the x and z coordinates
of the character and sends them to the client as a location data
frame. When the direction keys on the controller are detected,
key characters are added before the direction code and sent to
the client as an active data frame. In the system, the characters
F, L, and R correspond to the forward, left turn, and right turn
in the task, respectively.

3) Synchronization of the EEG Signals and Behavioral Data:
The Python multithreading technology and LSL open-source
protocol are used to synchronize the EEG and behavioral data.
Specifically, when the computer receives the EEG data frame
and behavioral data frame, it aligns the action events and EEG
data frame on the time axis, then adds the timestamp of the
receiving moment to the position coordinates of the behavioral
data and stores it on the computer.

4) EEG Preprocessing: The preprocessing of EEG signals
mainly includes filtering, artifact removal, and data segment
extraction (Epoching). This study uses the EEGLAB [38]
toolbox under the MATLAB environment to perform the
preprocessing of EEG signals. Firstly, the EEG signals are
band-pass filtered with a 1-45 Hz filter, which retains most of
the signals while removing those in unwanted frequency bands
(such as 50 Hz power frequency interference). Secondly, the
independent component analysis (ICA) is used to remove the
electrooculogram and myoelectric artifacts. Thirdly, the EEG
signals are divided into the seven frequency bands: δ (1-4 Hz),
θ (4-8 Hz), α1 (8-10.5 Hz), α2 (10.5-13 Hz), β1 (13-20 Hz),
β2 (20-30 Hz), and γ (30-40 Hz). Finally, the EEG signals
are epoched according to the event markers recorded during
the experiment. Considering that the button responses of the
subject during the VR task are used as event markers in the

Fig. 6. Schematic diagram of the epoch extraction method for the
telescopic time window.

system, the time window of the epoch is set to 1 second before
and after the button responses. Then, these epoched data are
analyzed using the methods described below.

Since the button responses are asynchronous, EEG data
within a time window around button presses (event markers)
are extracted, as shown in Fig. 6. If two consecutive windows
overlapped in time, the two epochs are merged.

In the pre-processing, baseline correction is performed for
all extracted epoch data (based on 1 second before the event),
and the EEG signals in the frequency bands are combined
into a new time series to obtain time series of a total of seven
frequency bands. For the EEG signals within each frequency
band, the sample is extracted using a moving window, with a
window width of two seconds, a step size of one second, and
a 50% overlap. After segmenting the EEG signals, we found
that the sample sizes of the EEG data of all subjects in the
first four days of training decreased monotonically, with 1420,
1272, 1110, and 949, respectively. As the subjects became
accustomed to the training, we also found that the sample sizes
of the EEG signals decreased from the pre-training to post-
training tests. In addition, according to the behavioral data,
in the VMWM task training stage, the average path length
of all subjects in the hidden platform stage was dramatically
reduced from the first day to the fourth day. And the average
time spent on tasks decreased significantly from the first day
to the fourth day. Therefore, EEG data from the first day to
the fourth day were selected for analysis in this paper.

E. Subjects and Task Information
Seven young healthy male subjects participated in this

study. They had normal or corrected visual acuity, no color
blindness, and no disease history. None of the subjects had
participated in an experiment similar to this experiment before,
and signed the informed consent form, indicating their willing-
ness to participate in the study. The mean age of the subjects
was 24 ± 1.63 years, ranging from 21 to 26 years old.

All the subjects wore the OpenBCI electrode cap and the
HTC Vive Focus virtual head display device and interacted
with the VR scene via a control handle. As shown in Fig. 7,
the subjects first participated in the pre-training VCW task to
assess their spatial cognitive ability, then participated in the
VMWM task for 20 days to improve their spatial cognitive
ability, and finally performed the post-training VCW evalua-
tion task again. The number of trials per day is 1.

F. Methods of Data Analysis and Statistics
1) Feature Extraction Based on Granger Causality Analysis:

This study used the Granger causality analysis (GCA) method
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Fig. 7. Experimental procedure.

to examine the causal characteristics and interactions among
various brain regions [39], [40], [41]. The underlying concept
of GCA is that if past values of time series X and Y are
utilized to estimate the current value of time series X, resulting
in lower error variance compared to estimates based solely
on past values of time series X, then Y is considered the
cause of time series X. The Granger causality method involves
a multivariate autoregressive model that determines causal
relationships by comparing the residual terms of regression
variance. The F-test is used to construct the F statistic to
determine whether the Granger causality between the variables
is statistically significant. The magnitude of the ln(F) value is
used to gauge the strength of the causal effect.

2) The Methods of System Evaluation and Statistical Anal-
ysis: This study quantitatively assessed the changes in the
spatial ability of the subjects before and after training using
the recorded behavioral and EEG signals. For the behavioral
data, the following five indicators are used to measure subjects’
spatial ability.

(1) In the stage of the VMWM hidden platform, the time (in
seconds) that subjects spend performing tasks is calculated;

(2) In the stage of the VMWM hidden platform, the path
length (in meters) that subjects navigate through the task is
calculated;

(3) In the VMWM exploration stage, the distance (in meters)
between the platform position selected by the subjects and the
actual platform position is calculated.

(4) In the VCW test task, the time spent on the task (in
seconds) is calculated.

(5) In the VCW test task, the completion of the task by the
subjects is counted.

This study uses the paired sample T-test statistical method
to analyze the significant differences in the behavioral data
indexes of the VMWM training tasks (the analyzed data are
the behavioral data from the first and last day of training)
and uses paired sample T-test and chi-square test statistical
methods to exam the significant differences in the time and
completion of the two VCW test tasks before and after the
training.

For EEG signals, The GCA method is used to extract the
eigenvalues of brain regions in each frequency band, and these
GCA eigenvalues are used to analyze the spatial cognitive
changes of subjects. For the VMWM training, an independent
sample t-test is used to analyze the change in GCA char-
acteristics during the first four days of training. The GCA
characteristics for the first and fourth days are compared in
detail. For the VCW testing, we use the independent sample
t-test to analyze the differences in the GCA characteristics for
each brain region between the pre- and post-training VCW
tasks. The specific methods are detailed as follows:

Fig. 8. The average task execution time of the subjects in the VMWM
hidden-platform stage in the entire training cycle. The x-coordinate
represents the number of days of training (x= 1,2,3 . . . , 20), and the
ordinate represents the average time spent by the subjects on the task
(in seconds, the blue column represents the average time consumed,
and the black line represents the standard deviation).

Fig. 9. The average navigation path length of the subjects in the VMWM
hidden-platform stage in the whole training cycle: the x-coordinate rep-
resents the training days (x= 1,2,3 . . . ,20), and the ordinate represents
the average path length of the subject’s navigation during the task (in
meters, the blue bars represent the average path length, and the black
lines represent the standard deviation).

(1) First, the EEG signals of the subjects during the first four
days of the VMWM task and the EEG signals tested before
and after the VCW task were selected and pre-processed using
the method described in Section D.4 to obtain two types of
sample data in seven frequency bands.

(2) EEG features are extracted using the method described
above for each frequency band and channel combination.

(3) Independent sample T-test method is used to analyze
the significant differences in EEG signal characteristics in
each frequency band and channel combination. After the
corresponding p-value is obtained through the T-test, a false
discovery rate (FDR) check is performed on the p-value. The
p-value was used to judge whether there were significant
differences in the GCA characteristics of each brain region
combination after four days of VMWM training and between
the two VCW test tasks.

III. RESULTS

A. Behavioral Data Analysis Results
1) Behavioral Data During Training: Fig. 8 shows the average

time spent in the hidden-platform phase of the VMWM task
throughout the training. The overall time spent on the task
decreased across days. The paired-sample T-test showed that
the time taken to complete the hidden platform task on the
first day (28.54 ± 11.91) was significantly longer than that on
the last day (15.49 ± 4.09), p < 0.05.

Fig. 9 shows the average navigation path length for all the
subjects in the hidden-platform phase throughout the training
phase of the VMWM task. In general, the overall path length
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Fig. 10. The differences between the selected position and the aver-
age distance between the platform position in the VMWM exploration
platform stage in the entire training cycle: the x-coordinate represents
the training days (x= 1,2,3 . . . ,20). The ordinate represents the mean
distance between the selected platform position and the real platform
position (in meters, the blue bars represent the mean distance differ-
ences, and the black lines represent the standard deviation).

Fig. 11. The time taken by the seven subjects in pre-test (blue bars)
and post-test (orange bars) of the VCW task time spent on completing
the VCW task is the ordinate, the subject’s ID is the abscissa.

decreased across the first four days and then plateaued. The
paired sample T-test statistics showed that the path length in
the hidden platform task on the first day (37.38±11.54) was
significantly longer than that on the last day (28.03±5.38),
p<0.05.

Fig. 10 shows the average distance between the subjects’
selected locations and the actual platform locations during the
exploration platform phase of the VMWM task throughout the
training sessions. The discrepancy across subjects is generally
decreasing over time. The paired sample T-test statistical
results showed that the discrepancy on the first day (2.7±1.3)
was significantly higher than that on the last day (1.43±0.91),
p<0.05.

2) Task Performance of the VCW Task Before and After
Training: (1) Compare the difference in task completion and
path between the two test games

Fig. 11 shows the amount of time spent on the VCW tasks
before and after the 20-day training. In the second test, the
subjects took significantly less time to complete the task than
they did in the first test. The paired sample T-test showed that
the differences were statistically significant (p = 0.00942).

(2) Compare the difference in task completion and path
between the two test games

Fig. 12 shows the path and task completion subject no.2 and
no.4 in the VCW task before and after the VMWM training.
In the pre-training test, only test subject no.4 completed
the task, while the other subjects could not, and the task
completion degree was 1/7. In the post-training test, all the

Fig. 12. The path diagram of subject no.2 and no.4 in the pre-training
and post-training VCW tasks.

subjects completed the task with a task completion degree
of 1. The result of the Chi-square test of the task completion
of subjects in the pre-training and post-training tests showed
that the p-value is 0.005, showing that the task completion
degree of subjects in the pre-training and post-training tests
was significantly different.

B. The Differences in Connectivity the First Four Days of
Training

This study exams the changes in EEG spectra in the seven
frequency bands of the δ, θ , α1, α2, β1, β2, and γ during
the first four days of the training. First, the GCA method is
used to extract the eigenvalue ln (F) of the EEG data over
the four days, and the mean value of the ln (F) of each
brain region combination in each frequency band is calculated
as an index of causal strength of each brain region. Finally,
the independent sample t-test is used to examine the GCA
characteristics of the first and fourth day of training, and the
statistical p-value is checked using FDR. Only a combination
of brain regions with p < 0.01 and increasing causal intensity
in four days is presented below.

1) δ Frequency Band: The GCA results of δ frequency band
activity on the first and fourth days of training are shown
below. GCA feature values of brain area combinations includ-
ing FP1→F3 (0.13, 0.24, 2.41E-42), FP2→F4 (0.14 0.24,
8.27E-40), F3→Pz (0.17, 0.26, 8.77E-25), Fz→FCz (0.11,
0.27, 8.75E-79), Fz→C3(0.16, 0.27, 1.57E-38), F4→F8 (0.08,
0.24, 8.23E-66), FCz→O2 (0.18, 0.26, 2.56E-28), Cz→O2
(0.14, 0.25, 4.83E-44), O1→O2 (0.14, 0.24, 1.64E-33),
P7→FP1 (0.16, 0.24, 1.09E-29), O1→FP1 (0.15, 0.27, 4.50E-
40), Pz→FP2 (0.17, 0.27, 2.35E-38), FCz→F7 (0.07, 0.26,
5.98E-85), C4→F7 (0.18, 0.29, 7.90E-36), P7→F7 (0.17,
0.25, 1.88E-25), O1→F7 (0.12, 0.27, 4.66E-52), Fz→F3
(0.14, 0.26, 9.14E-49), O1→Fz (0.21, 0.29, 4.12E-26),
O2→Fz (0.21, 0.31, 1.09E-28), F8→F4 (0.12, 0.25,
3.51E-56), FCz→F4 (0.15, 0.28, 1.42E-63), C3→F4 (0.24,
0.35, 4.07E-38), Cz→F4 (0.29, 0.41, 1.36E-38), C4→F4
(0.32, 0.42, 7.06E-24), P7→F4 (0.18, 0.26, 3.94E-32), Pz→F4
(0.25, 0.34, 7.66E-32), P8→F4 (0.20, 0.29, 9.45E-35) increase
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Fig. 13. Visually increased connectivity after four days of training
compared to that of the first day training on five frequency bands
separately: (a) δ frequency band, (b) θ frequency band, (c) α1 frequency
band, (d) β2 frequency band, and (e) γ frequency band. The colors
represent how much connectivity increased on the fourth day relative
to the first day.

gradually from the first to the fourth day, with the fourth day
being significantly greater than the first (p< 0.01). Note: (0.13,
0.24, 2.41E-42), where ‘0.13’,’ 0.24’ represents the GCA
feature value on the first day and the fourth day respectively,
and ‘2.41E-42’ represents the P value of significant difference
between GCA feature of the first day and fourth day. Fig. 13(a)
showed the increased connectivity visually.

2) θ frequency band: The GCA results of θ frequency
band activity on the first and fourth days of training are
shown below. GCA feature values of brain area combina-
tions including FP1→F3 (0.15, 0.19, 1.81E-07), FP1→F4
(0.14, 0.19, 8.01E-15), FP1→FCz (0.16, 0.21, 1.30E-14),
FP2→F7 (0.05, 0.189, 1.43E-52), FP2→F3(0.14, 0.19, 1.86E-
13), FP2→Fz (0.13, 0.21, 4.72E-25), FP2→F8 (0.09, 0.18,
3.30E-19), FP2→FCz (0.15, 0.21, 4.81E-11), FP2→C3 (0.15,
0.189, 1.42E-05), FP2→Cz (0.16, 0.19, 3.37E-05), FP2→Pz
(0.16, 0.19, 7.80E-06), F7→P7 (0.14, 0.19, 5.39E-17),
F3→F8 (0.09, 0.19, 2.32E-43), F3→Pz (0.16, 0.21, 7.94E-17),
Fz→F8 (0.07, 0.19, 6.60E-52), F4→F8 (0.07, 0.20, 3.37E-59),
F8→P7(0.09, 0.18, 3.74E-34), C3→P8 (0.11, 0.18, 1.59E-
32), C3→O2 (0.11, 0.19, 4.25E-47), P8→O1 (0.14, 0.18,
5.36E-12), O1→O2 (0.17, 0.19, 0.000751), Fz→FP1 (0.09,
0.20, 9.26E-49), P7→FP1 (0.15, 0.20, 5.41E-23), Fz→FP2
(0.10, 0.21, 1.48E-47), C3→FP2 (0.14, 0.22, 2.80E-31),

Cz→FP2 (0.13, 0.25, 2.11E-53), C4→FP2 (0.17, 0.2, 2.24E-
18), P7→FP2 (0.15, 0.19, 3.94E-11), Pz→FP2 (0.15, 0.24,
5.66E-40), O1→FP2 (0.15, 0.24, 5.66E-40), O2→FP2 (0.18,
0.2, 4.17E-15), F3→F7 (0.16, 0.23, 2.85E-21), Fz→F7
(0.06, 0.21, 5.20E-63), Cz→F7 (0.015, 0.19, 9.28E-89),
C4→F7 (0.07, 0.25, 2.63E-74), P7→F7 (0.12, 0.25, 9.53E-
51), P8→F7 (0.14, 0.20, 3.05E-16), O1→F7 (0.11, 0.22,
3.03E-33), P7→Fz (0.07, 0.22, 1.10E-62), FCz→F4 (0.18,
0.23, 1.64E-17), C3→F4 (0.13, 0.23, 6.90E-33), Cz→F4
(0.24, 0.31, 3.65E-15), C4→F4 (0.28, 0.38, 1.68E-26),
P7→F4 (0.32, 0.39, 1.75E-12), Pz→F4 (0.16, 0.22, 2.11E-21),
P8→F4 (0.24, 0.31, 1.50E-18), O1→F4 (0.20, 0.25, 1.32E-
10), FCz→F8 (0.19, 0.23, 2.60E-08), O1→F8 (0.04, 0.19,
5.41E-72), O1→P7 (0.12, 0.22, 1.24E-36), O2→P7(0.08,
0.19, 3.48E-47), increase gradually from the first to the fourth
day, with the fourth day being significantly greater than the
first (p< 0.01). Note: (0.15, 0.19, 1.81E-07), where ‘0.15’,’
0.19’ represents the GCA feature value on the first day and
the fourth day respectively, and ‘1.81E-07’ represents the P
value. Fig. 13(b) showed the increased connectivity visually.

3) α1 Frequency Band: The GCA results of α1 frequency
band activity on the first and fourth days of training are
shown below. GCA feature values of brain area combinations
including FP1→F7 (0.05, 0.21, 4.66E-79), FP2→F7 (0.05,
0.20, 3.02E-67), FP2→F3 (0.13, 0.21, 4.35E-24), FP2→Fz
(0.15, 0.22, 4.35E-19), FP2→FCz (0.16, 0.21, 3.95E-10),
F7→Fz (0.17, 0.22, 3.36E-14), F7→P7 (0.16, 0.19, 1.50E-08),
F3→F8 (0.13, 0.20, 4.36E-25), Fz→F8 (0.12, 0.21, 2.53E-38),
Fz→C4 (0.22, 0.24, 0.00737), FCz→C4 (0.21, 0.24, 1.75E-
05), C3→P7 (0.14, 0.20, 2.57E-22), Cz→Pz (0.11, 0.21,
7.54E-46), P7→FP1 (0.18, 0.21, 1.13E-11), O1→FP1 (0.17,
0.24, 3.03E-20), F3→FP2 (0.15, 0.22, 5.08E-22), Fz→FP2
(0.14, 0.23, 9.44E-34), FCz→FP2 (0.12, 0.22, 2.38E-43),
C3→FP2 (0.19, 0.25, 4.32E-22), Cz→FP2 (0.17, 0.27,
4.00E-42), Pz→FP2 (0.18, 0.26, 8.91E-33), F3→F7 (0.08,
0.22, 1.50E-62), Fz→F7 (0.06, 0.22, 5.33E-84), FCz→F7
(0.01, 0.22 2.87E-123), C4→F7 (0.14, 0.27, 6.82E-47),
Pz→F7 (0.12, 0.25, 1.24E-52), Fz→F3 (0.14, 0.24, 1.49E-34),
C3→F4 (0.26, 0.33, 4.97E-19), Cz→F4 (0.32, 0.40, 3.72E-
22), C4→F4 (0.33, 0.41, 6.82E-19), O1→F4 (0.22, 0.25,
9.14E-07), P7→FCz (0.20, 0.24, 1.58E-10), P8→Cz (0.17,
0.20, 9.49E-06), O1→P7 (0.09, 0.21, 3.69E-58), O2→P7
(0.07, 0.19, 2.75E-63) increase gradually from the first day to
the fourth day, with the fourth day being significantly greater
than the first (p< 0.01). Note: (0.05, 0.21, 4.66E-79), where
‘0.05’,’ 0.21’ represents the GCA feature value on the first day
and the fourth day respectively, and ‘4.66E-79’ represents the
P value. Fig. 13(c) showed the increased connectivity visually.

4) β2 Frequency Band: The GCA results of β2 frequency
band activity on the first and fourth days of training are
shown below. GCA feature values of brain area combinations
including FP2→F7 (0.18, 0.19, 0.0013), FP2→F4 (0.19, 0.20,
0.00441), Fz→FCz (0.19, 0.21, 0.0162), P7→Fz (0.23, 0.25,
0.0013), P7→FCz (0.23, 0.26, 5.35E-06) increase gradually
from the first day to the fourth day, with the fourth day
being significantly greater than the first (p< 0.01). Note:
(0.18, 0.19, 0.0013), where ‘0.18’,’ 0.19’ represents the GCA
feature value on the first day and the fourth day respectively,
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Fig. 14. The changes in the pair-wise connectivity between the pre-
and post-testing in the β1 frequency band. (a) represent the channel
pairs with increased connectivity, and (b) represent the channel pairs
with decreased connectivity.

and ‘0.0013’ represents the P value. Fig. 13(d) showed the
increased connectivity visually.

5) γ Frequency Band: The GCA results of γ frequency band
activity on the first and fourth days of training are shown
below. GCA feature values of brain area combinations includ-
ing FP1→Fz (0.16, 0.17, 4.27E-07), FP1→FCz (0.17, 0.18,
0.00182), FP2→Fz (0.16, 0.19, 5.57E-18), F4→FP2 (0.15,
0.17, 2.10E-05), F4→F7 (0.15, 0.17, 7.99E-05), FCz→F8
(0.15, 0.16, 0.0267) increase gradually from the first to the
fourth day, with the fourth day being significantly greater than
the feature intensity of the first day (p< 0.01). Note: (0.16,
0.17, 4.27E-07), where ‘0.16’,’ 0.17’ represents the GCA
feature value on the first day and the fourth day respectively,
and ‘4.27E-07’ represents the P value. Fig. 13(e) showed the
increased connectivity visually.

C. The Differences in the Pairwise Connectivity of the
EEG Signals Collected in the VCW Task
Before and After Training

This section shows the differences in the brain connectivity
between the two VCW tasks before and after the navigation
training. Brain region connection diagrams are used to show
the information flow between the brain regions in different
frequency bands. This study focuses on the EEG channel pairs
that exhibited statistical differences (p < 0.01) in the β1, β2,
and γ frequency bands between two VCW tasks.

1) β1 Frequency Band: Fig. 14 shows the statistically
significant differences (p< 0.01) in pair-wise connectivity
(Fig. 14(a) and Fig. 14(b)) between two VCW tasks before
and after training in the β1 frequency band. The colors
represent how much connectivity increased or decreased on
the post-testing relative to the pre-testing.

In the β1 frequency band, the navigation training increased
mainly the connectivity within the frontal areas, between the
left frontal, central, and left central areas, and between the
right frontal and right central areas, while decreasing mainly
the connectivity between the left/right frontal and parietal
areas. β2 frequency band

Fig. 15 shows the statistically significant differences
(p< 0.01) in pair-wise connectivity (Fig. 15(a) and Fig. 15(b))
between two VCW tasks before and after training in the
β2 frequency band. The colors represent how much connec-
tivity increased or decreased on the post-testing relative to the
pre-testing.

Fig. 15. The changes in the pair-wise connectivity between the pre-
and post-testing in the β2 frequency band. (a) represent the channel
pairs with increased connectivity, and (b) represent the channel pairs
with decreased connectivity.

Fig. 16. The changes in the pair-wise connectivity between the pre-
and post-testing in the γ frequency band. (a) represent the channel
pairs with increased connectivity, and (b) represent the channel pairs
with decreased connectivity.

In the β2 frequency band, nearly all the connectivity
increased, focusing on the left frontal areas and among the
left frontal, central, and left central areas, as well as between
the right temporal and the central areas, while connectivity
between the left and right prefrontal or left and right frontal
areas, and between the central and occipital areas decreased.
γ frequency band.

Fig. 16 shows the statistically significant differences
(p< 0.01) in pair-wise connectivity (Fig. 16(a) and Fig. 16(b))
between two VCW tasks before and after training in the γ

frequency band. The colors represent how much connectivity
increased or decreased on the post-testing relative to the
pre-testing.

In the γ frequency band, nearly all the pairwise connectivity
increased, especially between the left and right (pre)frontal
areas, between the frontal, central, parietal, and occipital areas,
while the connectivity between the left/right prefrontal areas
and central areas, and between the right parietal and central
areas decreased mainly.

IV. DISCUSSION

A. The Necessity and Value of System Design
Only a few studies on spatial cognition have combined

EEG-HMD and VR to date. VR can provide the immersive
environments needed for testing spatial cognition. EEG signals
and functional magnetic resonance imaging (fMRI) data can
be used to quantify the active states of the brain. Bischof et al.
collected EEG signals from subjects performing VR maze
navigation tasks and found that θ oscillations were linked to
the encoding and retrieval of spatial information [25]. Tarnanas
et al. used the VR day-out task (VR-DOT) to evaluate its
predictive value for patients with mild cognitive impairment
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(MCI) [42], [43]. Compared to EEG, fMRI, and neuropsy-
chological testing methods, VR-DOT could provide additional
predictive information in a low-cost, computerized, and non-
invasive manner. Li et al. designed a traffic road virtual
simulation cognitive training system, which could strengthen
subjects’ cognition and memory of static control facilities such
as traffic signs and markings [44]. Silvia et al. compared
the differences in EEG θ oscillation between males and
females in VR space navigation tasks and found that female
participants had stronger θ oscillations when processing road
signs as navigation aids [27]. Jaiswal et al. combined BCI
with VR to observe the differences in EEG signals during
the coding and retrieval phases of spatial memory tasks [26].
These experiments have demonstrated the benefit of combining
BCI and VR technology for spatial cognitive research. This
study developed a home-based spatial cognitive training and
evaluation system based on BCI-VR. This system used a
classic experimental paradigm, “Morris water maze task” in
an immersive VR environment to train the subjects’ spatial
cognition.

B. Data Analysis for Evaluating the System
This study analyzed the subjects’ behavior in the VMWM

and VCW tasks. In the VMWM tasks, task execution time,
path length, and distance difference represented the ability
of spatial cognition. The lower the values of these three
indicators, the better the subjects’ spatial cognition ability [45].
The results showed that these three indicators exhibited a
downward trend throughout the entire training cycle, indi-
cating that subjects could improve their spatial cognition
ability through the training system, which was consistent
with Frick et al. [46]. The variance analysis and paired T-test
revealed significant differences between before and after the
training in the time spent by the participants in the hidden
platform phase, the path length, and the distance difference
between the selected position and the actual platform position.
In the VCW task, the time spent on the tasks and the
completion of the task are analyzed. After 20 days of training,
all seven subjects took less time to complete the VCW task,
and the completion rate improved significantly.

There were significant differences in the EEG connectivity
between brain regions in different frequency bands during the
first four days of the VMWM training and between the two
VCW tests conducted before and after the training. During
the first four days of the training, the GCA eigenvalue ln(F)
of the combination of brain regions in the δ, θ , α1, β2, and γ

frequency bands gradually increased and showed significant
differences before and after training [47]. In the test phase,
the independent sample T-test was used to compare the GCA
characteristics of EEG before and after the training, the GCA
characteristics of the combination of brain regions in high-
frequency bands such as β1, β2, and γ showed significant
differences. In the β1 frequency band, the navigation training
increased mainly the connectivity within the frontal areas,
between the left frontal, central, and left central areas, and
between the right frontal and right central areas, while decreas-
ing the connectivity between the left/right frontal and parietal
areas. In the β2 and γ frequency bands, the connectivity

increased between most of the brain areas, except for the
central and right parietal showing decreased correlations.

The subjects’ spatial cognitive ability improved significantly
after 20 days of virtual Morris water maze training, indicating
that this system is effective for spatial cognitive training and
evaluation. It will be necessary to recruit more participants in
the future to assess its efficacy. Future research may inves-
tigate using this system to help patients with mild cognitive
impairment with spatial cognitive rehabilitation. We collected
and recorded the EEG signals throughout the experiment to
investigate how cognitive training and EEG correlate. The
automated task execution by the participants may contribute
to the GCA and behavioral results. The decoded information
from the EEG signals may provide a few control commands in
the future. A larger sample size will be used in the subsequent
investigation, with participants divided into control and experi-
mental groups. Regrading other spatial cognition systems [48],
[49], this system’s architecture can be individualized and
adaptively optimized.

V. CONCLUSION

This research created and tested a spatial cognitive training
and assessment system that combines EEG-HMD and VR
technology in a small, wearable package. Seven healthy indi-
viduals participated in a 20-day spatial cognitive training to
test the effectiveness of the system. The results of the behav-
ioral and EEG data analysis, as well as statistical tests, showed
that the subjects’ spatial cognitive abilities have improved
significantly. Furthermore, their EEG connectivity changed
significantly during the training period. Therefore, the EEG-
HMD-based training and evaluation system has appreciable
effects on spatial cognitive ability and has the potential to
be used as a home-based clinical training and evaluation
system for patients with spatial cognitive impairments. In the
future, we will enhance the efficacy evaluation of the training
program by adding standardized assessments of cognitive
ability in addition to measuring the participant’s performance
using the system. This would enable us to make a more
direct comparison of the training program with other similar
approaches.
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