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Abstract— Accuracy of electroencephalography (EEG)
source localization relies on the volume conduction head
model. A previous analysis of young adults has shown
that simplified head models have larger source localiza-
tion errors when compared with head models based on
magnetic resonance images (MRIs). As obtaining individual
MRIs may not always be feasible, researchers often use
generic head models based on template MRIs. It is unclear
how much error would be introduced using template MRI
head models in older adults that likely have differences in
brain structure compared to young adults. The primary goal
of this study was to determine the error caused by using
simplified head models without individual-specific MRIs in
both younger and older adults. We collected high-density
EEG during uneven terrain walking and motor imagery for
15 younger (22±3 years) and 21 older adults (74±5 years)
and obtained T1-weighted MRI for each individual. We per-
formed equivalent dipole fitting after independent compo-
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nent analysis to obtain brain source locations using four
forward modeling pipelines with increasing complexity.
These pipelines included: 1) a generic head model with
template electrode positions or 2) digitized electrode posi-
tions, 3) individual-specific head models with digitized elec-
trode positions using simplified tissue segmentation, or 4)
anatomically accurate segmentation. We found that when
compared to the anatomically accurate individual-specific
head models, performing dipole fitting with generic head
models led to similar source localization discrepancies
(up to 2 cm) for younger and older adults. Co-registering
digitized electrode locations to the generic head models
reduced source localization discrepancies by ∼6 mm. Addi-
tionally, we found that source depths generally increased
with skull conductivity for the representative young adult
but not as much for the older adult. Our results can help
inform a more accurate interpretation of brain areas in EEG
studies when individual MRIs are unavailable.

Index Terms— EEG, forward modeling, head model,
source localization.

I. INTRODUCTION

ELECTROENCEPHALOGRAPHY (EEG) source local-
ization relies on accurate forward head models to parse

electrode channel level signals into brain source signals. Blind
source separation approaches like Independent Component
Analysis (ICA) can identify brain signals contributing to
recorded scalp electrode potentials [1]. Source localization
identifies the brain locations that generate the separated elec-
trical brain signals [2], [3]. One important factor contributing
to the accuracy of EEG source localization is the volume
conduction of the head when using forward modeling [4]. Vol-
ume conduction head models are described by head anatomy
and tissue electrical properties. Head models with realistic
modeling of anatomical structures can substantially improve
the accuracy of EEG source localization based on many
simulation studies [5], [6], [7], [8], [9], [10]. Additionally,
a previous analysis of young adults has shown that simplified
head models (e.g., spherical head models) have larger source
localization errors when compared with more realistically
shaped head models based on magnetic resonance images
(MRIs) [4]. However, it has yet to be investigated how source
localization results differ between using simplified head mod-
els and anatomically accurate head models in older adults. It is
plausible to expect that errors might be greater in older adult
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participants than in younger adults, given the brain atrophy
that occurs with aging and the increased distance between the
skull and cortex.

One common approach to performing EEG source localiza-
tion is equivalent dipole fitting [1], [11]. This approach first
performs independent component analysis of the EEG signal to
identify: 1) the independent components whose time series are
maximally independent of each other, and 2) a weight matrix
describing the projection from each of the independent compo-
nents to the scalp electrodes [12], [13]. The independent com-
ponents from brain sources have scalp projections that closely
resemble the projection of a single equivalent brain dipole [1].
The locations of each brain source can then be estimated using
dipole fitting to identify the dipole positions and orientations
that can best describe the scalp projection of the independent
components.

There is a need to compare source localization results using
generic head models based on template MRIs versus using
individual-specific head models from individual MRIs. Despite
the benefits of using anatomically accurate head models for
EEG source localization, the acquisition of individual MRIs
can be costly and may not be feasible for all EEG studies
due to many reasons, such as a lack of access to an MR
scanner. Creating individual head models is also computa-
tionally expensive. As a result, it is common to use generic
head models available in open-source software packages such
as EEGLAB [14] to perform source localization [15], [16].
These generic head models are usually created based on the
template MRIs (e.g., ICBM 152 [17]) from young adults,
which may not provide the best fit for data from older adult
participants.

Because prior head model comparisons have relied exclu-
sively on young adults, it is necessary to evaluate the
effect of head models on source localization in older adults.
Morphological changes in the aging brain can influence
the electrical properties of the head model during forward
modeling [18], [19], [20]. Age-related changes include a
decrease in total brain mass [21], cortical thinning [22], cere-
brospinal fluid expansion [18], ventricles enlargement [23],
and gyral atrophy [24], [25]. These age differences in brain
structure can influence the electrical properties of the head
model during forward modeling. For example, cerebrospinal
fluid volume increases in ventricles and between the cortex
and the skull due to overall atrophy with aging. Since the
cerebrospinal fluid is more conductive than the skull and
the brain, increased cerebrospinal fluid shunts more current
and attenuates scalp potentials for older adults compared to
younger adults [19], [26], [27]. While these prior studies
investigated the effects of age differences in brain struc-
ture on EEG forward modeling, further work is needed
to examine how these changes may affect EEG source
localization.

Another important factor affecting the EEG source local-
ization estimations is the electrode locations on the scalp [4].
Electrode location shifting by 5◦ could result in about 10 mm
localization error [4], [28]. Using a structural scanner to
digitize electrode locations and fiducial locations can improve

the co-registering of the electrodes to the head model with high
reliability and low variability [29]. These digitized electrode
locations can then be aligned to the individual-specific head
model or the generic head model to perform EEG source
localization.

Skull conductivity also has marked effects on head model
modeling and EEG source localization [30], [31], [32].
A large range of skull conductivity has been
reported [33], [34], [35], [36], [37], [38]. For example, a recent
review paper by McCann et al. reports the estimates of skull
conductivity to range from 0.0008 S/m to 0.289 S/m [26]. The
uncertainty of skull conductivity values could lead to large
variations in source locations by centimeters [32]. Since aging
is associated with lower skull conductivity [39], [40] and the
ground truth of skull conductivity is unknown, understanding
how skull conductivity affects the estimated source location
is important for interpreting brain activities in EEG studies
of older adults.

In this study, we aimed to quantify the effect of using
simplified head models on source localization using dipole
fitting in both younger and older participants. Previous liter-
ature suggests that individual-specific MRIs and head models
produce the most accurate localization of source locations [4].
However, obtaining individual-specific MRIs for source local-
ization may not be possible in many instances. Thus, the
primary goal of this study was to determine the error caused
by using simplified head models without individual-specific
MRIs in both younger and older adults. We hypothesized that
simpler head models would have larger source localization
discrepancies compared to the most anatomically accurate
head model. We also hypothesized that source localization
differences between simplified generic head models and the
most anatomically accurate head model would be higher in
older adults versus younger adults because of larger variations
in older adult anatomy compared to commonly used MRI
templates. To perform a thorough analysis of forward mod-
eling error on source location estimations, we further quan-
tified source localization discrepancies introduced by inexact
electrode locations, inaccurate brain region segmentation, and
variations in skull conductivity. We collected high-density
EEG data on both younger and older adults performing uneven
terrain walking and motor imagery tasks and obtained a T1-
weighted MRI for each participant. We performed equivalent
dipole fitting after independent component analysis to obtain
brain source locations using four forward modeling pipelines
with increasing complexity. These pipelines included: 1) a
generic head model with template electrode positions or
2) digitized electrode positions, 3) individual-specific head
models with digitized electrode positions using simplified
tissue segmentation, or 4) anatomically accurate segmenta-
tion. Additionally, we conducted a sensitivity analysis to
assess how skull conductivity affects source locations for
three younger and three older participants. These results will
provide a better understanding of the factors that affect EEG
source localization and enable a more accurate interpretation
of brain activation in the older adult population for EEG
studies.
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TABLE I
PARTICIPANT CHARACTERISTICS

II. METHODS

A. Participants
We analyzed a dataset with 15 younger adult participants

and 21 older participants from the ongoing Mind in Motion
study (Table I) [41]. Full inclusion and exclusion criteria were
reported by Clark et al. [41]. Participants were excluded for
self-reported neurological or severe cardiovascular, orthope-
dic, or psychiatric diagnoses. Participants were also excluded
if they scored <23 on the Montreal Cognitive Assessment
(MoCA). All participants provided informed consent before
participating. The study was conducted in accordance with
the Declaration of Helsinki and approved by the Institutional
Review Board of the University of Florida (IRB 201802227).

B. Experimental Protocol
The experimental protocol is a subset of the larger study

(Mind in Motion, NCT03737760). Details of the full protocol
were provided in [41]. The experiment protocol included one
session of EEG assessments and one session of MRI scans.
The two sessions were conducted on separate days within
approximately 30 days or less of each other. Two of the older
adults were excluded from further analysis because they had
an MRI scan more than one year after their first EEG visit
due to the COVID-19 pandemic in 2020. Three of our MRI
scans for younger adults were collected about six months to
a year later than the EEG visit due to the same reason. Since
there is usually no substantial brain structural change occurring
within six months in younger adults [42], this minor brain
structural change would very unlikely impact our analysis with
younger adults. Thus, we kept the three younger adults in
our analysis. During the EEG session, participants completed
trials including treadmill walking on four different levels
of uneven terrain (flat, low, medium, high) and at different
walking speeds (0.25m/s, 0.5m/s, 0.75m/s, and 1.00 m/s).
The order of the trials was randomized. Details of the study
design were reported in the previous papers [41] and [43].
Participants completed two trials per condition, and each trial
lasted for 3 minutes. They also completed a 3-min resting trial
and a 10-min seated motor imagery trial. During the motor

imagery trial, participants imagined completing different levels
of uneven terrain per instructions on the computer monitor.
In total, there were approximately 60 minutes of EEG data
for each participant.

During this visit, participants wore a custom-made dual-
layer EEG cap (ActiCAP snap sensors; Brain Products GmbH,
Germany) [44], [45], including 120 scalp electrodes and
120 noise electrodes. The scalp electrodes followed a 10-
05 electrode system. We inverted and mechanically coupled
noise electrodes to the scalp electrodes [44], [45]. We used
the data from noise electrodes to help remove artifacts during
EEG processing. We used a conductive fabric to bridge the
noise electrodes as an artificial skin circuit. We re-purposed
eight of the original 128 scalp electrodes (TP9, P9, PO9,
O9, O10, PO10, P10, and TP10) to measure the muscle
activity at sternocleidomastoid and trapezius on the left and
right sides [45]. We aimed to keep scalp electrode impedance
values below 15k� during the setup. We digitized the electrode
locations using a structural scanner (ST01, Occipital Inc., San
Francisco, CA). We used four LiveAmp 64 amplifiers and
logged EEG data at 500Hz. The online reference and ground
electrodes were at CPz and Fpz, respectively.

C. MRI Acquisition
On a separate day, we collected structural MRIs for partic-

ipants. We obtained the anatomical brain structure from a T1-
weighted sequence. The parameters for this anatomical image
were: repetition time (TR) = 2000 ms, echo time (TE) =

2.99 ms, flip angle = 8◦, voxel resolution = 0.8 mm3, field of
view = 256 × 256 × 167 mm2 (4:22 minutes of scan time),
using a 64-channel coil array on a 3T Siemens MAGNETOM
Prisma Magnetic Resonance scanner.

D. Data Processing
1) Magnetic Resonance Imaging Processing: We processed

the T1-weighted MRIs using Fieldtrip (v.20210910) for each
participant. The images were resliced to be isotropic (1 mm3).
We digitized the fiducial locations (left/right preauricular,
nasion) on the MRIs. To compute the gray matter volume from
the T1-weighted image, we used the Computational Anatomy
Toolbox (CAT12, version r1278). We used the default CAT12
preprocessing steps to obtain the whole-brain gray matter mask
and ventricle mask for each participant. We also obtained the
total intracranial volume for each participant to normalize the
gray matter and ventricular volumes (Table I).

2) EEG Processing: We processed all EEG data
using custom Matlab scripts (R2021b) and EEGLAB (v
2021.0) [14](Fig. 1). We first applied a 1Hz (−6dB at 0.5Hz)
high-pass filter with a zero-phase, finite impulse response
(eegfiltnew) on all scalp, noise, and muscle channels to
remove drift for each trial. We used the CleanLine plugin
in EEGLAB to remove line noise at 60 Hz and 120 Hz.
We then merged all trials. We rejected bad channels that were
eight standard deviations away from the mean of EEG and
noise channels, respectively. We then used iCanClean [46] to
remove the EEG artifacts that highly correlated with noise
electrodes (rho2

= 0.9 with a two-second moving window).
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Fig. 1. Data processing flowchart with steps for EEG pre-processing, forward modeling, and source localization. Blue blocks indicate steps for
forward modeling. We constructed four forward modeling pipelines 1-4 with increasing levels of complexity. Lastly, we warped the brain source
locations to Montreal Neurological Institute (MNI) space to allow for inter-subject comparisons across forward modeling pipelines.

We used clean_artifacts with default parameters in EEGLAB
to identify bad channels and noisy time frames except for
the following parameters (chan_crit1 = 0.5, win_crit1 = 0.4,
winTol = [10, -Inf]). These parameters were selected in a
preliminary analysis of a subset of the data, which aimed to
minimize the number of channels and time frames rejected
while maximizing a good number of brain components
by ICLabel (Supplementary Fig. 1) [47]. We retained 116
[min = 102, max = 120] channels and rejected a maximum
of 10% of time frames. We used adaptive mixture independent
analysis (AMICA) [48] to decompose the preprocessed EEG
data into statistically independent components. We later used
the independent components to perform source localization.

E. EEG Forward Modeling
We constructed four forward modeling pipelines, num-

bered 1-4, with increasing levels of complexity (Fig. 2).
Each pipeline included steps to create the head model mesh,
align electrode locations to the head model, and compute
the leadfield matrix. Pipelines 1 and 2 used the three-layer
boundary element generic head model in EEGLAB DIPFIT
toolbox (v 4.3). This three-layer head model was based on
the ICBM152 brain template in the Montreal Neurological
Institute (MNI) coordinate from a young adult population (25
± 5yrs) [17]. The conductivity values for each tissue type were
as follows: gray matter: 0.33 S/m, scalp: 0.33 S/m, and skull:
0.0042 S/m [1] (Table II).

Pipelines 3 and 4 created individual-specific finite element
head models based on individual MRIs. The conductivity
values used for each tissue type for the individual-specific head
models were as follows: gray matter: 0.33 S/m; white matter:
0.126 S/m; cerebrospinal fluid: 1.65 S/m; scalp: 0.33 S/m;
air: 2.5 × 10−14S/m [49], [50] (Table II). We examined three
different skull conductivity values for the individual-specific
head models: 0.0042 S/m, 0.01 S/m, and 0.02 S/m. We used
these skull conductivity values because 0.0042 S/m was con-
sistent with the generic head model in EEGLAB [51], [52],

TABLE II
TISSUE CONDUCTIVITY FOR EACH PIPELINE

0.01 S/m was a commonly used conductivity value for the
skull [30], [53], and 0.02 S/m was a suggested skull conductiv-
ity value in a recently published meta-analysis [26] (Table II).
The conductivity values for gray matter and scalp are chosen
to be consistent with the generic head model in the DIPFIT
toolbox. We did not include anisotropic conductivity. Below
are details about each pipeline.

1) Pipeline 1: We used the three-layer generic head model
in EEGLAB DIPFIT toolbox. We aligned the generic electrode
locations (10-05 Template) to the head model.

2) Pipeline 2: We used the three-layer generic head model
in EEGLAB DIPFIT toolbox, similar to Pipeline 1. How-
ever, for Pipeline 2, we aligned the digitized electrode loca-
tions to the generic head model for each participant, rather
than assume generic electrode locations. We obtained the
participant-specific electrode locations using a 3D structural
scan of the participant’s head using getchanloc (v 3.01)
toolbox in EEGLAB. We co-registered the digitized electrode
locations to the generic head model by first aligning to fiducial
locations (left/right preauricular, nasion), and then we resized
the electrode locations to best align on the generic head model.

3) Pipeline 3: We followed the Fieldtrip-SIMBIO pipeline
to create the individual-specific head model [53]. We used
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Fig. 2. Four forward modeling pipelines with increasing levels of complexity. Pipelines included steps that created the head model mesh,
aligned electrode locations to the generic head model or individual-specific head model, and computed leadfield matrix. Pipeline 1-2 used an
available three-layer generic head model in EEGLAB. Pipeline 1 aligned template electrode positions to the generic head model. Pipeline 2 aligned
digitized electrode positions to the generic head model. Pipeline 3-4 created individual-specific head models based on individual MRIs. Pipeline 3
used Fieldtrip-SIMBIO to perform simplified tissue segmentation when creating the head models. Pipeline 4 used headreco toolbox to perform
anatomically accurate tissue segmentation when creating the head models.

the default settings in ft_volumesegment to segment individual
MRIs into five tissue layers (scalp, skull, cerebrospinal fluid,
gray matter, and white matter; Fig. 3a,b). Hexahedral meshes
were generated with recommended node-shift parameters
using prepare_mesh_hexahedral. We co-registered digitized
electrode locations to the individual-specific head model by
aligning the fiducial locations digitized in the MRIs to those
in the structural scan. We calculated the leadfield matrix for
each individual-specific head model using the SIMBIO toolbox
in Fieldtrip. We distributed source positions in the gray matter
5 mm apart.

4) Pipeline 4 (Most Anatomically Accurate): The difference
between Pipeline 4 and Pipeline 3 was that we used the
headreco toolbox (v 3.2) to perform more accurate tissue
segmentation in Pipeline 4 [54]. Here, individual MRIs were
segmented into six tissue layers (scalp, skull, air, cerebrospinal
fluid, gray matter, and white matter) (Fig. 3a,c). The rest of
the steps were the same as in Pipeline 3. Similarly, we co-
registered the electrode locations to the individual-specific
head model by aligning the fiducial locations and computed
the leadfield matrix using SIMBIO. We distributed source
positions in the gray matter 5 mm apart.

F. Source Localization
We fit each independent component with an equivalent

dipole using ft_dipolefitting function in the Fieldtrip toolbox.
The function worked by placing dipolar sources at different
positions and orientations within the gray matter until it found
the best dipolar source to optimally explain the measured

Fig. 3. Example of tissue segmentation using Pipeline 3 and Pipeline 4.
(a - left column) Raw MRI of one representative participant. Top row
and bottom row represent two different slices of the MRI. (b - middle
column) Pipeline 3 segmented the image into five tissue layers, including
scalp, skull, cerebrospinal fluid, gray matter, and white matter. (c – right
column) Pipeline 4 segmented the image into six tissue layers, including
air, scalp, skull, cerebrospinal fluid, gray matter, and white matter. Note
the marked difference in skull segmentation between the two pipelines
as Pipeline 3 assumed a constant skull thickness.

data (i.e. to minimize the difference between forward modeled
scalp topography and the measured data). We normalized indi-
vidual MRIs to the MNI template using ft_volumenormalise
which used SPM 12 with default settings to compare the
dipole locations fitted across the forward modeling pipelines.
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We visually inspected the normalization results. We obtained
the transformation matrix from the normalization and warped
the dipole locations to the MNI template.

G. Identify Brain Components
We retained brain components using the following criteria:

1) ICLabel [47](version: lite) classified the brain probability
of greater or equal to 50%, 2) negative slope of the power
density spectrum for 2-40 Hz to remove muscle components,
3) residual variance of dipole fitting <15%, 4) minimal
high-frequency power coupling using PowPowCAT toolbox to
further remove muscle components [55], and lastly, we visu-
ally inspected all the components and removed non-brain
components.

H. Comparison of Source Localization Across Pipelines
We used two metrics to compare the source localization

results across pipelines. First, we computed the residual
variance of the dipole fitting by calculating the difference
between the modeled scalp topography and the measured data,
normalized to the measured data. Residual variance measured
the goodness of fit of the dipole fitting. Residual variance
(%) was between 0% (perfectly matched) and 100% (the most
dissimilar).

Second, we calculated the Euclidean distance between the
dipole locations fitted by Pipelines 1-3 and that by fitted by
Pipeline 4 (i.e., the most anatomically accurate) to understand
how dipole locations varied across forward modeling pipelines.

I. Sensitivity Analysis of Skull Conductivity Values
We performed a sensitivity analysis on how the esti-

mated source locations changed with skull conductivity
using Pipeline 4 for three young adults and three older
adults [32], [56]. These participants were randomly selected
from participants who had more than ten brain compo-
nents. Due to the long computation time (∼2 weeks/person),
we could not perform the sensitivity analysis on the whole
dataset. We focused our analysis on skull conductivity val-
ues because multiple studies have highlighted the effect of
skull conductivities on the forward head models and source
localization [30], [32]. We varied the skull conductivity values
in the range of 0.0016 – 0.033 S/m in 100 steps [32], [56].
We computed the source depth as the minimum distance of the
source location to the skull surface for each dipole as described
in previous literature [32], [57].

J. Statistical Analysis
All statistical analyses were performed in Matlab 2021b

(Mathworks). We first compared the demographics and brain
structure (gray matter volume and ventricle volume) metrics
between the two age groups using two-sample t-tests. In cases
where the normality assumption for the t-test was violated as
determined by Shapiro-Wilk’s test, we conducted nonparamet-
ric Wilcoxon rank-sum tests to examine age group differences.
We conducted a Pearson chi-square test to test for differences
in the sex distribution within each age group.

Fig. 4. Boxplot of (a) correlation of residual variance between pipelines
across participants and (b) residual variance of brain components (n =

15 younger adults; n = 19 older adults). Skull conductivity value was
0.01 S/m for the individual-specific head models. (a) Correlation of
residual variances of brain components from Pipeline 1-3 with the most
anatomically accurate Pipeline 4 across participants. (b) Median resid-
ual variance of brain components for each pipeline across participants.
Solid: younger adults; Stripes: older adults. (∗ p < 0.05).

We used linear mixed-effect models to examine the rela-
tionship between the outcome measures (residual variance
and Euclidean distance) and independent variables pipelines
and age groups. For residual variance, we included the main
effects for Pipeline (1, 2, 3, 4) and Age group (younger
and older) and the interaction between Pipeline and Age in
the model. The reference level was Pipeline 4 and younger
adults. For Euclidean distance, since we computed Euclidean
distances relative to dipole locations estimated by Pipeline 4,
we included the main effects for Pipeline (1, 2, 3) and
Age group (younger and older) and the interaction between
Pipeline and Age. The linear mixed-effect models were fit
for each outcome measure at each skull conductivity value
used for individual-specific head models (0.0042S/m, 0.01S/m,
0.02S/m). For all models, we included a random intercept to
account for unmodeled sources of between-subject variability.
Post-hoc comparisons were adjusted using the Bonferroni test.
All significance levels were set to alpha <0.05.

III. RESULTS

A. Effects of Head Model Simplicity on Source
Localization

The number of brain components was similar for younger
adults and older adults (13 ± 5 versus 11 ± 5, t(25) = 1.0, p =

0.30) using Pipeline 4. We only retained brain components for
further analysis.

Residual variances for brain components from Pipelines
1-3 were highly correlated with the residual variances from
Pipeline 4 across all participants (median [interquartile] r =

0.96 [0.03], r = 0.97 [0.05], r = 0.99 [0.01]; Fig. 4a).
There was a significant effect of Pipeline on residual variance
(F(1,128) = 3.74, p = 0.013), but there was no effect of
Age (F(1,128) = 0.92, p = 0.34; Fig. 4b). At a group level,
residual variances for Pipeline 1 were statistically higher than
Pipeline 4 (5.23% [2.0%] vs. 5.17% [2.2%], p = 0.023), but
the difference between the two pipelines was small.

Using simplified head models and template electrode loca-
tions during forward modeling demonstrated large localization
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Fig. 5. Dipole locations estimated by four forward modeling pipelines
with increasing complexity warped to a template MRI in MNI space and
representative brain components for one young participant. Yellow dots:
dipoles estimated using Pipeline 1; Red: Pipeline 2; Green: Pipeline 3;
and Blue: Pipeline 4. Dipoles that were grouped together were estimated
using the same brain component.

discrepancies compared to the anatomically accurate reference
Pipeline 4 (Fig. 5, Supplementary Fig. 2 for all participants).
We only reported statistical results here for 0.01 S/m skull con-
ductivity to improve readability as the statistical results when
using other skull conductivities were similar (Supplementary
Table 1). In general, there were large discrepancies between
the dipole location estimated using Pipeline 1 and Pipeline 4
in the anteroposterior direction. We found a significant effect
of Pipeline on Euclidean distances between dipoles (F(1,96) =

67.0, p < 0.001). The Euclidean distances between Pipelines
1-3 and the most anatomically accurate Pipeline 4 (median
[interquartile]) were 19.1 [8.1] mm, 13.1 [2.8] mm, and 5.7
[2.3] mm when skull conductivity was 0.01 S/m for the
individual-specific head models (Fig. 6a). Using template
electrode locations with the generic head model increased the
localization discrepancies by 6 mm compared to using the
digitized electrode locations (Pipeline 1 vs. Pipeline 2; t(96) =

−6.8, p < 0.001).
The maximum localization discrepancies referenced to

Pipeline 4 were 31.5 [13.3] mm, 24 [10.5] mm, and
17 [10.5] mm for Pipelines 1-3, respectively (Fig. 6b).
We did not perform statistical analysis for maximum
discrepancies as the analysis was not included in our
hypothesis.

B. Age-Related Effects on Localization Difference
There was no difference in source localization discrepancies

between the simplified head model and the most anatomically
accurate model in older adults versus younger adults regardless
of the skull conductivity (Fig. 7). We did not find any effect
of Age on the Euclidean distances between dipoles (F(1,96) =

1.53, p = 0.22). The localization discrepancies between
Pipeline 2 with the generic head model and Pipeline 4 with
the anatomically accurate head model were similar between
younger and older adults (12.9 [2.5] mm vs. 13.4 [4.4] mm;
t(96) = 2.1, Bonferroni corrected p = 0.12 when the skull
conductivity was 0.01S/m; Fig. 7b). Similarly, localization

Fig. 6. Median (a) and maximum (b) Euclidean distances between
dipole fitted following Pipeline 1-3 and the reference Pipeline 4 across
participants (n = 15 younger adults; n = 19 older adults). Skull con-
ductivity value was 0.01 S/m for the individual-specific head models.
Solid: younger adults; Stripes: older adults. Statistical comparisons were
performed for median distances (a) only. (∗p < 0.001).

discrepancies between the most simplified forward modeling
Pipeline 1 with generic head model and template electrode
locations and Pipeline 4 were similar between younger and
older adults (21.6 [7.1] mm vs. 18.1[8.0]mm; t(96) = −2.2,
Bonferroni corrected p = 0.081; Fig. 7a).

C. Sensitivity of Conductivity Values
Dipole locations showed systematic differences with vari-

ation in the skull conductivity (in the range of 0.0016 –
0.033 S/m) for the randomly selected three younger adults
and three older adults using Pipeline 4 (Fig. 8-9, Supple-
mentary Fig. 3-4 for all six participants). In general, source
depth increased with skull conductivity values (Fig.9, Supple-
mentary Fig. 4). Since the most prominent age differences
in gray matter volume and thickness occur in sensorimo-
tor cortices [20], [58], we highlighted the brain sources
near the sensorimotor cortex (Fig.9 Blue trace). The depth
of the brain source at the sensorimotor area increased
sharply until ∼0.01 S/m for all participants. Source depth
increased slowly when skull conductivity increased from
0.01 S/m to 0.033 S/m.
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Fig. 7. Median Euclidean distances between dipoles fitted following Pipeline 1 (a), Pipeline 2 (b), and Pipeline 3 (c) and the reference
Pipeline 4 across participants (n = 15 younger; n = 19 older adults) when the skull conductivity was 0.0042S/m, 0.01S/m, and 0.02S/m for
the individual-specific head models. Solid: younger adults; Stripes: older adults.

Fig. 8. Visualization of brain source locations changing with skull
conductivity for one representative younger (a) and older (b) participant
on the T1-weighted MRIs using Pipeline 4. Color bar ranges from low
skull conductivity (blue) to high conductivity (red). Descriptively, source
depth increased with skull conductivity value.

D. Comparison of Computation Time
Reasonable computation time could be achieved with par-

allel processing (Table III). For Pipeline 3 and Pipeline 4, the
most time-consuming steps were computing the transfer matrix
(ft_prepare_vol_sens) and dipole fitting (ft_dipolefitting) as
previously reported in Vorwerk et al. [53]. Computation time
for both steps could be greatly improved if implementing
parallel processing in MATLAB with parfor. Using 20 CPUs
with 8 GB/CPU takes less than an hour to create the forward
head model.

IV. DISCUSSION

The primary objective of this study was to determine the
errors in source localization caused by using simplified generic
head models versus anatomically accurate individual-specific

Fig. 9. Source depth changed with skull conductivity in one repre-
sentative younger (a) and older (b) participant. Each gray line indicated
one brain component. Blue lines indicate one example brain component
located near sensorimotor cortex for both the younger and older adult.
Scalp topography and visualization of brain source locations changing
with skull conductivity for the highlighted sensorimotor component were
presented on the right side. Red vertical dashed lines indicate the
skull conductivity values (0.0042S/m, 0.01S/m, 0.02S/m) chosen in this
paper.

head models based on MRIs in both younger and older
adults. To perform a full analysis of forward modeling errors
on source estimations, we also quantified source localiza-
tion discrepancies introduced by inexact electrode locations,
inaccurate tissue segmentation, and skull conductivity val-
ues. We extracted independent components from a dataset
using high-density EEG for both younger and older adults
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TABLE III
COMPUTATION TIME FOR EACH PIPELINE

performing walking tasks and motor imagery. We performed
dipole fitting to obtain source locations following forward
modeling pipelines with increasing complexity. Consistent
with our hypothesis, simplified generic head models led to
large source localization discrepancies (up to 2cm) compared
to the most anatomically accurate model for both younger and
older adults. Inexact electrode locations led to an increase in
localization discrepancies by an average of 6 mm compared
to using digitized electrode locations. Performing a simplified
tissue segmentation that assumed constant skull thickness also
led to ∼6 mm of source localization discrepancies com-
pared to implementing an anatomically accurate segmentation.
Contrary to our hypothesis, source localization discrepancies
between the generic head models and the most anatomi-
cally accurate individual-specific head models were similar
between younger and older adults. In addition, we performed
a sensitivity analysis to assess how skull conductivity affected
brain source location. We found that the depth of estimated
sources generally increased with skull conductivity for both
younger and older adults, especially when skull conductivity
was <0.01 S/m. These results demonstrated how the use of
generic head models, inexact electrode locations, simplified
tissue segmentation, and skull conductivity affected EEG
source localization. Overall, a cautious interpretation of EEG
source location is needed when using a simplified generic head
model to perform dipole source localization.

We found large differences in the source location (up to
2 cm) between the simplified generic head model and the
anatomically accurate head model, which were consistent
with the previous literature [4]. Several factors could con-
tribute to the source localization differences between using
a generic head model and an individual-specific head model.
For example, the three-layer (scalp, skull, brain) generic head
model used in the present study did not include a cere-
brospinal fluid layer. Thus, the generic three-layer head model
can distort EEG potentials and dipole source localization as
the cerebrospinal fluid has the highest conductivity value
among all tissues [26]. An average of 4 mm differences in
source localization were reported with and without accounting
for cerebrospinal fluid in the head model [59]. Although
co-registering digitized electrode locations improved source
localization, an average of 13 mm localization discrepancies
were still present. One explanation is that digitized electrode
locations could not be warped perfectly to the generic head
model as co-registering digitized electrodes to the head model
only allowed nine degrees of freedom (scaling, translation,

rotation) in DIPFIT toolbox but not a more precise non-linear
warping method.

A. Age Effects on Localization Difference
Contrary to our hypothesis, source localization differences

between the generic head models and individual-specific head
models were similar in younger and older adults, despite
larger variations in brain structure compared to the template
MRIs in older adults. One potential explanation between our
hypothesis and the observed results is that changes in the
electrical properties of the head with aging may have small
effects on EEG source locations (in millimeters) and may
become unlikely to distinguish from the effects of simplified
head model (in centimeters). A prior study that performed
a forward simulation analysis suggested that a 10% cortical
shrinkage only led to EEG power reduction by ∼3.7 dB [19].
In comparison, older adults demonstrated up to ∼20 dB power
reduction relative to younger adults during resting trials [60].
These results suggest that changes in the electrical properties
of the head may have small effects on EEG signals. Thus,
although cerebrospinal fluid fills up the space where there is
cortex atrophy in older adults, such changes in the electrical
properties of the head may also have a small effect on source
locations (on the scale of millimeters) and become unlikely to
detect. Our analysis suggests that although individual-specific
head models may improve the source localization compared
to the simplified generic head model, there were no additional
benefits of using individual-specific head models for older
adults versus younger adults.

B. Simplified Tissue Segmentation
Simplified tissue segmentation in individual-specific head

models affected source localization. Pipeline 3 used a simpli-
fied tissue segmentation method that assumed constant skull
thickness and neglected details below the skull. We found an
average of 6 mm source localization differences comparing
pipelines using simplified tissue segmentation and anatomi-
cally accurate segmentation. The simplified skull segmentation
was achieved by a dilation of the inner skull and outer brain
surface following the FieldTrip-SIMBIO pipeline [53]. Our
results were in line with prior work demonstrating that head
models with constant skull thickness of 6 mm could lead to
5-10 mm of localization error near the base of the brain when
compared to the anatomically accurate reference model [61].
One minor benefit of using simplified tissue segmentation is
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to save computation time (∼2-3 hr/scan) needed to perform
the anatomically accurate segmentation. However, with the
advances in parallel processing, performing anatomically accu-
rate segmentation will be faster.

C. Electrode Locations
Co-registering the digitized electrode locations to the

generic head model improved the source localization compared
with using template electrode locations. Using an infrared
3D scanner to digitize EEG electrodes has shown to be a
reliable and cost-effective approach. The infrared 3D scanner
is aligned with the iPad camera to generate high-resolution col-
ored 3D images. With the get_chanloc toolbox in EEGLAB,
digitizing electrode locations relative to fiducial locations can
be user-friendly and time efficient, usually taking less than
15 minutes to complete the digitization process. Our results
showed that warping accurate electrode locations to the generic
head model can improve source localization by 6 mm when
individual MRIs are unavailable. Therefore, such an approach
should be considered for future EEG studies to improve the
accuracy of source localization.

D. Skull Conductivity
Source depths increased with skull conductivity in both

younger and older adults, which is in line with the previous
studies [4], [32]. Although the source locations estimated
with a variation of skull conductivity values were approxi-
mately near similar locations, rapid changes in source depth
occurred when the skull conductivity was below 0.01 S/m.
Currently, there is no consensus on skull conductivity despite
many attempts to provide estimates of skull conductivity [56].
Literature reported the brain-to-skull conductivity ratio to be
between 8 and 80 in adults [33], [34], [35], [36], [37], [38].
The brain-to-skull conductivity ratio is commonly set to
80:1 in open-source head models [37]. The 80:1 ratio is
higher than most of the existing literature as many studies
report the brain-to-skull conductivity ratio to be 15:1 to
42:1 [33], [34], [35], [36], [38], which is more similar to
our choice of 0.01 S/m and 0.02 S/m in this current analysis.
In addition, most of the current head models (including in
the present study) do not consider the inter-subject variability
of skull conductivity values and use the same conductivity
across participants and age groups, despite evidence that
skull conductivity can decrease with age [39], [40]. Recently,
there have been attempts to estimate skull conductivity during
source localization to account for the inter-subject variation.
For example, Akalin Acar et al. [62], [63] estimated skull
conductivity and the location of the EEG sources concurrently
using high-density EEG using a novel iterative approach.
It remains to be seen whether this novel approach can be
adopted to address the age-related changes in skull conduc-
tivity.

E. Limitations
The study had a few limitations. Segmentation was not man-

ually corrected to align appropriately with the exact anatomy
of each participant. We chose to follow an automatic tissue

segmentation toolbox headreco as it reached high accuracy
with reasonable processing time [54]. We did not obtain a T2
-weighted MRIs, which typically would improve the accuracy
of the tissue segmentation, especially for the cerebrospinal
fluid. In T1-weighted images, cerebrospinal fluid may be
mistakenly modeled as bone and lead to an overestimation
of skull thickness as the contrast between compact bone
and cerebrospinal fluid is not sharp [61]. Future research
should examine whether including a T2 -weighted scan would
change the source localization results. In addition, tissue
segmentation was still simplified with the most anatomically
accurate pipeline. For example, the geometry of the skull
was simplified. Holes that nerves and blood vessels went
through were not corrected in skull segmentation. We did not
consider other skull perforations, such as parietal foreman
which were highly variable across individuals [64]. These
holes may result in local errors of about 2 mm around the holes
(see simulations in Lanfer et al. [61]). Other simplifications
included a generalization of tissue types, such as omitting
blood vessels in segmentation. The omission of blood vessels
in the forward model could lead to 2 cm source localization
error in the deeper brain area, such as the insula or medial
temporal lobe [65]. However, detecting blood vessels may
require a 7T MR scanner or a black blood sequence to
achieve a high signal-to-noise ratio [65], which is currently
not feasible for most EEG research. Recently, a new toolbox
that uses deep neural networks has shown promising tissue
segmentation results with additional tissue classes, such as
muscle and blood vessels [66]. Future research may adopt
this new toolbox to incorporate more tissue types to improve
segmentation accuracy.

Smaller localization differences may be obtained using a
template head model with more anatomical details. We chose
the three-layer generic head model available in EEGLAB
because this head model is widely used in many EEG studies.
Template head models with downward extension to include the
whole head and neck may help improve source localization at
the base of the brain [67], [68]. Future research may evaluate
the use of generic head models with more anatomical details
and determine the source localization differences compared to
the individual-specific head models.

The results of our study are only applicable to source local-
ization method using an equivalent dipole fitting approach.
Systematic analysis needs to be performed with various source
localization methods (e.g. sLORETA [69], Minimum-Norm
Estimation [70]) to help generalize our results to other source
localization methods. Another limitation is that there is a lack
of ground truth of source locations in our study as we used
the most anatomically accurate pipeline as the reference for
comparison with other pipelines. Therefore, our findings need
to be interpreted with caution and future investigation should
incorporate simulated datasets with known ground truth to
evaluate the factors contributing to the accuracy of source
localization results.

V. CONCLUSION

We quantified source localization discrepancies introduced
by using generic head models, inexact electrode locations,
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inaccurate brain region segmentation, and skull conductivity
for both younger and older adults. We found that performing
dipole fitting with generic head models based on template
MRIs led to source localization discrepancies up to 2 cm
compared to the anatomically accurate individual-specific head
models for both younger and older adults. Overall, these
results can provide more insights into the factors that affect
EEG source localization and enable a more accurate interpre-
tation of brain areas in EEG studies when individual MRIs are
unavailable in both younger and older population.
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