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Abstract— As electroencephalography (EEG) is nonlin-
ear and nonstationary in nature, an imperative challenge for
brain-computer interfaces (BCIs) is to construct a robust
classifier that can survive for a long time and monitor
the brain state stably. To this end, this research aims
to improve BCI performance by incorporation of elec-
troencephalographic and cerebral hemodynamic patterns.
A motor imagery (MI)-BCI based visual-haptic neurofeed-
back training (NFT) experiment was designed with six-
teen participants. EEG and functional near infrared spec-
troscopy (fNIRS) signals were simultaneously recorded
before and after this transient NFT. Cortical activation was
significantly improved after repeated and continuous NFT
through time-frequency and topological analysis. A clas-
sifier calibration strategy, weighted EEG-fNIRS patterns
(WENP), was proposed, in which elementary classifiers
were constructed by using both the EEG and fNIRS infor-
mation and then integrated into a strong classifier with
their independent accuracy-based weight assessment. The
results revealed that the classifier constructed on integrat-
ing EEG and fNIRS patterns was significantly superior to
that only with independent information (∼10% and ∼18%
improvement respectively), reaching ∼89% in mean clas-
sification accuracy. The WENP is a classifier calibration
strategy that can effectively improve the performance of
the MI-BCI and could also be used to other BCI paradigms.
These findings validate that our proposed methods are
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feasible and promising for optimizing conventional motor
training methods and clinical rehabilitation.

Index Terms— Brain–computer interface, neurofeedback
training, hybrid brain signal, weighted EEG-fNIRS patterns,
motor imagery.

I. INTRODUCTION

BRAIN–COMPUTER interfaces (BCIs) can provide
instantaneous and quantitative measures of cerebral func-

tions modulated by motor imagery (MI), which is assumed
to enhance the efficiency of motor recovery [1], as MI-BCI
technology can directly decode brain central nervous system
(CNS) motor information and build a brain machine feedback
loop to assist motor rehabilitation training [2]. Based on the
central nervous system plasticity theory, MI-BCI opened up
a new pathway for motor imagery therapy in the clinical
application of brain nerve rehabilitation [3], [4], [5].

More importantly, BCI can provide quantitative and observ-
able measures of cerebral functions modulated by MI. Ther-
fore, the active participation of patients can be well observed
and promoted in the MI-BCI feedback system, and MI-BCI
can provide strict control and instantaneous regulation of
target training for patients and clinical physicians [6]. MI-
BCI combining functional electrical stimulation (FES) has
become a more effective approach than traditional FES therapy
for stroke rehabilitation [7]. Many modeling and recognition
optimization methods of MI-BCI systems have been proposed
in many studies [8], [9]. In addition, functional changes for
neural reorganization induced by BCI and its evaluation have
become a new research focus [10], [11], [12].

It is difficult to discard the calibration phase, thereby
increasing the time cost of motor rehabilitation train-
ing [13], [14]. Brain waves decoding based on electroen-
cephalography (EEG) can transmit the prompt and objective
information about the neuro-cortical activations to the outside
world [15], [16]. Although EEG-based BCI enables some
paralyzed patients to interact with the outside world, func-
tional near-infrared spectroscopy (fNIRS) might be a feasible
monitoring method combined with a classical conditioning
paradigm for locked-in syndrome [17], [18], [19]. Single-mode
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brain functional imaging techniques are limited. Therefore,
through a variety of functional brain imaging technologies,
multiple measurement methods can be realized to reflect the
brain activation situation synchronously, and the information
among various brain signals can supplement each other to
obtain better measurement accuracy and brain function. There-
fore, simultaneous measurement of fNIRS and EEG is widely
used in neuroimaging studies [20], [21], [22].

According to previous studies, the complex correlations
between brain structures, function and electrophysiological
patterns could be probed and clarified by incorporation of
different brain signals [23], [24], [25]. As an independent sig-
nal mode provides a partial monitor and assessment of neural
activations, the incorporation of EEG and fNIRS might provide
a feasible analysis for comprehensive brain response and its
dynamic measurement and assessment. There have been many
categories and methods of joint EEG-fNIRS analyses, which
can be divided into asymmetric and symmetric. More of
these techniques can indeed provide additional insights and
complementary information by multidata fusion, especially in
BCIs [26], [27], [28], [29], [30]. Fazli et al. attempted to
design a new BCI training paradigm using the combined signal
detection method of EEG-fNIRS. The results showed that EEG
combined with fNIRS significantly improved the accuracy of
MI classification in more than 90% of subjects and improved
performance by an average of 5% [31]. Buccino et al. further
combined EEG and fNIRS to distinguish four types of action
execution tasks, and improved the distinguishing ability of
the overall neural response characteristics by optimizing the
filtering algorithm and overcoming the time-delay problem
of fNIRS haemodynamic response [32]. However, due to the
complexity of neurovascular coupling [33], these methods are
not mature.

This study proposed the incorporation of EEG and fNIRS
to improve MI-based BCI classification performance. We have
demonstrated that an EEG-based visual-haptic paradigm could
enhance cortical activations and classification accuracy [34].
Additionally, EEG and fNIRS signals were recorded syn-
chronously so that the Graz MI-BCI paradigm was used to
explore the changes in MI-induced EEG and fNIRS patterns.
We assessed cortical excitability and compared different fusion
methods of hybrid brain signals to optimize MI-based BCI
performance.

II. METHODS

A. Subjects
This study was undertaken at the Neural Engineering and

Rehabilitation Laboratory of Tianjin University. The ethical
committee of Tianjin University approved all of this exper-
imental study. Nineteen healthy and right-handed partici-
pants (7 females and 12 males, age range 21–28 years old,
mean±std.: 24.2 ± 2.3) took part in the study. They had no
history of neurological or psychiatric disorders. The experi-
mental procedure was clearly explained to each participant,
and written informed consent was also signed before data
recording. Sixteen out of the nineteen subjects participated
in EEG-fNIRS joint acquisition because of the upgrade of the
experimental acquisition equipment.

Fig. 1. Setup of experimental paradigm. (a) Procedure and sessions.
Paradigms and timing of (b) Previous and posterior control sessions
using Graz MI-BCI paradigm, (c) NFT sessions. (d) Electrical stim-
ulation. SI indicates stimulation intensity of all subjects individually
determined.

B. Experimental Paradigm

Our previous work has described this experimental
paradigm in detail but no EEG-fNIRS joint acquisition [34].
As shown in Fig. 1, the experiment was separated into four
task conditions (one screening session, two previous control
sessions, two NFT sessions and two posterior control ses-
sions). First, all subjects could have a screening session at
the beginning, including all of the experimental paradigms.
Two previous control sessions implemented the common
Graz MI-BCI paradigm [35], [36]. Each session contained
40 trials of left or right hand MI, and more details were
shown in Fig. 1(b). However, each trial contained a relatively
long random rest time of 8 to 10 s, ensuring the integrity
and synchronization of MI-induced EEG and fNIRS pattern
changes. During the next 30 minutes, two visual-haptic NFT
sessions were conducted for all subjects. Considering the
comfort of human wrist movement, 0◦, 15◦, 30◦ and 45◦ were
selected as the angle range for the virtual hand. The angle
range of the virtual hand was used for visual representation
and real-time feedback of NFT characteristic parameter level.
The corresponding relationship between them was detailed in
previous research [34]. According to the NFT parameters, the
two virtual hands placed in the middle of the screen approach
or move away from the needles once a second. Once the needle
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Fig. 2. Experimental system by BCI-based visual-haptic NFT [29].

touches the hand (t0), there would be an electrical stimulation
(ES) as shown in Fig. 1(d) applying to left and right hand
palms of the subject until the needle move away from the
hand or this trial ends (ts). Posterior control sessions were
also implemented using the same Graz MI-BCI paradigm. All
subjects should apply the kinesthetic MI strategy that has been
repeatedly trained and optimized during NFT sessions.

As shown in Fig. 2, a BCI system translates EEG activi-
ties by feature extraction and recognition to control external
devices and thereby changes the ongoing neurofeedback inter-
face and electrical stimulator, achieving the effect and process
of NFT. In our typical EEG-BCI-based visual-haptic NFT,
left- or right-hand movement intention could be decoded in
real time during NFT by extracting MI-induced EEG features.
The effectiveness of MI detection would trigger feedback
every 1 s. This feedback could also be delivered in a visual
hands movement display on the computer screen and haptic
stimulation by the electrical stimulator that reproduces and
promotes the intended movement. All subjects were asked to
imagine haptic sensation, force, or position of squeezing an
object such as a cup or ball, but not its scene in the mind).
Theoretically, during such transient and repetitive NFT, better
kinesthetic MI should generate stronger sensorimotor cortical
excitability and higher classification performance [35], [36].

C. Hybrid Brain-Signal Acquisition and Preprocessing
The scalp EEGs were recorded with a SynAmps2 amplifier

(Neuroscan, Australia) and 64-channel Quik-Cap (standard
Ag/AgCl electrodes) according to the international 10-20
system. The sampling rate was set to 1000 Hz with band-pass

filtering between 0.05 and 100 Hz and a 50 Hz notch. The
reference and ground electrodes were placed on the nose and
forehead, respectively. Before data acquisition, the impedance
of all electrodes was kept below 10 k�. For preprocessing, the
EEG raw data were downsampled to 200 Hz, and a common
average reference (CAR) was performed.

The fNIRS acquisition system synchronously recorded
hemodynamics-related cerebral blood oxygen (NirScan,
Danyang Huichuang Medical Equipment Co., Ltd., China).
Sampling rate was set to 10 Hz. Band-pass filtering was set
between 0.01 and 3 Hz. The distance between sources and
detectors was 3 cm. For preprocessing, the band-pass filter
was set between 0.01 and 0.2 Hz, and the classical negative
correlation method for measuring cerebral blood oxygenation
/ deoxygenation ([oxy-Hb] / [deoxy-Hb]) hemoglobin concen-
tration information was used to optimize fNIRS data.

As shown in Fig. 3, fNIRS channels cover the left and right
sensorimotor regions. During left and right limb MI (LH-MI
and RH-MI), these regions of interest (ROIs) could repre-
sent changes in the concentration of cerebral blood oxygen.
In addition, we calculated time course analysis (TCA) curves,
following the coherence averaging method of event-related
potentials (ERPs) in EEG analysis, i.e., taking event labels as
synchronization criteria to segment time data of concentration
changes of [oxy-Hb] and [deoxy-Hb].

It is demonstrated by adding average repeated cerebral
blood oxygen data. The mean variation in cerebral oxygen
concentration during specific tasks with time was shown,
and the hemodynamic response of the cerebral cortex was
evaluated. To quantify and compare the difference in cerebral
blood oxygen response under different training conditions and
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Fig. 3. Experimental equipment and scene (a) EEG-fNIRS experimental situation and equipment, (b) channel positions of hybrid brain-signal
acquisition.

to characterize the activation of cerebral hemodynamics, two
key cerebral blood oxygen peaks (peak amplitude) and integral
areas of ROIs (ROI1 and ROI2) were extracted for left- and
right-hand MI tasks before and after training. We applied the
general linear mode (GLM) to analyze the activation state
of hemodynamics in ROIs during the LH-MI and RH-MI
tasks before and after training and to calculate its functional
topology map based on cerebral blood oxygen characteristics.

Electrical stimulation was achieved by 2-channel VitalStim
therapy equipment (Chattanooga Group, TN, USA). Its bipha-
sic current pulse and frequency were set to 300 µs duration
and 30 Hz. The ECG self-adhesive electrodes were placed on
the palm and back of the left and right hands.

D. Calculation of the ERD Power and BCI Performance
In this study, EEG-based ERD power was determined as

the decrease ratio of the alpha- and beta-band (8–13 Hz and
14-29 Hz) activities during MI to that during rest. We calcu-
lated the left- and right-hand MI-induced ERD powers during
NFT sessions using the event-related spectral perturbation
(ERSP) method:

ERD power =
Ptask − Prest

Prest
× 100[%] (1)

where Prest in eq. (1) corresponds to the alpha- or beta-
band short-time Fourier transform (STFT) spectrum power
superposition averaged during 1 s rest period, i.e., before the
MI cue (presentation of a green fixation cross in Fig. 1(b)).
In the control sessions, the alpha- or beta-band activity during
MI (Ptask) was also determined as the corresponding STFT
spectrum power superposition averaged every 1 s immediately
after the MI cue. In addition, we also calculated the left- and
right-hand MI-induced absolute ERD powers in the control
sessions, which could probe cortical excitability before and
after NFT sessions, respectively.

E. Weighted EEG-fNIRS Patterns (WENP)
We used common spatial patterns (CSPs) to perform

a subject-dependent and supervised decomposition that
enhances the discriminability between LH- and RH-MI. In our

study, EEG recording channels were set N=64. CSP could
output spatial filters W . Its components in one category with
maximum variance for C1 and minimum variance for C2.
Moreover, the other category are the opposite, with maximum
variance for C2 and minimum for C1.

xC S P (t) = W T x(t), xC S P (t) ∈ RN (2)

where xC S P (t) ∈ R is the spatial filter bank and N=64 is the
number of EEG measurement channels, as mentioned above.
We could simultaneously diagonalize two kinds of covariance
matrices (SC1 and SC2) to assess and obtain optimal spatial
filters: {

W T SC1W = AC1
W T SC2W = AC2

(3)

where AC1 and AC2 are diagonal matrices containing the
eigenvalues. AC1 + AC2 = I , so that signals belonging to
C1 have maximum variance on the first components of W
and minimum variance when projected on its last components.
In contrast, signals of class C2 have the opposite behavior.

After CSP processing, a radial basis function (RBF) kernel
support vector machine (SVM) classifier was executed on
existing CSP features from EEG or fNIRS data. It has been
proved that SVM has relatively high classification performance
using the LIBSVM toolbox [34], [37]. For subsequent use,
we could obtain different classification decisions and accura-
cies of EEG and fNIRS.

We further explored the BCI performance under different
conditions, including individual EEG or fNIRS classification
analysis, EEG-fNIRS feature fusion and decision level fusion
(i.e., weighted EEG-fNIRS patterns). This process could indi-
cate its effectiveness in controlling an MI-based BCI system.
As mentioned above, all features are extracted by CSP from
EEG and fNIRS. In addition, then, we could get the fusion
feature Z :

Z = F (X i , Yi ) = {x1, x2, · · · xm, y1, y2, · · · yn} (4)
X i = {x1, x2, · · · xm} (5)
Y j = {y1, y2, · · · yn} (6)
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where X i is the i th CSP feature vector from EEG data and
Y j is the j th CSP feature vector from fNIRS data. m and
n are their feature vector dimensions. F is a simple feature
fusion by splicing all EEG and fNIRS CSP feature vectors.
According to Z inputting to SVM, we could calculate new
classification accuracy by leave-one validation method. This
is a linear feature fusion method commonly used in machine
learning or pattern recognition.

We further calculated classification accuracies based on CSP
and SVM classifier decision fusion to probe the effectiveness
of performance improvement under an MI-based BCI system.
Decision level fusion (i.e., WENP) is a way to integrate
the decision results of various data modes, in which all
primary classifiers are constructed by using both the EEG
and fNIRS information. Then, we integrated these patterns
into a strong classifier with their independent accuracy-based
weight assessment. Each data point performs preprocessing,
pattern extraction and classification as mentioned above to
obtain sub-decisions. The final decision result is calculated
according to the weight assessment of sub-decisions. Weight
assessment from independent classification performance could
theoretically effectively reduce or even eliminate the influence
of incorrect sub-decisions.

Fig. 4 shows the classification calculation process based
on EEG-fNIRS decision fusion. First, we perform CSP and
SVM as mentioned above. It outputs accuracy (accE EG ,
acc f N I RS) and decision value (dvE EG , dv f N I RS). We take
accuracy as a weight (w) assessment to construct a decision
fusion mode, as shown in eq. (7), and perform correlation
and fusion according to both EEG and fNIRS decisions, then
compare with test labels, to obtain final decision output and
classification accuracy. Among them, the leave-one validation
method is still used to calculate the classification accuracy,
and each subject gets a classification accuracy.

dv f usion = accE EG ∗ wE EG + acc f N I RS ∗ w f N I RS (7)
wE EG = dvE EG, w f N I RS = dv f N I RS (8)

F. Statistical Analysis
We compared ERD patterns, fNIRS patterns and classifica-

tion accuracy and applied paired-samples t test to all healthy
subjects who participated in EEG-fNIRS joint acquisition (n=

16) for statistical analysis. The same pattern parameters from
every subject before or after motor neurofeedback training
can be used as paired samples. We applied one-way repeated
measures analysis of variance (ANOVA) to explore the perfor-
mance of MI-BCI classification, with the motor training condi-
tions as a within-subject variable and classification accuracy as
the dependent variable. The statistical analysis was performed
by using SPSS 22.0 (IBM SPSS Inc., Chicago, IL, USA).

III. RESULTS AND ANALYSIS

A. EEG Based ERSP Patterns Analysis
As shown in Fig. 5(a), to investigate MI-induced cortical

excitability of control sessions before and after NFT, the aver-
age topographical distribution maps of absolute ERD powers
were calculated and shown across all subjects at alpha and beta

Fig. 4. Framework schematic of decision level fusion (i.e. WENP) under
different data.

(8-13 Hz and 14-29 Hz) bands, two salient frequency bands.
In addition, topographical maps of H-values in paired-samples
t test (1 or 0 indicates p < 0.01 or not) could also present
significant differences at the same alpha- and beta-band as
above. Contralateral dominance covering sensorimotor cortical
areas could be observed more clearly for posterior control
sessions. Moreover, alpha- and beta-band were also selected
to compare their absolute ERD powers between previous and
posterior control sessions. As shown in Fig. 5(b), the average
absolute alpha- and beta-ERD powers are present under the
LH-MI and RH-MI tasks across all subjects, from the differ-
ence of the C3 and C4 channels (To facilitate comparison, the
ERD difference of left-hand MI C4-C3, and right-hand MI
in alpha and beta is C3-C4. Therefore, the average ERD in
both left and right-hand MI are all the negative values.). After
the Shapiro-Wilk test of normality, the paired-samples t test
yielded significant differences between previous and posterior
control sessions, given their statistics, significance and effect
values (pre vs. post at beta-ERD of LH-MI: t(15) = 2.347, p
= 0.033, d = 0.59; alpha-ERD of RH-MI: t(15) = 3.661, p =

0.002, d = 0.92). These results are relatively consistent with
topographical phenomena. Therefore, the lateralized cortical
excitability during MI was significantly improved after the
transient NFT.

B. fNIRS Based Concentrations of Cerebral Blood
Oxygen

According to the fNIRS channel positions in Fig. 3(b),
it covers right- and left-hand related sensorimotor regions
(ROI1 and ROI2). fNIRS concentration changes effectively
reflect brain activation during transient neurofeedback training.
Fig. 6 shows the group average time-course waveform for
two fNIRS ROIs according to different MI tasks (LH-MI
and RH-MI). The time-course wave represents the change
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Fig. 5. ERSP patterns. (a) Topographic maps of alpha- and beta-band (8-13 Hz and 14-29 Hz) absolute ERD powers under LH- and RH-MI and
their H-values (0 or 1) of paired-samples t test. The deep red indicates the distribution of significant differences after multiple comparisons (1 or
0 indicates p < 0.01 or not). (b) The absolute ERD powers during previous and posterior control sessions (∗ represents the significant difference,
∗p < 0.01 and ∗∗p < 0.001, with Shapiro-Wilk test of normality).

Fig. 6. The cerebral blood oxygen concentration changes before and after left- and right-hand MI-based NFT. The red curve represents the change
in [oxy-Hb]. The blue curve represents the change in [deoxy-Hb] concentration. The thin dotted line of the corresponding color represents the
standard error. All subgraphs use the same scale as those in the 2nd row and 2nd column subgraph.

in cerebral blood oxygen concentration. Additionally, peak
amplitude and integral area differences between ROI1 and
ROI2 were extracted under the contralateral dominance prin-
ciple. These results could quantitatively show brain activation
during different MI tasks before and after NFT.

As shown in Fig. 6, the hemodynamic responses had a
consistent trend change, similar to EEG time-frequency anal-
ysis. After neurofeedback training, the cerebral blood oxygen
response shows an obvious enhancement, especially con-
tralateral dominance. Specifically, the cerebral blood oxygen
responses of ROI1 and ROI2 were almost at the same level
before NFT. However, right-hand MI has contralateral domi-
nance, and its cerebral blood oxygen response level of ROI1 is
higher than that of ROI2. After NFT sessions, both left- and
right-hand MI presented significant contralateral dominance,
and left-hand MI especially improved significantly. At the
beginning of the task, cerebral blood oxygen concentrations
had consistent changes (i.e., [oxy-Hb] wave curves first ascend
during the task period and then descend to the baseline during

the rest period.) which is consistent with the basic regular
pattern of the cerebral blood oxygen response induced by
motor-related tasks.

As shown in Fig. 7, from pattern parameter extraction and
comparison analysis, cerebral blood oxygen levels induced
by left- and right-hand MI improved significantly after NFT.
Especially compared before and after training (pre vs. post),
the cerebral oxygen response level induced by left-hand MI
increased significantly ([oxy-Hb] peak amplitude: t(15) = -
5.057, p = 0.000, d = −1.26; [deoxy-Hb] peak amplitude:
t(15) = 3.488, p = 0.003, d = 0.87; [oxy-Hb] integral area:
t(15) = -3.833, p = 0.002, d = −0.96; [deoxy-Hb] integral
area: t(15) = 3.152, p = 0.007, d = 0.79).

C. Topological Analysis of Cerebral Hemodynamic
Response

According to the regions of interest of fNIRS channel
settings (ROI1 and ROI2), we plotted the average cerebral
blood oxygen response topology of all subjects and compared
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Fig. 7. MI induced cerebral blood oxygen of left- and right- hand before
and after NFT. The bars represent mean value with standard error.
Statistical significance has three levels (i.e. ∗p<0.05, ∗∗p<0.01 and
∗∗∗p<0.001) according to paired-samples t-test.

the cerebral blood oxygen response of left- and right-hand MI
before and after training. As shown in Fig. 8, ROI1 and ROI2
covered the sensorimotor regions of the brain. We calculated
the mean cerebral blood oxygen concentrations induced by
LH- and RH-MI and their differences. The color represents
the cerebral blood oxygen concentration level. Regions in
red display increased concentrations of cerebral blood oxygen
([oxy-Hb]) during MI, and blue indicates regions showing
reduced concentrations of cerebral blood oxygen during MI.
The results were relatively consistent with EEG activations
of the sensorimotor cortex, illustrating that cortical activa-
tions induced by LH- and RH-MI were indeed significantly
enhanced after transient NFT.

The topological results of cerebral blood oxygen response
analysis could further verify that BCI-based visual-haptic NFT
might effectively enhance MI-induced activation of hemody-
namics, i.e., sensorimotor cortex, which is expected to provide
a reliable assessment criterion and method for motor rehabil-
itation training and neural plasticity mechanism research.

D. Feature Fusion Based BCI Performance
Sixteen healthy subjects participated in the EEG-fNIRS

combined collection experiment. In the classification study,
we used classical CSP and SVM to calculate the classification
accuracy of left- and right-hand MI before and after NFT.
Fig. 9 shows the classification accuracy under different data
conditions before and after NFT. Different color bars represent

different data conditions (fNIRS, EEG and Hybrid) with
their respective standard errors. We applied two and one-way
repeated measures analysis of variance (ANOVA) to perform
statistical tests. The black dashed line represents the 70%
acceptable classification accuracy threshold [38]. Statistical
results based on two-way ANOVA that there was no interaction
between different classification methods (EEG, fNIRS and
Hybrid conditions) and changes of pre- and post-NFT (F
(2, 30) = 0.229, p = 0.797 > 0.05), their interactive item
was not violated sphericity according to Mauchly’s Test of
Sphericity (χ2

=1.513, p = 0.469), and they both had
an impact on the classification accuracy respectively (Before
and after training: F (1, 15) = 45.575, p = 0.000< 0.001;
Different classification methods: F (2, 30) = 38.347, p =

0.000 < 0.001). The statistical results were further refined in
the follow-up according to one-way ANOVA and its pairwise
comparison.

Classification accuracies of different data before NFT are
relatively low in most subjects. Most are below 70%, and the
independent data mode is even higher than chance level (50%).
After applying feature fusion by splicing EEG and fNIRS
CSP vectors only, the average classification accuracy was
76.63% over all subjects. ANOVA yielded that Huynh-Feldt
should be used for correction after the Mauchly’s Test of
Sphericity (ε = 0.931>0.75, Maxwell & Delaney, 2004),
and this classification performance was significantly higher
than that of single EEG or fNIRS (fNIRS: 64.69% and EEG:
71.09%, F (1.862, 27.923) = 39.845, p = 0.000 < 0.001).
In addition, the Bonferroni post hoc test also yielded that the
classification performance under hybrid feature fusion of EEG
and fNIRS was significantly higher than that of single EEG or
fNIRS with pairwise comparisons (Hybrid-pre vs. fNIRS-pre:
p = 0.000, Hybrid-pre vs. EEG-pre: p=0.000).

Classification accuracies after NFT are apparently higher
than those before NFT. The classification accuracies of most
subjects were above 70%, which might be due to the transient
NFT. In addition, the average classification accuracy reached
84.45% under the feature fusion condition over all subjects,
which was significantly higher than that of single EEG or
fNIRS (fNIRS: 70.78% and EEG: 79.43%; ANOVA: F (2,
30) = 17.919, p = 0.000 < 0.001). Bonferroni post hoc test
also yielded classification performance under hybrid feature
fusion of EEG and fNIRS is significantly higher than that of
single EEG or fNIRS with pairwise comparisons (Hybrid-pre
vs. fNIRS-pre: p=0.001, Hybrid-pre vs. EEG-pre: p=0.000).
These results revealed that EEG-fNIRS feature fusion could
optimize the performance of MI-BCI after the transient visual-
haptic NFT.

E. WENP Based BCI Performance
Table I shows the comparison of MI-BCI classification

performance under two different fusion methods. The average
classification accuracy of all subjects increased from 84.45%
to 89.14%. The Shapiro–Wilk test indicated that the classi-
fication accuracy data were normally distributed across all
subjects. The paired-samples t test yielded a significant differ-
ence in classification performance between the two different
fusion methods (t(15)=−3.97, p = 0.001, d = −0.99). These
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Fig. 8. The topology of the cerebral blood oxygen response induced by left- and right-hand MI (LH-MI and RH-MI) before and after NFT.

TABLE I
ALL SUBJECTS AND THEIR AVERAGE CLASSIFICATION ACCURACY OF

CLASSIFICATION PERFORMANCE UNDER DIFFERENT

FUSION METHODS

results demonstrate that compared with feature fusion, our
decision fusion method, WENP, could significantly improve
the performance of MI-BCI.

IV. DISCUSSION

In this work, MI-BCI based NFT has shown effective
prospects in motor rehabilitation. According to our fNIRS

data analysis, the cerebral blood oxygen response indeed
increased after this transient NFT, which is consistent with our
previous study [34]. Theoretically, neural activation requires
oxygen supply from the brain blood [39], [40]. Additionally,
we found typical cortical activations, increasing in [oxy-Hb]
and decreasing in [deoxy-Hb] during MI [41]. During motor
training in clinical applications, MI performance is subjective
and unstable and difficult to improve, unlike motor execution.
Moreover, there is a lack of targeted evaluation criteria. All of
these factors limit the application of MI- or MI-BCI-related
clinical rehabilitation. As shown in Fig. 6-8, both EEG and
cerebral blood oxygen activation induced by the MI response
were consistently enhanced after transient visual-haptic NFT.
Specifically, fNIRS results (peak amplitude, integral area,
topological analysis) verified its promising effectiveness in
motor rehabilitation. These EEG and fNIRS patterns might
also provide a possible method of improving MI performance
and cortical assessment of motor training.

Both EEG- or fNIRS-based classification performance was
enhanced after NFT, which is consistent with our previ-
ous study [34]. Volunteers with lower accuracy before NFT
could enhance their cortical activations during BCI training.
However, previous studies have rarely determined the effects
of BCI training on classification accuracy, especially based
on multimodal brain imaging information [35]. Our study
revealed that transient NFT might improve MI-BCI perfor-
mance. More importantly, we integrated EEG and fNIRS
patterns, resulting in more cortical information and better
classification. Specifically, from Fig. 9, the fNIRS-based clas-
sification results are always poorer than those of EEG. First,
fNIRS patterns induced by single trial MI are relatively weak
and not as strong as those induced by EEG, leading to a poor
initialized classification performance. Second, the strongest
fNIRS pattern might generally lag behind the MI task period.
Fig. 5 and 6 show that concentration changes in cerebral blood
oxygen usually reach a peak in 5 seconds or even longer after
task stimulus [42], [43]. However, we only take the task period
data, consistent with EEG data, to perform classification.
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Fig. 9. All subjects and their average classification accuracy of different data or combinations during previous and posterior control sessions. (∗
represents the significant difference, ∗p < 0.05, ∗∗p < 0.01 and ∗∗∗p < 0.001). The black dashed line indicates acceptable BCI performance in
70%.

fNIRS patterns of cerebral blood oxygen changes contain
relatively precise spatial information and differ from EEG
patterns. EEG recording has a high temporal resolution and
relatively low spatial resolution [44], [45], [46]. Theoretically,
hybrid data fusion could realize information compensation to
improve classification performance [47], [48]. For both feature
and decision fusion, the average classification accuracy is
significantly increased relative to that of independent data.
To some extent, this result confirms the effectiveness of
information complementation. Many previous studies have
supported this idea [31], [49], [50]. In addition, we compared
different data fusion methods to optimize BCI performance,
in which decision-level fusion (WENP) shows a better perfor-
mance and effective strategy for the BCI setup.

From Fig. 9, some subjects (e.g., pre: S04, S07, and S13;
post: S12) showed different results in that fNIRS accuracy was
higher than EEG accuracy. This might be due to individual
differences. A previous study also determined that approxi-
mately 15% to 30% of subjects have poor performance in
controlling BCI [51]. Not everyone performs well with only
a certain brain signal. The fusion of multiple data sets could
construct the most appropriate and robust BCI classifier. From
table I, decision fusion (i.e., WENP) works better according to
the average classification performance. Theoretically, decision
fusion uses weight assessment to better reduce the effect
of misclassification than feature fusion, which does less for
fault tolerance [52]. Feature fusion contains more complex
information than decision fusion, which might influence the

classification results. In this work, all the fusion methods we
used are simple ones with some limitations (e.g., propriety
of weight parameters). However, simple methods have even
obtained higher accuracy than previous studies [53], which
might be due to different data structures and classification
strategies. In addition, we also conducted a multi-way repeated
measures ANOVA, but didn’t get consistent results.

We explore an offline optimized strategy to improve BCI
performance, whether incorporation of EEG-fNIRS or NFT
paradigms. The classification data epochs were extracted from
0.5 to 3.5 s of each MI trial under a multichannel EEG and
fNIRS synchronous acquisition platform. We tried to use a
longer data epoch for additional analysis under the current
data set, which showed a better BCI performance. When
the hybrid EEG-fNIRS classifier was fed with the full 15 s
trial data, the average classification accuracy reached over
90%. We might need to design a well-designed online BCI
experiment and compare differences by applying full trial data
or not and determine the possible decoding speed/accuracy.
Specifically, an obvious concern is the time delay of the
hemodynamic response under the fNIRS system compared
with the general EEG-based BCI [29], [54]. It is valuable and
important to explore the combination and discrimination of
different signal features to further improve the BCI classifi-
cation performance [55], [56]. As shown in Fig. 10, different
feature selections and combinations achieve different visual
discrimination results. Alpha and beta band ERD combined
with peak amplitude could give a more obvious discrimination
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Fig. 10. Distributions of two classes MI induced ERD and cerebral blood
oxygen features. The features of left and right hand motor imagery are
marked by the red and blue dots, respectively. The features were plotted
after normalization.

than that with integral area of cerebral blood oxygen. This
seemed to contradict the results in Fig. 7, mainly due to
the small amount of data. In addition, the inseparability of
ERD features did not mean that EEG could not classify hand
MI under CSP conditions. The results of Fig. 10 could be
extended to further optimize and improve performance of MI
or even other paradigm-based BCI.

Multiple data fusion technologies could achieve a posi-
tive effect on BCI performance improvement. In this study,
we proposed two kinds of data fusion methods. In the future,
we could probe more superior approaches with multiple data
patterns to realize higher BCI classification accuracy. More
real-time BCI experiments and advanced adaptive feature sets
are possible and necessary to achieve an optimal combined
system. Alternatively, even a zero-training classifier could be
probed and contribute to building the ideal BCI paradigm.
A further interesting aspect that is not limited to fNIRS and
EEG patterns is that it could study the nonstationarity of
multi-data during a motor training of short- or long-term. For
the improvement of MI-BCI performance, it was relatively
sufficient to compare the previous and posterior control ses-
sions, although no control group was set. For future research,
a control group might be necessary to further optimize the
NFT framework and validate its superiority. However, it also
remains unclear whether specific neural mechanisms (such
as region-specific facilitation or neural plasticity) have been
occurred to explain these results comprehensively.

V. CONCLUSION

In this study, the EEG characteristics (absolute ERD power,
etc.) and cerebral blood oxygen response (concentration time
course waveform peak amplitude, integral area, spatial topol-
ogy, etc.) induced by MI before and after NFT were ana-
lyzed. The results revealed that EEG and fNIRS detected the
same trend in motor cortex region: cortical excitability was
enhanced after transient visual-haptic NFT, which is promising
evidence and a feasible assessment method for motor training
and rehabilitation. Additionally, EEG and fNIRS data fusion

shows superior classification performance. In addition, deci-
sion fusion (i.e., WENP) is an effective classifier calibration
strategy to improve the MI-BCI performance and could also be
applied to other BCI paradigms. Although the real-time quan-
titative evaluation of neural feedback information is greatly
affected by the dimension of information features and indi-
vidual differences, these findings validate that our proposed
fusion and assessment methods are feasible and promising for
optimizing conventional motor training methods and clinical
rehabilitation.
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