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A Serious Game System for Upper Limb Motor
Function Assessment of Hemiparetic

Stroke Patients
Yuanbo Jiang, Zhen Liu , Tingting Liu , Minhua Ma , Min Tang, and Yanjie Chai

Abstract— Stroke often results in hemiparesis, impair-
ing the patient’s motor abilities and leading to upper
extremity motor deficits that require long-term training
and assessment. However, existing methods for assess-
ing patients’ motor function rely on clinical scales that
require experienced physicians to guide patients through
target tasks during the assessment process. This process
is not only time-consuming and labor-intensive, but the
complex assessment process is also uncomfortable for
patients and has significant limitations. For this reason,
we propose a serious game that automatically assesses
the degree of upper limb motor impairment in stroke
patients. Specifically, we divide this serious game into a
preparation stage and a competition stage. In each stage,
we construct motor features based on clinical a priori
knowledge to reflect the ability indicators of the patient’s
upper limbs. These features all correlated significantly with
the Fugl-Meyer Assessment for Upper Extremity (FMA-UE),
which assesses motor impairment in stroke patients.
In addition, we design membership functions and fuzzy
rules for motor features in combination with the opinions
of rehabilitation therapists to construct a hierarchical fuzzy
inference system to assess the motor function of upper
limbs in stroke patients. In this study, we recruited a total
of 24 patients with varying degrees of stroke and 8 healthy
controls to participate in the Serious Game System test.
The results show that our Serious Game System was able
to effectively differentiate between controls, severe, mod-
erate, and mild hemiparesis with an average accuracy of
93.5%.
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I. INTRODUCTION

STROKE is a disease with a high morbidity, disability,
and mortality rate, which can seriously endanger the life

of the patient if it strikes [1]. Stroke kills 10% of people
worldwide and is the leading cause of death and disability
in adults [2]. Patients disabled by stroke often require motor
rehabilitation to help them regain their motor abilities by
stimulating neural reconstruction through continuous motor
training. The development of a rehabilitation training task
requires the patient to complete a scale assessment that allows
the therapist to understand the patient’s disease status [3].

The Fugl-Meyer Assessment for Upper Extremity
(FMA-UE) is a valid, feasible, and well-designed clinical
test scale often used as a clinical research tool to assess
changes in upper extremity motor deficits after stroke [4].
However, it is time-consuming for patients to complete the
FMA-UE. In addition, the scale is highly subjective and
requires regular assessment by an experienced therapist to
guide patients through the assigned tasks. If a rehabilitation
therapist is unable to assess a patient at home, the patient
usually needs to return to the hospital for assessment, which
not only consumes a lot of healthcare resources but also
wastes a lot of the patient’s time [5]. Not only that, the scales
lack the sensitivity to assess subtle but important changes
in exercise performance [6], as they rely on scoring criteria
rather than a continuous measurement structure. Finally, the
long and tedious scale assessment may cause discomfort
to some patients. Therefore, there is a need to design a
more interesting and faster-automated assessment method.
In recent years, serious games have received more attention
in the medical field and are widely used in gait balance
training [7], assisted motor rehabilitation [8], [9], and assisted
diagnosis [10]. Compared to previous approaches, game-
based rehabilitation programs are more interesting and can be
combined with interactive tasks to actively engage patients in
rehabilitation [11]. In addition, serious games are a low-cost
medical aid that can save medical resources [12]. Studies have
been conducted to classify hemiplegia levels by assessing
patients’ kinematic information [13]. Kinematic assessment
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is a more accurate, objective, and sensitive assessment
method [14], which describes the motion of the human
body in space and time, including velocity, acceleration, and
angular displacement, and it is increasingly used in upper
limb assessment [15]. Considering the unique advantages
of serious games and kinematics in medical rehabilitation,
we focused on designing an upper limb movement assessment
method based on serious games and incorporating kinematic
information into it.

Existing serious game-based upper limb assessment meth-
ods for stroke patients typically collect information about
the patient’s hand in real-time during game interaction and
combine machine learning or neural network models to assess
the patient [16], [17], [18]. Although several of these works
have achieved good results in assessing patients’ upper limb
motor abilities based on serious games, there are still three
problems. Problem 1: Serious game design problem: Existing
methods collect information from patients only in serious
games. However, stroke patients often suffer from physical
and neurological effects during intensive games and often
show tension [19]. The assessment results only reflect how
patients are doing during the game, not how they are doing in
their daily life. Problem 2: Joint deficit problem: The existing
methods rely only on the motion information of the hand
joints to assess the upper limb motor ability, ignoring the
influence of other joints of the upper limb on motor ability.
In rehabilitation assessment, it is necessary to combine the
kinematic characteristics of the hand, elbow, shoulder, and
other joints to assess the patient’s upper limb motor ability.
Problem 3: Data labeling problem: Existing methods use data
with labels to train machine learning models, but labels are
difficult to obtain in real rehabilitation settings and require
experienced physicians to manipulate, so it is difficult to label
all data. The above three problems lead to the fallacy of
haphazard generalization in the existing upper limb movement
assessment methods, which do not fully reflect the upper limb
movement ability of stroke patients.

To solve the above problems, we proposed a set of serious
games to assess the upper limb motor ability of stroke patients
by combining clinical a priori knowledge. Robinson et al. [20]
suggested that stroke patients often have physical and neuro-
logical impairments, which are manifested by decreased phys-
ical function, emotional loss, and eased tension and agitation.
Based on the above, to solve the first problem, we divided the
serious game into a preparation stage and a competition stage.
In the preparation stage, there is no continuous interactive task
when the patient is physically active and mentally relaxed.
At this point, the system reminds the patient to lift the ball into
a specific area to start the game. The purpose of this stage is to
guide the patient to perform guided movements, and the upper
limb information collected during this process can reflect the
patient’s ability to perform daily life. In the competition stage,
we design intensive, interactive tasks in which the system
will play against the patient in a ping-pong match format.
The purpose of this stage is to guide the patient to perform
spontaneous movements and collect kinematic information
reflecting the patient’s upper limbs. The data collected by
this method is more representative of the patient’s actual

condition. To address the second question, first, referring to
the assessment content in the FMA-UE [21], we assessed the
patient’s upper limb motor ability in daily life based on tremor
information, stretching information, timing information, and
control information together in the game preparation stage.
Secondly, according to the upper limb kinematic assessment
content, we regarded hand-elbow-shoulder as a motion whole
in the game competition stage, where each joint reflects the
kinematic information of the upper limb. Then, following this
idea, we designed several kinematic features to reflect the
above information of the patient. For problem 3, we designed
membership functions for the upper limb motion features
by combining the experience of rehabilitation therapists with
fuzzy inference methods to avoid the problem of relying
on large-scale data annotation and to be highly robust to
unfamiliar gamers. In summary, the main contributions of this
paper include the following.

We propose a novel set of serious game design ideas for
the assessment of motor impairment in stroke, divided into
two stages: preparation and competition. The information
collected in the preparation stage better reflects the user’s
upper extremity daily mobility, while the information collected
in the competition stage better reflects the patient’s upper
extremity kinematic information. The assessment results based
on these two stages are more representative.

We analyze the upper extremity movements of stroke
patients from a more comprehensive and complete perspective,
considering kinematic information of the hand, elbow, and
shoulder joints. We also combine a priori knowledge of
rehabilitation medicine to design motion features that describe
the patient’s upper extremity movements in detail. We also use
a fuzzy inference method without sample markers to assess
upper extremity motor deficits in stroke patients.

We recruited 24 hemiplegic patients and 8 healthy partic-
ipants to experience the Serious Game System and labeled
the patients’ upper limb abilities by manual FMA-UE, which
was used to examine the results of subsequent Serious Game
System assessments. The results show that the Serious Game
System achieved 93.5% accuracy in assessing upper limb
hemiparesis in stroke patients.

In this paper, we discuss related work in Section II, describe
data collection methods in Section III, present the system
design in Section IV, and provide results and discussion in
Sections V and VI, respectively. Finally, we conclude our work
in Section VII.

II. RELATED WORK

In this section, we present an automatic assessment of
motor ability and a serious game-based assessment of motor
ability, respectively. We discuss the strengths and weaknesses
of these studies separately and used to refine the design of our
approach.

A. Automatic Assessment Methods for Motor Ability
Automated assessment methods for motor ability can be

classified into two types: wearable and non-wearable, based
on the type of device used. Wearable devices can accurately
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TABLE I
PARTICIPANT INFORMATION

Fig. 1. Data collection flowchart.

collect upper limb movement data, while non-wearable devices
offer a less-invasive experience that is easier for patients to
accept.

Lee et al. [22] developed a smart wristband device that
continuously captures acceleration signals from the wrist joint
of acute stroke patients through spontaneous movements or
specific movement commands. However, this method is limited
in scope as it focuses solely on a specific joint of the upper
extremity and fails to analyze overall motion characteristics
of other joints. Wang et al. [23] proposed a multimodal-based
method for assessing upper limb motility in patients with brain
injury. They combined electromyography (EMG) signals and
patient upper limb motion information, analyzing the similar-
ities and differences between these two modalities of infor-
mation. Additionally, they integrated three learning models,
including machine learning, neural networks, and ensemble
learning, for motor impairment classification. Although they
were the first to use multimodal information for comprehensive
upper limb assessment in the field, collecting EMG signals
requires electrodes to be attached to the patient’s skin, which
is not only resource-intensive but also may cause discomfort
and limit deployment in the patient’s living environment. Fur-
thermore, their method emphasizes muscle electrical signals
rather than analyzing overall motion characteristics, poten-
tially resulting in information redundancy. Additionally, using
deep models as target classifiers requires a large number of
manually annotated data samples. Bosecker et al. [24] devel-
oped a set of robots for assessing upper limb dyskinesia,
which centrally collected kinematic and kinetic data. Similarly,
Zhang et al. [25] proposed an upper limb rehabilitation robot
that collected patient data information and used machine learn-
ing methods for classification. However, utilizing machine
learning as a classifier still has significant limitations due to the
problem of data labeling. Previous studies requiring physical
contact with the patient to collect data can lead to discomfort

Fig. 2. A patient using an experimental device.

and can affect assessment results. In contrast, Lee and Olesh
et al. [22], [26] utilized a contactless approach with a depth
camera to collect patient motion information, which is less
invasive and more easily deployable. They also developed a
rule-based binary logic classification method that evaluates
based on prior logical rules, eliminating the need for a large
number of labeled samples.

Overall, automated methods for assessing motor ability cir-
cumvent the subjectivity associated with traditional FMA eval-
uations, providing inspiration for future work. However, from
the patient’s perspective, these methods can be monotonous
and may result in reluctance or non-cooperation. Therefore,
it is necessary to design engaging motor impairment assess-
ment methods. Our approach is based on serious games,
ensuring accuracy while providing comfort and entertainment.

B. Automatic Assessment Method for Motor Ability
Based on Serious Games

In recent years a large number of researchers have worked
on the development of serious games for the assessment of
motor abilities with the aim of identifying patients’ lesions
and assessing their motor abilities during recreation. Meth-
ods based on serious games have the unique advantages of
being convenient and entertaining. In this section, we dis-
cuss the approach to motor assessment using serious games.
Serradilla et al. [27] pioneered the development of a serious
game for the assessment of motor impairment in stroke
patients. Based on this, they tested the motor function of
patients’ upper extremities and administered the actual test
to 33 stroke patients. Their results show that it is just as
possible to assess stroke patients accurately in a serious game.
Bai and Song [16], developed a serious game for upper limb
training and assessment based on home scenarios, using only a
depth camera and a posture sensor, to obtain better assessment
results. In a similar vein, Cho and Pei et al. [28], [29] focused
on a home setting and designed a method for assessing motor
ability in stroke patients by using a depth camera to collect
data from the patient’s hand to assess upper limb motor
ability. However, they ignored the holistic nature of hand-
elbow-shoulder motion, and a single analysis of hand data
cannot be applied to all patients and has major limitations.
the Lee et al. [18] task relied only on perceived data from the
game to assess patients’ motor ability, and their results lacked
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convincingness. They used perceived data from a serious game
and a motor rehabilitation scale as input to their assessment
model, using a machine learning model as a classifier. This
approach requires a large amount of data annotation and the
results validated on a small data set are not convincing. Oña
et al. [17] proposed a virtual version of the FMA scale test
using the serious game to assess patients’ upper limb abilities
and balance abilities simultaneously. Although the above work
has made some attempts to assess patients’ motor impairment
abilities using serious games, there are still major problems
with the game design. First, the behavior of patients in the
game does not reflect their daily life state, so the assessment
results are limited to the results in the game, but often medical
treatments, which are developed in the daily environment, lead
to a failure to combine assessment results and treatments.
Moreover, feature selection is limited, with most serious games
for stroke relying on data from the hand joints and ignoring
information from the elbow and shoulder. The above problems
limit the application of serious games in the field of motor
assessment. For this reason, we propose a novel design idea
in developing serious games. The game is divided into a
preparation stage and a competition stage, in which tasks are
designed to be as easy and simple as possible. These data can
reflect the state of patients in their daily life. In the competition
stage, we designed the interactive game of playing ping pong
with a high frequency of interaction, which is difficult to occur
in the daily environment of stroke. In addition, we collect data
on hand, elbow and shoulder joints simultaneously in the game
and design several motor features for assessing patients’ motor
abilities.

III. DATA COLLECTION

A. The Fugl-Meyer Assessment for Upper Extremity
(FMA-UE)

The Fugl-Meyer Assessment for Upper Extremity
(FMA-UE) Scale is an impairment scale based on
stroke presentation and is used to assess upper extremity
sensorimotor function. A maxi mum score of 66 on the
FMA-UE indicates normal upper extremity function. The
scale has good validity and reliability and is commonly
used to classify the severity of upper extremity stroke
impairment [4]. A score of less than 32 on the FMA-UE is
defined as severe hemiparesis, between 32 and 57 as moderate
hemiparesis, and between 58 and 66 as mild hemiparesis.

B. Participants
Data were collected from the Neurorehabilitation Depart-

ment of Ningbo Rehabilitation Hospital. Participants recruited
for this study were all paralyzed in the upper extremities due to
a stroke within the past year. Participants were informed of the
data collection prior to being tested. A total of 25 hemiplegic
patients were recruited for this test, of whom 1 declined to
participate in the program, giving a total of 24 hemiplegic
patients. As shown in Table I, 8 were severely hemiplegic
(57.8±5.6 years) with a mean FMA score of 14.5±9.9;
8 were moderately hemiplegic (55.2±10.6 years) with a mean
FMA score of 42.5±7.8; and 8 were mildly hemiplegic

(56.7±10.8 years) with a mean FMA score of αβ 62.3±2.6.
In addition to this, 8 healthy participants (52.7±9.3 years)
were recruited as controls. All participants were free of
severe cognitive impairment, understood the content of the
game, followed the physician’s instructions and interactions,
understood the purpose of the experiment, and agreed to the
experiment. Participants are watched by a physician during the
experiment to ensure they do not have accidents.

C. Protocol
The data collection process is shown in Fig. 1. First, after

a 1-minute rest period, participants were assessed for FMA
upper extremity motor function by two professional therapists,
and throughout the process, participants were required to
follow the therapists’ instructions. This procedure lasted for
10 minutes and was designed to obtain the results of the
participant s’ clinical assessment for subsequent evaluation
of the classification accuracy of the Serious Game System.
Subsequently, after a 5-minute break, the serious game was
performed for 3 minutes, and the purpose of the procedure
was to familiarize the participants with the operation of the
game and to avoid distractions due to the game experience.
Finally, after a 5-minute break, a formal serious game test
was performed in which each patient performed five instruc-
tive and spontaneous movements for approximately 1 minute
each, during which the data generated during the game were
collected.

Fig. 2 shows a participant undergoing a serious game test.
Our experimental equipment consisted of a computer, monitor,
and Kinect depth camera. The monitor was placed directly in
front of the participant at a distance of 1.5 meters to ensure
that the experiment would not be affected by the participant’s
vision. While the participants were playing the game, the
Kinect camera would acquire their motion information in
real-time and save it in the computer database. During the data
collection phase, the average duration of the game played by
the 32 patients was 5.12 ± 0.23 minutes.

IV. SERIOUS GAME SYSTEM

The framework of our serious game system for upper limb
motor assessment is shown in Fig. 3. First, participants were
assessed by two experienced therapists through a manual
FMA-UE to obtain qualitative evaluation results of the clini-
cal assessment. Then, participants underwent a serious game
assessment. During this time, we used a depth camera to col-
lect the patient’s upper extremity data during the preparation
and game stages. During the preparation stage, we collected
information on tremor, extension, timing and control, focusing
on the patient’s ability to perform daily activities of the
upper extremity; during the competition stage, we collected
kinematic information on the hand, elbow, and shoulder,
focusing on overall upper extremity ability and responsiveness.
To assess the aforementioned abilities, we designed several
motor features to describe the patient’s performance in the seri-
ous game. Then, we screened the features for significance by
non-parametric tests. Then correlation analysis was performed,
and the features with significance and the top three correlation
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Fig. 3. The framework diagram illustrates the steps to identify hemiparesis in a serious game system.

coefficients were used as the input to the hierarchical fuzzy
system. After that, we designed a membership function for
each input feature in each stratified fuzzy subsystem to assess
patients’ motor ability by combining prior knowledge of
rehabilitation and fuzzy mapping. Finally, we validated the
accuracy of the serious game system in assessing the level of
upper limb paralysis of patients.

A. Serious Game Design
Our serious game was developed using the Unity3D engine

and compiled in C#. The game involves patients participat-
ing in a ping pong tournament. The game is divided into
two stages, the preparation stage and the competition stage.
The aim of the preparation stage is to make the patient do
instructive movements, and the aim of the competition stage
is to make the patient do spontaneous movements. In the
preparation stage, the patient needs to control the movement
of the affected hand. The Kinect Azure depth camera acquires
information about the patient’s joint points and maps the
position of the patient’s hand to the virtual hand in the virtual
scene. As shown in Fig. 4(a), the patient’s goal is to grab the
ping pong ball on the table and move it to the range indicated
by the aperture to complete the task and enter the competition
stage. In this stage, the system does not give the patient a time
limit cue in order to make the patient as relaxed as possible.
Instead, considering that some patients with more severe motor
impairment cannot complete the target task after catching the
ball, the system automatically times the task. When the patient
does not complete the task for more than 30 seconds, the
system will end the preparation stage and enter the competition
stage. In the competition stage, the patient needs to control the
ping-pong paddle in the virtual scene and compete with the
computer; as shown in Fig. 4(b), the patient needs to try his
best to imitate the standard striking posture and swing his arm
rapidly to hit the ping-pong ball. The faster the patient swings,
the faster the ball returns, and the more likely he will win the
game. In addition, both the size of the ping-pong ball and the
speed of the ping-pong ball return was appropriate for elderly
patients to avoid affecting the assessment results.

B. Feature Design
1) Preparation Stage: In the preparation stage, the patient

needs to use the paralyzed hand to control the virtual hand in

Fig. 4. Two game modes: (a) is the preparation stage screen and (b) is
the competition stage screen.

the virtual scene to grasp the ping pong ball on the table and
move it to a specific area. We considered four motion features,
i.e., movement variance, movement length ratio, remaining
time, and maximum stretch ratio. As shown in Fig. 5(a), when
the patient controls the virtual hand to move along the standard
trajectory. In this case, the movement variance is smaller, the
maximum stretch ratio is larger, the remaining time is longer,
and the movement length ratio is larger. Fig. 5(b) shows the
patient’s motion along an irregular motion trajectory. In this
case, the movement variance is larger, the maximum stretch
ratio is larger, the remaining time is shorter, and the movement
length ratio is smaller. The formulae for each motion feature
are described in detail below.
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Fig. 5. Different movement trajectories in the preparation stage: (a) is
moving along the standard trajectory, (b) is moving along the irregular
trajectory.

Fig. 6. Skeleton diagram of the user’s swinging action during the
competition stage: (a) is the start of the action, (b) is the end of the
action. where α is the shoulder angle and β is the elbow angle.

-Movement variance: The deviation between the actual
trajectory of the patient’s hand movement and the standard
trajectory was calculated using the straight line between the
starting point and the endpoint as the standard trajectory,
as shown in (1).

σ =

√∑n
i=1 1d2

i
n

(1)

where σ is the movement variance, 1d is the movement
deviation, and n is the sampling frequency. The movement
variance can be used to express the tremor information of the
patient’ s.

-Movement length ratio: the actual distance of the patient’s
hand movement during the preparation stage time divided by
the straight-line distance between the starting point and the
endpoint, as shown in (2).

m =
1D

d
(2)

where m is the movement length ratio, d is the actual move-
ment distance, and 1D is the linear distance between the two
points. The larger the movement length ratio, the more control
the patient has over the affected arm.

-Remaining time: the time left after the patient completes
the target task in the preparation stage. When the patient starts

to move the ball, the system will automatically record the time.
When more than 30 seconds are spent in the stage, the system
will automatically end the stage and enter the competition
stage, as shown in (3).

1T =

{
30 − T, T < 30
0, T ≥ 30

(3)

where 1T is the time remaining on serve and T is the time on
serve, 1T = 30−T when T < 30 seconds and 1T = 0 when
T ≥ 30 seconds.

-Maximum stretch ratio: The system asks the patient to
move the ball within a specific area, which requires the patient
to lift the arm, at which point the system records the relative
height of the patient’s elbow to shoulder and hand to the elbow,
as shown in (4).

pmax = Max
(

pi =
(hi − ei ) + (ei − si )

l

)
(4)

where pmax is the maximum stretch ratio, hi is the height of
the hand, ei is the height of the elbow, si is the height of the
shoulder, and l is the length of the arm. The maximum stretch
ratio reflects the patient’s ability to extend the upper extremity.

2) Competition Stage: In the competition stage, the patient
will play a ping pong match with the computer, and the
patient needs to judge where the ball will land and hit the
ball back. Fig. 6 shows the skeleton diagram of the patient,
which records the information of the skeleton point position
of the patient’s whole body from before to after the ball is hit.
From the skeleton point information, we can get the joint angle
information, α is the shoulder joint angle, and β is the elbow
joint angle. When the patient completes a round of strokes,
the above joint angles change significantly, from which we
record the velocity information of the patient’s hand, elbow,
and shoulder. Referring to hand information alone can lead
to biased results. Some patients’ hands may move through the
trunk rather than through the upper limbs, so it is necessary to
refer to the elbow and shoulder information, and the formulae
for calculating each motion feature are described in detail
below.

-Maximum hand acceleration: The maximum value of the
instantaneous acceleration of the patient’s hand movement,
as shown in (5).

δmax = Max
(

δi =
1vi

1t i

)
(5)

where δmax is the maximum acceleration of the hand, 1vi
is the instantaneous velocity difference of the current hand,
1t i is the instantaneous time difference, and the maximum
acceleration reflects the explosive force of the patient’s upper
limb.

-Average hand velocity. In this round, all instantaneous hand
velocities of the patient are added up and then averaged,
as shown in (6).

v =
1
n

∑n

i=1

(
vi =

1d i

1t i

)
(6)

where vi is the hand movement speed, 1di is the instanta-
neous movement distance, and 1t i is the instantaneous time
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difference. The average hand speed reflects the patient’s upper
body strength and endurance throughout the competition.

-Maximum shoulder angular velocity: The maximum value
of the instantaneous angular velocity of the patient’s shoulder,
as shown in (7).

ωmax = Max
(

ωi =
1αi

1t i

)
(7)

where ωmax is the maximum angular velocity of the shoulder,
1αi is the instantaneous displacement angle of the shoulder,
and 1t i is the instantaneous time difference. The maximum
angular velocity of the shoulder reflects the explosive force of
the patient’s shoulder.

-Average shoulder angular velocity: All instantaneous angu-
lar velocities of the patient’s shoulder during the round were
summed and then averaged, as shown in (8).

ω̄ =
1
n

∑n

i=1

1αi

1t i
(8)

where ω̄ is the average shoulder angular velocity, 1αi is the
instantaneous shoulder displacement angle, and 1t i is the
instantaneous time difference. The average shoulder angular
velocity reflects the durability of the patient’s shoulder joint
strength during the competition.

-Maximum elbow angular velocity: the maximum value
of the instantaneous angular velocity of the patient’s elbow,
as shown in (9).

ρmax = Max
(

σi =
1β i

1t i

)
(9)

where ρmax is the maximum elbow angular velocity, 1β i is
the instantaneous elbow displacement angle, and 1t i is the
instantaneous time difference. The maximum angular velocity
of the elbow reflects the explosive force of the patient’s elbow.

-Average elbow angular velocity: All instantaneous angu-
lar velocities of the patient’s elbow during the round were
summed and then averaged, as shown in (10).

ρ̄ =
1
n

∑n

i=1

1β i

1ti
(10)

where ρ̄ is the average elbow angular velocity, 1β i is the
instantaneous elbow displacement angle, and 1t i is the instan-
taneous time difference. The average elbow angular velocity
responds to the persistence of the patient’s elbow force during
the competition.

-Reaction time: the time for the patient’s hand to move in
the direction of the ball after the computer hits the ball back,
as shown in (11).

1treaction = taction − treturn (11)

where 1treaction is the reaction time of the patient’s movement
after the computer returns the ball. taction is the time when
the hand movement occurs and treturn is the time when the
computer returns the ball.

C. Feature Significance Analysis
Statistical analyses were performed using IBM Statistical

Package for Social Sciences™(SPSS) version 26 for Win-
dows. Due to the small sample size of the data and the

fact that most of the variables were non-normally distributed,
a non-parametric test was used. We select some features for
the construction of the classification model. To determine
the statistical significance of each feature, the nonparametric
Kruskal-Wallis test was used, and features with p < 0.05 were
identified as statistically significant. And to test the ability of
each variable to distinguish different groups in each layer, the
statistical significance of each pair of category species was
tested by the multiple comparison method.

To further analyze the significance of the features and select
them to build a classification model, we performed Spearman
correlation analysis on the features and ranked the features by
correlation coefficients to filter the most relevant features to
the classification results for each layer of the fuzzy system
to maximize the detection probability and thus build a good
classification model [30]. In order to build a classification
model with the limited size of our dataset, we selected the
top three features for each layer of the subsystem in terms of
relevance coefficient to prevent an excessive number of rules
in the fuzzy inference system.

D. Fuzzy Inference System (FIS)
Fuzzy Inference System (FIS) is one of the most practical

tools in the context of fuzzy theory for dealing with nonlinear
but ill-defined mappings of input variables to some output
variables. Its construction consists of the following steps.

1) Determine the Membership Function: In order to extract
the fuzzy features of the input information, it is necessary
to fuzzify the input information with the membership func-
tion [31]. Since the trapezoidal membership function and trian-
gular membership function are more general [32], we use these
two membership functions. For all input variables, we use
the trapezoidal membership function with the formula shown
in (12), where a, b, c, and d are the four vertices of the
trapezoidal membership function. For all output variables, the
triangular membership function is applied, and its formula is
shown in (13), where e, f, and g are the three vertices of the
triangle membership function.

µA (x) =



0, x ≤ a
x − a
b − a

, a ≤ x ≤ b

1, b ≤ x ≤ c

d − x
d − c

, c ≤ x ≤ d

0, x ≥ d

(12)

µB (x) =



x − e
f − e

, e < x < f

1, x = f

g − x
g − f

, f < x < g

i (13)

2) Define Fuzzy Rules: Fuzzy rule evaluation is one of
the keys to a fuzzy system. The number of fuzzy rules
depends on the number of input features and their membership
functions [33]. If there are too many input variables will lead to
an excessive number of rules in the system, making it difficult
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Fig. 7. Structure diagram of hierarchical fuzzy inference system.

to keep track of them [34]. Therefore, using hierarchical fuzzy
inference can effectively avoid excessive fuzzy rules [35].

As shown in Fig. 7, we construct the system as a tree-like
structure with three FIS subsystems. The first FIS subsystem
can initially determine whether the patient belongs to the
healthy control group or the hemiparesis group; on the basis
of this FIS subsystem, a second layer is constructed with
another FIS subsystem to determine whether it belongs to the
{moderate, mild} hemiparesis group or the severe hemiparesis
group. Finally, another FIS subsystem is used to determine
whether it belongs to the mild hemiparesis group or the mod-
erate hemiparesis group, forming a three-layer fuzzy inference
system. Each subsystem uses only a portion of the features of
the patient game data, which greatly reduces the number of
fuzzy rules. Second, the hierarchical structure correlates with
the clinical presentation of the patient. We found a significant
difference in game performance between participants in the
control group compared to those in the hemiparesis group,
with participants in the hemiparesis group performing lower
than the control group in both the preparation and competition
stages, so they were differentiated in the first layer. In the
second layer, patients with severe hemiparesis had severe
arm paralysis compared to those with moderate and mild
hemiparesis, had great difficulty performing the exercise, and
had the worst performance within the game. A subset of
patients was unable to lift their arms to complete the task
during the preparation stage of the game, whereas this was
not the case for patients with moderate and mild hemiparesis,
so the {moderate, mild}, and severe groups were distinguished
in this layer. After excluding the control and severe groups,

the mild and moderate groups were distinguished at the end,
as they both had some control over the paralyzed hand and
performed more similarly.

3) Inference Engine and Defuzzification: The fuzzy interface
engine is applied to integrate the identified fuzzy sets and to
consider the fuzzy rules and the associated fuzzy regions sepa-
rately. The fuzzy inference process uses ”min-max inference”
to compute the conclusions of the rules based on the input
values of the system [36]. The result of this process is named
a ”fuzzy conclusion”. The applicability or ”truth value” of a
rule comes from the combination of rule antecedents. Since the
conjunction is defined as ”minimal,” rule evaluation consists
of detecting the smallest (minimal) rule antecedent, which is
considered to be the rule’s truth value. This true value is then
applied to all consequences of the rule. If any fuzzy output
is a consequence of more than one rule, this output is set
to the highest (maximum) truth value of all rules containing
their consequences. The result of the rule evaluation is a set
of fuzzy conclusions reflecting the effect of all rules with a
truth value greater than 0 [37].

The fuzzy output is converted to clear output using the
fuzzification process, and the main defuzzification methods are
the mean of maximum (MOM) method, smallest of maximum
(SOM) method, largest of maximum (LOM) method, bisector
of area (BOA) method, and center of area (COA) method [38].
In our fuzzy inference model, the COA method is applied to
all FISs.

4) Performance Validation: We tested the classification per-
formance of each category, i.e., accuracy, recall, precision,
and F1-score [39], using a fuzzy inference system. We also
used common machine learning methods used to make com-
parisons, namely Support Vector Machine (SVM), Classifica-
tion and Regression Tree (CART), and k-Nearest Neighbours
(kNN). Significant features with p < 0.05 were used for model
training. Due to the small sample size of the dataset, a leave-
one-out cross-validation method was used to calculate the
average classification performance of the model [40]. In order
to verify the necessity of the features used, the performance of
the classifier was calculated for using all features, using only
preparation stage features, and using only competition stage
features, respectively.

V. RESULTS

A. Game visualization results
The system recorded participants’ motion information in

real-time during the preparation stage of the first round and
then displayed their motion trajectory lines in a visualized
form through the Unity engine (as shown in Fig. 8). The
motion trajectories of the control, mild, moderate and severe
group are shown in the figure, and each color line represents
one participant, and a total of 32 participants were recorded.
In terms of the graph as a whole, there is a large difference
between people without hemiparesis and those with hemi-
paresis. The control group’s movements are very stable and
do not shift excessively when performing guided movements,
and all of them are able to complete the task efficiently in a
shorter period of time. Mild hemiparesis, on the other hand,
produces minimal motor deviation compared to other degrees
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Fig. 8. Trajectory chart for patients in the preparation stage: (a) is control, (b) is mild hemiparesis, (c) is moderate hemiparesis, (d) is severe
hemiparesis.

and all are able to complete the task. Moderate hemiparesis
not only produced greater deviations, but also more jitter,
and a small number of participants had limited ability to
stretch to complete the task, thus taking significantly more
time. Severe hemiparesis was the worst performer, with all
participants producing great deflections and jitter, and only
a few participants were able to complete the task within the
time, and most would fail to complete the task before the time
ran out.

We sliced all the velocity profiles of spontaneous move-
ments during the competition stage to obtain the velocity slices
of swinging movements for each participant. The velocity
slices of all participants were then averaged by class to
obtain the velocity profiles of the oscillatory movements of
the control, mild, moderate, and severe groups (as shown in
Fig. 9). The velocity of the control group increased smoothly
and steadily, and there was a large difference between the
control group and the hemiparesis group. The velocity curve
of the hemiparesis group was not smooth, and the change trend
had an abrupt rise or fall. The severe group had the lowest
overall velocity and an insignificant upward velocity trend.
The moderate and mild groups were in between the control
and severe groups, with irregular velocity changes.

Fig. 9. Speed profile of a swinging motion. Blue curve is control, orange
curve is mild hemiparesis, green curve is moderate hemiparesis, red
curve is severe hemiparesis.

B. Feature significance analysis
Fig. 10 (a) shows the mean and standard deviation of the

features for the four categories of participants. All features
are positively correlated except for movement variance and
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Fig. 10. Significance analysis of features. (a) means and standard deviations of characteristics of participants in different categories and (b) AUC
values of characteristics with respect to distinguishing categories.

TABLE II
SUMMARY OF SIGNIFICANT FEATURES (MEAN ± SD) IN RELATION TO THE CORRELATION COEFFICIENT OF THE CORRESPONDING RANK

reaction time, which are negatively correlated with dyskinesia.
The values of each feature in the graph are normalized to facil-
itate comparison and viewing between features. Most features
vary monotonically with motor ability. We can observe that for
the features in the preparation stage, the differences between
the control and hemiparesis groups are large, and all features
are statistically significant when distinguishing between the
two groups. And the same results were shown between the
moderate and severe groups. The results were slightly different
when comparing the mild and moderate groups, and all three
features were statistically significant except for the remaining
time. This indicates that the features of the preparation stage
are important at each level of the fuzzy reasoning system.
For the features of the competition stage, only the kinematic
features of the hand and elbow differed more between the
control and hemiparesis groups, suggesting that information
about these two joints is important for differentiation in the
first layer. Moreover, the difference in each feature was larger
between the severe and moderate groups, suggesting that the
competition stage is critical for differentiation in the second
layer. In contrast, only average hand speed and average elbow
angular velocity differed between moderate and mild.

Fig. 10 (b) shows the correlation coefficients for all features
in each layer, with the specific values shown in Table II. If a
number is marked after the correlation coefficient, it indicates
that the feature is statistically significant in that layer. For dif-
ferentiating the control and hemiplegic groups, it was observed
that most of the features in the preparation stage and the
kinematic features of the hand and elbow in the competition
stage were more discriminative, while the features of extension
ability, shoulder kinematic information, and reaction time were
less discriminative. In this layer, the highest correlation coef-
ficient was found for average elbow angular velocity (0.73),

followed by average hand speed (0.71) and remaining time
(0.70), so the discriminatory ability to combine Instructed and
spontaneous movements were stronger. For the differentiation
{moderate, mild} and severe groups, the discriminative power
was found to be stronger for both stage features and higher
for the preparation stage in terms of correlation coefficients,
i.e., movement variance (0.71), remaining time (0.71) and
movement length ratio (0.70), thus indicating that Instructed
motion was more effectively discriminated in this layer. For
the discrimination of the mild and moderate groups, it was
observed that the correlation coefficient values of the features
were generally lower than those of the first and second
layers, indicating that the two groups of participants were
closer and more difficult to distinguish. The top three features
in terms of correlation coefficient were average hand speed
(0.67), movement length ratio (0.65), and maximum stretch
ratio (0.65). Thus, the results in this layer were similar to
those in the first layer, combining Instructed and spontaneous
movement features for better discrimination.

C. Fuzzy Inference system
After identifying the features as input variables for the fuzzy

system, we defined two fuzzy sets for the input variables,
namely “Low” and “High”. Table III shows the four vertex
values of the trapezoidal membership function for each input
variable, and the vertex values for each feature were set given
the advice of the professional therapist.

After determining the fuzzy sets of the input variables,
two fuzzy sets are defined for the output variables, namely
“Possible” and “Impossible”, and the output values of the
two fuzzy sets are the probabilities of the output variables(As
shown in Table IV). When the output value of “Possible” of
the output variable hemiparesis in FIS1 is 0.64 and the output
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TABLE III
FUZZY SET OF INPUT VARIABLES

TABLE IV
FUZZY SET OF OUTPUT VARIABLES

value of “Impossible” is 0.36, then the output value of the
output variable control has an output value of 0.36 for “Pos-
sible” and 0.64 for “Impossible”, and the output probability
of “Possible” for the former is greater than that of the latter.
The output probability of “Possible” is greater than that of the
latter, i.e., it is classified as hemiparesis.

Table VI shows the fuzzy rules of the fuzzy system, all
designed with the advice of the therapist. Due to the hierar-
chical structure of the fuzzy system, the number of fuzzy rules
is greatly reduced, where the number of rules for each sub-FIS
is 8, and the total number of rules for the fuzzy system is 24.
For example, in rule 6, when the participant’s remaining time
is “High”, the average hand speed is “Low”, and the average
elbow angular speed is “High”, according to the therapist’s
suggestion, the participant is at hemiparesis as impossible and
at control as possible.

D. Classification Results
The classification results are shown in Table VI. We com-

pared the use of all variables with the use of one stage variable
and compared the fuzzy inference system with traditional
machine learning classifiers, i.e., SVM, CART, and kNN.
The inputs to these classifiers were used with statistically
significant features. The FIS using all features showed the
best performance among all classifiers, with average accuracy,
recall, precision, and F1 scores of 93.5%, 87.2%, 87.2%, and
86.2%, respectively. For the FIS using the preparation stage
features, the average accuracy, recall, precision, and F1 scores
were 87%, 74.7%, 75.7%, and 74.5%, respectively. For FIS

using competition stage features, the average accuracy, recall,
precision, and F1 scores were 81.7%, 64%, 65.5%, and 63.7%,
respectively. In contrast, SVM, CART, and kNN have poorer
performance, with lower accuracy and F1 scores than the fuzzy
system.

VI. DISCUSSION

When a stroke causes limb paralysis, it usually leads to
weakness in the upper extremities of the patient [41]. A large
number of studies have been devoted to the rehabilitation and
assessment of patients by means of games [42]. The serious
game designed in this study aims to provide a comprehensive
evaluation of daily mobility and kinematic information of the
upper limbs in patients with hemiparesis. Furthermore, it is
designed to be both motivating and clinical. Stroke patients
do not need to participate in manual assessment but simply
play the game to obtain the assessment results. The system
can help hospitals reduce the investment of medical resources
and relieve the pressure on physicians. Our study shows that
serious games should assess patients from multiple aspects,
and the design of the game should take into account the
overall limb movement of patients, especially when serious
games are used instead of clinical assessment, and should try
to cover information of each joint. In addition, our proposed
system was designed with reference to the FMA-UE and with
the advice of professional therapists to enable our system can
classify the degree of upper limb paralysis of participants by
means of a game instead of a clinical scale.

According to the trajectory of four types of participants
performing the guided movement during the preparation stage
(shown in Fig. 8), the control group demonstrated a perfor-
mance closest to the standard trajectory and were all able to
complete the task within a short duration, without exhibiting
any arm tremors. In the mild group compared to the control
group, although the mild group was eventually able to lift to
the end area, there was excess movement, and we observed a
slight tremor in the arms of some participants, thus deviating
from the standard trajectory, with the green and black curves
being the most pronounced. The elapsed time also became
significantly more. With increased motor impairment, most
participants needed to make multiple attempts, leading to
irregular trajectories appeared, and more time was needed to
complete the task. When in severe hemiparesis, the range
of motion was limited due to upper limb paralysis, which
led to a decrease in the ability to extend the arm, which
was accompanied by severe tremors and the inability to
extend the arm to the prescribed area, which affected their
ability to complete the task. As can be seen in Fig. 9, for
performing spontaneous movements, the velocity profile of
the healthy participants steadily increased, which indicates
that their movements were smooth and without any jitter.
In contrast, the velocity curve of the hemiparesis group was
zigzagged, which indicates that the hand produced tremors
during the movement toward the target, and the movement
was poorly completed. In addition, participants in the severe
group were unable to move their hands quickly, which is
consistent with their clinical performance. This demonstrates
the soundness of the game design in that not only were patients
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TABLE V
FUZZY RULES

TABLE VI
CLASSIFICATION PERFORMANCE WITH LEAVE-ONE-SUBJECT-OUT CROSS-VALIDATION

of all levels able to participate in the game but there was a
strong differentiation in the performance of participants within
the game.

Based on the feature analysis presented in Fig. 10 (a), the
control and hemiparesis groups were effectively differenti-
ated with significant features in both the preparation and
competition stages and with higher correlation coefficients in
layer 1 than in layer 2 and layer 3 (as shown in Fig. 10 (b)).
Moreover, it was observed that during spontaneous movements
in the competition stage, the hand and elbow kinematic fea-
tures in the control group were significantly different from
the hemiparesis group, which is consistent with the findings
of Eva et al. [43], where normal individuals were able to

produce more elbow movements during the exercise. And for
distinguishing the {moderate, mild} group from the severe
group, we found that the features of the preparation stage
were more meaningful. This may be due to the fact that
severe hemiparesis is more hampered in performing guided
movements compared to spontaneous movements. We also
found that the reaction time was significantly greater in the
severe group compared to the other groups, which may be
due to severe damage to the motor areas of the cerebral cortex,
resulting in an inability to move the affected limb in a short
period of time [44]. For differentiating between the mild and
moderate groups, better discrimination was observed with the
features of the preparation stage and the kinematic features of
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the hand and elbow. This suggests that the mild group not only
performed better in daily activities but also had more flexible
hand movements and was able to generate more movements
in the elbow.

From analysis of the above features, it can be observed
that kinematic information of the joints plays a crucial role
in differentiating the categories due to the fact that our system
quantifies elbow and shoulder movements of the patients
during spontaneous movements, such as swings during the
competition stage. For patients with hemiparesis, limb paral-
ysis leads to differences in movement below the shoulder or
elbow, which in turn affects the speed of hand movement.
Therefore, we propose that it is reasonable to consider the
hand-elbow-shoulder as a motion whole due to the analysis
of each joint to avoid biases arising from non-upper limb
movements.

As shown in Table VI, the fuzzy inference system designed
based on the therapist’s experience achieved the highest mean
accuracy with better recall, precision, and F1 score. This
outcome indicates that this classifier is unbiased. The highest
accuracy was observed in the control and severe groups,
indicating better separability between these two categories.
This result is consistent with the clinical fact that normal
individuals have significantly better motor abilities than hemi-
plegic patients, and severe hemiplegic patients have almost no
motor abilities. In contrast, the accuracy of identifying mild
and moderate hemiparesis was lower. We believe the reason
for this is that patients with mild and moderate hemiparesis
perform similarly in games, and using only somatosensory
devices fails to collect fine data, such as finger grip strength,
which can lead to biased classification results. Furthermore,
we observed higher performance of classifiers designed using
features from both the preparation stage and the competition
stage. This finding justifies the design of our game, which was
able to improve the classification performance by combining
daily activity ability and kinematic information. Moreover, the
classification performance of machine learning classifiers is
not as good as that of fuzzy inference systems. This problem is
caused by the small sample size of the data, which hinders the
classifier from learning the correct decision boundaries [45].
Therefore, machine learning methods may not be applicable
to small sample datasets.

We conducted this work to address three issues that cur-
rently exist with serious game-based assessments. Firstly,
we proposed a new serious game design approach to alleviate
patients’ tension, loss, and irritation during gameplay. Specif-
ically, we divided our game into two stages, a preparation
stage and a competition stage. During the preparation stage,
no intensive requirements are imposed, providing sufficient
relaxation time for the patient’s body and mind. This stage also
assesses the patient’s upper limb daily life ability. Secondly,
we addressed the problem of missing joints in most current
games by facilitating patients to perform spontaneous move-
ments through the ping-pong game during the game stage.
We used the kinematic information collected during this period
on the hand, elbow, and shoulder joints to comprehensively
evaluate the patients’ upper limb motor functions, thereby
improving the accuracy of the assessment results. Finally,

we developed a classification model using a fuzzy inference
method that incorporated the experience of rehabilitation ther-
apists. The proposed model resolves labeling difficulties and
overfitting issues generated by model training. The resulting
classification accuracy was 93.5%, with clinical reference
value. In addition, studies revealed some effective kinematic
features, such as average hand speed, maximum elbow angular
velocity, and average elbow angular velocity. Further inves-
tigations showed that these kinematic features were signifi-
cantly associated with the extent of motor nerve damage in
patients [46], particularly the elbow angular velocity. This
finding provides a priori knowledge for other researchers to
design automated models for the identification of upper limb
hemiparesis in stroke patients. Moreover, patient’s multi-round
exercise data showed a significant improvement in upper limb
joint motion after all 3 rounds of play, with the instantaneous
motion speed of the hand, elbow, and shoulder improved by
15%, 17%, and 9%, respectively. The proposed serious game
method may further improve the patients’ motor ability and
have both recognition and rehabilitation therapeutic effects.
This finding encourages further investigation of the effect of
serious games in motor rehabilitation.

A. Limitations
Although the results of our proposed assessment system

are promising, some limitations should be taken into account.
Firstly, the system is unable to detect the grip strength of the
patient’s hand during the game. This may lead to inaccurate
assessment results for some patients with poor grip func-
tion but otherwise good function. To address this limitation,
lightweight hardware could be added in the future to assist in
the assessment. Secondly, the serious game system is currently
limited to the assessment of the level of upper limb motor
impairment. It remains unclear whether the system is effective
for intervention training of patients’ upper limbs, whether it
can be applied to rehabilitation training in the future, and
whether it can improve patients’ upper limb motor functions.

VII. CONCLUSION
In this paper, a somatosensory upper extremity serious game

assessment system was designed to assess the grade of upper
extremity hemiparesis in patients with post-stroke hemiparesis.
Tests on 32 participants showed that the game assessment
system was able to distinguish well between different levels
of paralysis, with an accuracy of 93.5% compared to the
therapist’s manual scale assessment.

Ideally, when assessing and training patients using serious
games, consideration should be given to their emotional state.
We design different game stages specifically for patients with
dysphoric moods. In our future work, we aim to investigate
the potential benefits of emotion facilitation in serious games.
Leveraging the plasticity of the virtual environment to induce
relaxation in patients may improve their performance or speed
up the recovery process.
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