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A High-Frequency SSVEP-BCI System Based
on Simultaneous Modulation of Luminance and

Motion Using Intermodulation Frequencies
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Abstract— The low-frequency steady-state visual evoked
potential (SSVEP)-based brain-computer interfaces (BCIs)
tend to induce visual fatigue in the subjects. In order to
enhance the comfort of SSVEP-BCIs, a novel SSVEP-BCI
encoding method based on simultaneous modulation of
luminance and motion is proposed. In this work, sixteen
stimulus targets are simultaneously flickered and radially
zoomed using a sampled sinusoidal stimulation method.
The flicker frequency is set to a 30 Hz for all the targets,
while assigning different radial zoom frequencies (ranging
from 0.4 Hz to 3.4 Hz, with an interval of 0.2 Hz) are assigned
to each target separately. Accordingly, an extended vision
of the filter bank canonical correlation analysis (eFBCCA)
is proposed to detect the intermodulation (IM) frequencies
and classify the targets. In addition, we adopt the comfort
level scale to evaluate the subjective comfort experience.
By optimizing the combination of IM frequencies for the
classification algorithm, the average recognition accuracy
of the offline and online experiments reaches 92.74 ± 1.53%
and 93.33 ± 0.01%, respectively. Most importantly, the aver-
age comfort scores are above 5. These results demonstrate
the feasibility and comfort of the proposed system using
IM frequencies, which provides new ideas for the further
development of highly comfortable SSVEP-BCIs.

Index Terms— Brain-computer interface, steady-state
visual evoked potential, intermodulation frequencies, filter
bank canonical correlation analysis, high frequency.

I. INTRODUCTION

BRAIN-COMPUTER interface (BCI) is a communication
pathway between human brain and external devices,

which does not depend on the peripheral nerves and muscles.
It provides an alternative dimension for human brain to interact
with the environment [1], [2]. In clinical applications, BCI
contributes in restoring and improving the physical and mental
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functions [3], [4], [5], [6], [7]. Due to high signal-to-noise
ratio (SNR), low cost, and high availability, the steady-state
visual evoked potential (SSVEP) is a widely used signal of
electroencephalography (EEG) in non-invasive BCI [8], [9].

Currently, the research regarding SSVEP-BCI is focused on
improving the SSVEP-BCI systems’ performance and enhanc-
ing the comfort level. On one hand, the researchers have made
huge efforts for building high-speed BCIs. For instance, high-
speed BCIs with more than 100 targets have been continuously
proposed in recent years [10], [11]. In addition, the infor-
mation transfer rate (ITR) of 120-target SSVEP-BCI realized
based on a spectrally dense joint frequency-phase modulation
encoding method reached 213.23 ± 6.60 bits/min. Similarly,
a high-speed brain speller using task-related component anal-
ysis (TRCA) that has achieved the highest ITR to date, i.e.,
325.33 ± 38.17 bits/min, has been proposed [12]. On the
other hand, low- and medium-frequency SSVEP stimuli, such
as the stimulus frequencies below 30 Hz, are stressful for
the eyes and may trigger epileptic seizures [13]. In order
to reduce the visual stimulus contrast and ensure a higher
level of comfort and safety, a high-frequency SSVEP stim-
ulation method is currently being used extensively in BCI
research [14], [15], [16]. However, there are some limitations
of high-frequency SSVEP paradigm. The analysis regarding
the subjective discomfort evaluation of SSVEP-BCI in a flicker
simulation range of 5.5-86.0 Hz reveals that the subjects were
unable to concentrate on the high-frequency stimulus (30 Hz
to 86 Hz), as compared to the low- (5.5 Hz to 12 Hz) and
mid-frequency stimuli (12.5 Hz to 29.5 Hz) [17], and SSVEP
signal amplitude can be strongly influenced by attention
level of subjects [18]. Interestingly, it is noteworthy that the
use of flicker-free periodic motion targets for building the
SSVEP-BCIs is more comfortable, causes less visual fatigue,
and exhibits high performance during human-computer inter-
action as compared to the conventional low-frequency flicker-
based paradigm [19], [20], [21], [22], [23], [24], [25]. There-
fore, the superimposition of flicker-free periodic motion on
top of high-frequency periodic flicker to produce two input
signals with different frequencies for encoding targets can also
be explored as a novel direction for further improving the
comfort level of a system.

The previous studies presented in literature show that the
non-linear integration of periodic input signals of different
frequencies induce a frequency component other than the
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fundamental and harmonics, known as intermodulation (IM)
frequency component. In terms of value, this is equivalent to
a linear combination of different input frequencies [26]. There
are many ways to generate the periodic frequency of the input
signal. The generation of the periodic frequency of the input
signal can take many forms. Several studies use the traditional
flicker frequency and other forms of periodically changing
frequencies as an input signal of the evoked IM components.
Giani et al. [27] demonstrated that the IM frequencies can be
modulated by using the double modulation of luminance, i.e.,
6 Hz, and size, i.e., 0.2 Hz, by using the red circular gratings at
the visual level. Subsequently, the red circle stimulus target is
also used in the study by Chen et al. [28]. The authors selected
luminance modulated frequencies of 10 Hz, 12 Hz, and 15 Hz,
and color modulated frequency of 0.5 Hz for encoding the
eight grating targets. Afterwards, the authors proposed a
novel SSVEP-based stimulation method that uses the same
frequency of luminance change, i.e., 15 Hz, but different
chromatic changes, i.e., red/green, to evoke the IM frequencies
for encoding the nine targets [29]. The results showed that the
recognition accuracies of three cases were 91.67%, 93.98%,
and 96.41%, respectively. Furthermore, in order to improve the
recognition of SSVEPs based on IM frequencies, the authors
analyzed individual SSVEP calibration data points by using fil-
ter bank canonical correlation analysis (FBCCA) and achieved
a recognition accuracy of 91.43 ± 5.52% [30]. In addition to
the combination of chromatic and luminance characteristics,
Pitchaimuthu et al. [31] recorded SSVEPs evoked by one
luminance flicker of 6.1 Hz and two horizontal periodic motion
stimuli, including 2.1 Hz and 2.4 Hz. Chi et al. [32] proposed
a 2-target hybrid paradigm by combining the motor imagery
and SSVEP with the hand grasp at specific frequencies, i.e.,
left: 1 Hz; right: 1.5 Hz. All of the above stimulation methods
induced clear IM frequency components, thus demonstrating
the stability of IM frequency components in target classi-
fication. There are several studies focused on introducing
the motion attribute in the low-frequency SSVEP-BCIs for
encoding the targets. Kwon et al. [33] demonstrated that the
conventional SSVEP visual stimuli combined with appropriate
periodic motion significantly increases the SSVEP amplitudes,
thus improving the SSVEP-BCI performance. Yan and Xu [34]
adopted five frequencies to encode nine targets and proposed
a BCI method based on light-flashing and motion hybrid
coding. This method evoked stable motion frequency, light-
flashing frequency, its harmonic components, and weak IM
components between motion and light-flashing. The average
accuracy achieved by this method was 92.96%. However,
please note that almost all the aforementioned methods adopt
low- and medium frequencies to elicit SSVEPs. In addition,
the number of targets was generally low as well, i.e., a narrow
range of motion frequencies.

In this work, we present a novel stimulation method based
on simultaneous modulation of luminance and motion for
achieving higher comfort level for subjects. We design sixteen
stimulus targets to flicker at 30 Hz and simultaneously zoom
radially at different frequencies. please note that both encoding
methods follow a sinusoidal function. in addition, an extended
vision of FBCCA is proposed to detect IM frequency compo-

nents. in order to choose the optimal experimental parameters
and verify the feasibility of the proposed system, we perform
offline and online experiments in this study. furthermore,
we also collect the subjective comfort levels in each exper-
iment to evaluate the comfort level of the proposed system.

II. METHODS AND MATERIALS

A. Experimental Environment
1) Subjects: In the work, eighteen subjects (aged 25.3 ±

2.5 years, four males) participated in the experiments. All the
subjects have normal or corrected-to-normal vision, concen-
tration, and show no symptoms of hyperactivity or history
of mental or neurological disorders. The experiments per-
formed in this work comprise offline and online experiments.
Thirteen and twelve subjects participated in the offline and
online experiments, respectively. Moreover, seven participants
simultaneously participated in both types of the experiments.
All the participants completed the consent form and are
informed about the whole experimental procedure before the
onset. Additionally, all the participants are paid at the end of
the experiment. The Institutional Review Board of Tsinghua
University approved the grant for conducting this study.

2) Experiment Equipment and Data Acquisition: The scalp
EEG data are recorded by using the Synamps2 system devel-
oped by Neuroscan at a sample rate of 1000 Hz and then
trapped at 50 Hz for removing the interference caused by
the industrial frequencies. The international 10-20 modified
64-channel EEG scalp is adopted to acquire the EEG data.
In the offline experiments, the data acquisition is performed
with 60 channels, expected M1, M2, CB1, and CB2, with the
reference electrode at the left posterior mastoid. In the online
experiments, only 9 channels are used for performing data
acquisition, including Pz, Oz, O1, O2, POz, PO3, PO4, PO5,
and PO6. In both experiments, the ground electrode is located
at the midpoint of Fz and FPz and all the electrode impedances
are below 10 k�. In addition, the recorded EEG signals are
sent to the stimulus device via TCP/IP protocol for performing
real-time feedback analysis. The user interaction interface is
realized using the Psychtoolbox of MATLAB.

B. Experimental Design
1) Paradigm Design: In both offline and online experiments,

the user interaction interface is displayed on a 1920 × 1080-
pixel LCD monitor with a refresh rate of 120 Hz. Based on the
previous comparative experiments, the performance of green
or circle stimulus paradigm is more stable [35], [36] and the
luminance contract ratio (LCR) of green-black paradigm is
lower [37]. The stimulus presentation interface is presented in
Fig. 1(a), where 16 green circles (the RGB value is 0, 255,
0) of 200 × 200 pixels distribute in a 4 × 4 layout, and the
number from 1 to 16 locate in the center of each circle target.
Additionally, the horizontal and vertical distance between the
targets is 280 pixels and 70 pixels, respectively. The horizontal
and vertical margins are 140 pixels and 35 pixels, respectively.

In this work, the periodic changes in luminance and size
are realized based on sinusoidal sampling encoding method.
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Specifically, the stimulus sequence of luminance changes is
mathematically expressed as follows:

s (F, i) =
1
2

× {1 + sin[2π F(i/R)]} (1)

where, F denotes the flicker frequency. In this work, the value
of F is set to 30 Hz for all 16 targets. i denotes the frame
index in a stimulus sequence and R represents the screen
refresh rate. The dynamic range of stimulus sequence s (F, i),
ranges from 0 to 1, where 0 and 1 indicate the minimum and
maximum luminance, respectively.

Fig. 1(b) presents the changes in the size of one stimulus.
The radial variation sequences are mathematically expressed
as follows:

r ( fk, i) = Asin[2π F(i/R)] − A, k = 1, 2, . . . , 16 (2)

where, k denotes the serial number of stimulus targets, fk
denotes the radial zoom frequencies ranging from 0.2 - 3.4 Hz
with an interval of 0.2 Hz, and A denotes the radius of the
radial zoom with a value of 40 pixels.

2) Experiment Procedure: In this work, we perform offline
and online experiments. Before starting the experiments, the
subjects are asked to sit in a chair 90 cm away from a monitor
and remain relaxed.

The offline experiments consist of 10 blocks, and each block
consists of 16 trails. Each trail starts with a red circle being
displayed for 0.5 s to cue the next stimulus target. Please note
that the location and the size of the red circle is same as
the stimulus target to be presented. Then, all stimulus targets
start flickering at the same frequency and zoom radially at
different frequencies simultaneously. The task duration is set
to 5 s. Subsequently, all the targets stop flickering and zooming
during the 0.5 s interval, and the size of the stimulus targets is
restored to the initial state. A rest period is allowed between
each block depending on the fatigue level of the subjects.
In addition, all the subjects are asked to rate the comfort level
after the experiments.

The online experiments are performed to verify the feasi-
bility and stability of this paradigm by using the optimized
data length. This optimized length is obtained by analyzing
the results of the offline experiments. Similar to offline exper-
iments, in online experiments, there are 10 blocks in one
experiment as well. Each block consists of 16 trails. Each
trial contains 0.5-s prompt time and 4-s task time. Therefore,
the proposed system outputs a command every 4.5 s. The cue
for the next target appears right after the stimulus offset. The
subjects receive real-time auditory feedback in the form of a
beep when the recognition result matches the cue target.

According to [38], the comfort level scale is completed
after the offline and online experiments by each subject. The
subjects are asked to score the comfort level based on a 6-
point scale ranging from 1 (totally unacceptable) to 6 (a good
experience).

C. Signal Processing
1) FFT: The fast Fourier transform (FFT) in the time

domain is adopted to calculate the SSVEP amplitude spectrum

Fig. 1. Experimental paradigm design. (a) Layout of the 16 targets
on screen. (b) The flicker frequency and radial zoom frequency of
each target. (c) Stimulus encoding method based on simultaneous
modulation of luminance and motion (motion modulation in 0.4Hz for
example).

in all the trails. The EEG data used in this work are averaged
over all the subjects obtained at the Oz channel with a data
length of 5 s in the offline experiments.

2) FBCCA: FBCCA is an untrained algorithm for perform-
ing EEG signal analysis [39]. Originally, the FBCCA method
exploited different spectral characteristics of the fundamen-
tal and harmonic components of SSVEPs. First, multiple
sub-band signals (X SBn , n = 1, 2, . . . , N ) are extracted by
zero-phase Chebyshev type I infinite impulse response (IIR)
filters from original EEG signals X . The filtfilt function in
MATLAB is used to meet the zero-phase requirement. Second,
the standard canonical correlation analysis is performed to
calculate the correlation vector ρk between each sub-band
component (X SBn , n = 1, 2, . . . , N ) and the reference signals
(Y fk , k = 1, 2, . . . , 16) corresponding to all the stimulus
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frequencies fk . The reference signals are set to:

Y f =


sin (2π f t)
cos (2π f t)

...

sin (2π Nh f t)
cos (2π Nh f t)

 , t =

[
1
fs

, . . . ,
Np

fs

]
(3)

where, Nh denotes the number of harmonics, Np denotes
the number of sampling points, and fs denotes the sampling
frequency. The correlation vector ρk is defined as follows:

ρk =


ρ1

k

ρ2
k
...

ρN
k



=


ρ(X T

SB1
WX

(
X SB1 Y fk

)
, Y T WY

(
X SB1 Y fk

)
)

ρ(X T
SB2

WX
(
X SB2 Y fk

)
, Y T WY (X SB2 Y fk ))

...

ρ(X T
SB N

WX
(
X SB N Y fk

)
, Y T WY (X SB N Y fk ))

 (4)

where, ρ (x, y) represents the correlation coefficient of x and y
and k represents the number of visual stimulus targets. Finally,
the feature ρ̃ used for target identification is calculated as
the weighted sum of the squares of the correlation values
corresponding to each sub-band signal.

ρ̃k =

∑N

i=1
w(i) · (ρi

k)
2

(5)

The frequency of the reference signal corresponding to the
maximum correlation coefficient is then considered to be the
frequency of SSVEPs.

ftarget = max
fk

ρ̃k (6)

3) Extended-FBCCA: In this work, an extended version of
FBCCA (eFBCCA) is proposed to utilize the information in
the IM frequency components elicited by the interaction of
periodic luminance changes and radial motion changes. In case
of eFBCCA, the reference signal is designed to include the IM
frequency components as follows:

Y fk =



sin
(
2π(F − f k)t

)
cos

(
2π(F − f k)t

)
sin

(
2π(F + f k)t

)
cos

(
2π(F + f k)t

)
...

sin
(
2π(N h∗F − NI M ∗ f k)t

)
cos

(
2π(N h∗F − NI M ∗ f k)t

)
sin

(
2π(N h∗F + NI M ∗ f k)t

)
cos

(
2π(N h∗F + NI M ∗ f k)t

)


,

t =

[
1
fs

, . . . ,
Np

fs

]
(7)

where, F denotes the flicker frequency and fk represents the
radial zoom frequency. In this work, Nh is set to 2. NI M
denotes the number of IM component harmonics.

In addition, the weights w(i) of the sub-bands in (5) are
defined as follows:

w(i) = i−a
+ b, i = 1, 2 (8)

where, i denotes the number of sub-bands and is set to 2 in this
work. a and b represent the constants that are set to 1.25 and
0.25, respectively, based on a previous study [38].

D. System Performance Evaluation
The ITR is an important metric for assessing the perfor-

mance of SSVEP-BCIs in addition to the recognition accuracy.
The ITR is mathematically expressed as follows:

ITR =

(
log2 N + P ∗ log2 P + (1 − P) ∗ log2

1 − P
N − 1

)
∗ (

60
T

) (9)

where, N represents the number of visual stimulus targets, P
denotes the recognition accuracy rate, and T represents the
time required to issue a single command, which included the
gaze-shifting time of 0.5 s.

III. RESULTS

A. Offline Experiment Results
Based on previous studies that investigate the IM compo-

nents [28], [29], the average EEG data of 5-s duration recorded
in the Oz channel of all subjects is used to draw the SSVEP
spectrum of all targets, as presented in Fig. 2. Please note that
there are significant peaks at both the fundamental frequency
and the second harmonics of all the targets. In addition, the
IM frequency components of varying number and amplitude
generated by the interaction of changes in the luminance
frequencies and size frequencies, also appear for all the targets.
The number of IM harmonics with significant peaks resulting
from the IM of luminance changes and motion changes is at
most two for all the targets. Specifically, there are F ± f
and 2F ± f IM components for 0.4 Hz and 0.6 Hz zoom
frequency conditions. For zoom frequency conditions from
0.8 to 1.8 Hz, the IM components including, F ± f , F ±

2 f , 2F ± f , 2F ± 2 f appear to varying degrees. However,
the absence of F − f occurs for zoom frequencies, which are
greater than 2 Hz. In summary, only F + f IM components
appear in all the targets. Therefore, one-way repeated measures
ANOVA shows that there is no significant difference between
the amplitudes of the F + f IM components for all the targets
(p > 0.05).

The SSVEP amplitude topographies of F + f IM compo-
nents of all the targets are plotted in Fig. 3. The topographies
of the F + f IM component SSVEP signals elicited by the
16 different zoom frequencies are similar, and the strong
SSVEPs are mainly obtained in the parieto-occipital area,
especially at the Oz electrode channel.

Given the difference in IM frequency components across
the 16 targets, different combinations of IM components (see
Table I are used in the construction of the reference signal
template to select the combination with the best classification
performance [40].
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Fig. 2. SSVEP amplitudes of the averaged EEG signals of all the subjects at the Oz channel for all 16 radial zoom frequencies. Black circles
indicate the fundamental frequency (i.e., 30 Hz) and second harmonics, and red circles represent the IM components. Red circles indicate the IM
frequency components, and black circles represent the fundamental and harmonic frequencies of luminance changing. The layout of the 16 SSVEP
amplitude subplots corresponds to the target order of the stimulus interface.

TABLE I
COMBINATIONS OF IM FREQUENCY COMPONENTS USED IN THE

REFERENCE SIGNAL

Therefore, the recognition accuracies corresponding to the
six combination of IM components are calculated for all
13 subjects, as presented in Table II. The recognition accuracy
of the condition of CB5 achieves 92.89 ± 1.54%, which
is adopted for eFBCCA. According to a one-way repeated
measure ANOVA, different combinations have a significant
influence on the recognition accuracy (p < 0.05), and a
significant difference level is marked, as presented in Fig. 4,
where CB5 is significantly different from all other conditions
except CB3.

Fig. 5 shows the recognition accuracy and ITR performance
of the system for data samples of different lengths. It is
evident that the average recognition accuracy increases with
an increase in the data length and reaches its highest value

Fig. 3. Average F + f IM frequency SSVEP amplitude topographies of
all subjects at Oz channel.

(92.74 ± 0.02%) at the data length of 5 s. The ITR peaks
(41.27 ± 3.09 bits/min) when the data length is 3.5 s.
Generally, a data length of 3.5 s is chosen to build the online
experiments. Nevertheless, a paired t-test shows that there
exists a significant difference between the recognition accuracy
corresponding to 3.5 s and 4 s data length (p < 0.05). Finally,
in order to balance the ITR and a higher recognition accuracy,
a data length of 4 s is selected as the task time in online
experiments. This selection is done based on a paired t-test,
which shows that there is no difference between the ITR value
obtained with 3.5 s and 4 s data length (p > 0.05). The
recognition accuracy and ITR at 4 s data length are 86.88 ±

0.03% and 39.95 ± 2.54 bits/min, respectively.
Fig. 6 shows the average recognition accuracies of thir-

teen subjects for 16 radial zoom frequencies in the form of
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TABLE II
RESULTS OF THE OFFLINE EXPERIMENTS TESTING 13 SUBJECTS FOR DIFFERENT COMBINATIONS

Fig. 4. Average recognition accuracy of six combinations of the offline
experiment for 13 subjects with error bar and significance marks (∗p <
0.05, ∗∗p < 0.01). The error bars indicate the standard error (SE).

a confusion matrix and histogram. As shown in Fig. 6(a),
the average recognition accuracies of all the targets are
greater than 83% and the highest recognition accuracy reaches
97.69%. In Fig. 6(b), one-way repeated measures ANOVA
is used for obtaining the recognition accuracy corresponding
to different zoom frequencies. Please note that there exists
no significant difference between 16 different zoom frequency
conditions (for all conditions p > 0.05). In conclusion, all
16 targets of the system are accurately identified.

B. Online Experiment Results
Based on parameters optimized of offline experiments, a 4-s

stimulation duration was chosen for building the online valida-
tion experiments. In addition, each trail contained 0.5-s gaze-
shifting time. Thus, the output of the online system is 4.5 s.
The BCI performance recorded in the online experiments is
shown in Table III. The average recognition accuracy and ITR
of all subjects are 93.33 ± 0.01% and 45.47 ± 1.33 bits/min,
respectively. The recognition accuracy is above that of the

Fig. 5. System performance with different data lengths. The error bars
indicate the standard error (SE).

offline experiments and are both above 90%, validating the fea-
sibility and stability of the proposed novel stimulus encoding
method based on simultaneous modulation of luminance and
motion using IM frequencies. Since seven subjects participated
in both offline and online experiments, a paired t-test is
performed to show that the classification performance between
offline and online experiments is comparable (p > 0.05),
which provides robust evidence for the stability of the system.
In addition, the average recognition accuracy of the five
subjects who did not participate in the offline experiments
was also over 90%, further demonstrating the usability of the
proposed system.

C. Comfort Level and Anti-Fatigue Performance
Assessment

Based on the work presented in [35], in order to evaluate
the anti-fatigue performance of the proposed system, the
comparison of the average recognition accuracy of the first five
blocks and the last five blocks of the offline experiment for
all 13 subjects is presented in Fig. 7. The average recognition
accuracies of all the subjects in level 1 and level 2 are 92.40 ±
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TABLE III
RESULTS OF THE ONLINE EXPERIMENTS TESTING 12 SUBJECTS

Fig. 6. The average recognition accuracies of all subjects for 16 radial
zoom frequencies at 5 s data length display as a confusion matrix
(a) and histogram (b). The error bars indicate the standard error (SE).

1.90% and 93.08 ± 2.26%, respectively. The paired samples
t-test shows that there is no significant difference between two
levels, indicating that the proposed paradigm has good anti-
fatigue performance.

Fig. 8 shows the comfort scores of all the subjects, each
in the form of a histogram. The mean score of comfort
level scale is 5.23 ± 0.18 in the offline experiments and
5.50 ± 0.19 in the online experiments, respectively. These
results indicate that the subjects were able to perform this
experimental task in a comfortable state. Furthermore, the

Fig. 7. Comparison of the average recognition accuracy of two levels
of the offline experiment for all 13 subjects. The error bars indicate the
standard error (SE). (Level 1: the first five blocks, level 2: the last five
blocks).

Fig. 8. The comfort scores and its average value of all subjects in offline
experiments (a) and online experiments (b). The error bars indicate the
standard error (SE).

paired t-test confirms that there is no significant difference
between the subjective comfort ratings of the system in the
offline and online experiments of seven subjects (p > 0.05).
Therefore, this analysis further demonstrates the stability and
high comfort level of the proposed system.

IV. DISCUSSION

In this work, a novel stimulus encoding method based on
the simultaneous modulation of luminance and motion using
IM frequencies is proposed for comfortable visual experience.
After using the offline experiments to select the best param-
eters and online experiments to validate the proposed novel
paradigm, it is evident that the proposed paradigm improves
the subjective comfort of the subjects while ensuring the
accuracy of target recognition.

The simultaneous modulation of luminance and motion
encoding method designed in this work elicit significant IM
frequency components, which is similar with the results of
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previous studies [31], [34]. Specifically, the stimulus target
designed by Yan and Xu [34] is presented as a circle with
a rotating motion in the center and a periodic light-flashing
around the periphery of the circle. The frequencies of
light-flashing are below 12 Hz. As the performance of high-
frequency SSVEP-BCIs has improved steadily in recent years,
their usability has increased as compared to the low-frequency
SSVEP-BCIs. However, there is a gap in research regarding
the combination of high-frequency SSVEP and FF-SSMVEP
as far as we know based on our investigation. Therefore,
this work innovatively combines high-frequency flicker with
radial zoom to encode the same area of the stimulus target.
The interaction between these two factors successfully induces
distinct IM components. In addition, we further increase the
number of encoding targets for the novel system to sixteen.
It is noteworthy that the number of encoding targets is an
important metric used to assess the performance of paradigms.
Therefore, this improvement is meaningful for future works on
the design of SSMVEP-based BCIs. Moreover, the paradigm
can be used more effectively to assess the anti-fatigue per-
formance of a system as the task duration becomes longer
and the number of encoding targets increases. For future
research, we intend to construct a static paradigm to compare
with the motion paradigm for verification to increase the
power of the conclusions. In addition to the innovations in
the design of experimental paradigms, we also made some
adjustments in the traditional algorithm. The FBCCA has
been widely used as an untrained algorithm for detecting
SSVEPs [39], [41], and some improvements have been made
in several studies [42], [43]. In this work, an extended version
of the traditional FBCCA is proposed to detect the IM fre-
quencies and reach the recognition accuracy of over 90% in
both offline and online experiments. In addition, we calculated
the recognition accuracy performance of the system using the
eCCA method, which were 87.88 % and 84.74 % in the offline
and online experiments, respectively. These results were lower
than the system performance obtained using the proposed
eFBCCA method, demonstrating that the proposed eFBCCA
method superior to the eCCA method. Furthermore, trained
algorithms are considered to evaluate the performance of the
system in future studies. For example, the average recognition
accuracies obtained by the TDCA [44] trained algorithm were
97.65% and 98.47%, respectively, at the data length of 5 s in
the offline experiment and 4 s in the online experiments, which
is more beneficial to improve the practicality and robustness
of the system. Lastly, the subjective evaluation of the mean
comfort level score above 5 also validates the conclusion
of previous studies [35], [36], [37], i.e., the green-circle-
zoom stimulus paradigm performs effectively in improving the
subjective comfort of the subjects.

Further investigation of the modulation of high-frequency
luminance changes and motion can be explored in three
directions. First, by increasing the number of encoding targets.
The relatively high frequency range of the SSVEP response is
limited. Therefore, increasing the number of targets reduces
the frequency resolution, which in turn makes classification
more difficult [13]. The previous studies show that the hybrid
paradigm has a great potential for increasing the number of
targets [27], [45]. In this work, only one flicker frequency

is used for pilot study in order to verify whether the differ-
ent radial zoom frequencies can be intermodulated with the
high-frequency flickering property. The results show that it is
possible to set different high frequencies of luminance change
with motion property if the expansion target is considered.
Second, developing more comfortable BCIs and introducing
them into practical applications. In this work, only one flicker
frequency and 16 radial zoom frequencies are explored for
the preliminary experiments. Subsequently, we can focus on
exploring a wider range of frequencies to see if the comfort
level can be further improved. Furthermore, Ravi et al. [46]
proved that the SSMVEP stimulus is more robust to the
changes in the background as compared to the SSVEP stimu-
lus in AR. Notably, the proposed paradigm has a potential
to enhance the user comfort in this scene. Additionally,
it also provides new ideas for a better visual experience for
users in daily entertainment or clinical rehabilitation. Finally,
in addition to the commonly used algorithms for decoding
SSVEPs, we intend to introduce advanced machine learning
algorithms [47], [48], [49], [50] into the identification and
decoding of intermodulation frequency components to achieve
better system performance.

V. CONCLUSION

We adopted sampled sinusoidal stimulation method to
build a 16-target paradigm in which the stimulus targets were
simultaneously encoded with the same flicker frequency and
a range of radial scaling frequencies. Based on the use of an
optimized combination of IM frequencies in offline and online
experiments, the average recognition accuracy reached 92.74
± 1.53 % and 93.33 ± 0.01 %, respectively. Most importantly,
the average comfort scores were both above 5. These results
demonstrate the feasibility and comfort of the proposed
system using IM frequencies. In summary, the proposed novel
stimulus encoding method provides an alternative solution
for conventional SSVEP-BCIs and expands the horizon
for the further development of exceptionally comfortable
SSVEP-BCIs.
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