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K-Means Clustering Machine Learning
Approach Reveals Groups of Homogeneous

Individuals With Unique Brain Activation, Task,
and Performance Dynamics Using fNIRS

Manob Jyoti Saikia , Member, IEEE

Abstract— Wearable functional near-infrared
spectroscopy (fNIRS) for measuring brain function,
in terms of hemodynamic responses, is pervading our
everyday life and holds the potential to reliably classify
cognitive load in a naturalistic environment. However,
human’s brain hemodynamic response, behavior, and
cognitive and task performance vary, even within and
across homogeneous individuals (with same training and
skill sets), which limits the reliability of any predictive
model for human. In the context of high-stakes tasks,
such as in military and first-responder operations, the
real-time monitoring of cognitive functions and relating
it to the ongoing task, performance outcomes, and
behavioral dynamics of the personnel and teams is
invaluable. In this work, a portable wearable fNIRS system
(WearLight) developed by the author was upgraded, and
an experimental protocol was designed to image the
prefrontal cortex (PFC) area of the brain of 25 healthy
homogeneous participants in a naturalistic environment
while participants performed n-back working memory (WM)
tasks with four difficulty levels. The raw fNIRS signals were
processed using a signal processing pipeline to derive
the brain’s hemodynamic responses. An unsupervised k-
means machine learning (ML) clustering approach, utilizing
the task-induced hemodynamic responses as input
variables, suggested three unique participant groups. Task
performance in terms of % correct, % missing, reaction
time, inverse efficiency score (IES), and a proposed
IES was extensively evaluated for each participant and
the three groups. Results showed that, on average,
brain hemodynamic response increased, whereas task
performance degraded, with increasing WM load. However,
the regression and correlation analysis of WM task,
performance, and the brain’s hemodynamic responses
(TPH) revealed interesting hidden characteristics and the
variation in the TPH relationship between groups. The
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proposed IES also served as a better scoring method
that had distinct score ranges for different load levels
as opposed to the overlapping scores of the traditional
IES method. Results showed that the k-means clustering
has the potential to find groups of individuals in an
unsupervised manner using the brain’s hemodynamic
responses and to study the underlying relationship
between the TPH in groups. Using the method presented
in this paper, real-time monitoring of cognitive and task
performance of soldiers, and preferentially forming small
units to accomplish tasks based on the insights and goals
may be helpful. The results showed that WearLight can
image PFC, and this study also suggests future directions
for the multi-modal body sensor network (BSN) combining
advanced ML algorithms for real-time state classification,
cognitive and physical performance prediction, and the
mitigation of performance degradation in the high-stakes
environment.

Index Terms— Brain imaging, clustering, cognitive load,
fNIRS, k-means, machine learning, military, performance,
soldiers, unsupervised, working memory.

I. INTRODUCTION

NEUROIMAGING techniques are widely used to study
brain activation and have found that the neurons in

the prefrontal cortex (PFC) area of the brain are associated
with working memory (WM) related tasks [1], [2]. One of
the well-established experimental methods in neuroscience
and cognitive psychology involves the use of n-back WM
tasks that can manipulate WM load levels [3]. In the n-back
experiment, the WM load raises with the increasing number
of items (n) to be memorized until the participant’s WM
capacity is reached. The increasing WM load degrades the
task performance such as accuracy and reaction time, and
also increases physiological arousal and heart rate [4]. Studies
have shown the bilateral network activation, ventrolateral
PFC (VLPFC) and dorsolateral PFC (DLPFC), and lateral
and medial premotor cortices, frontal poles, dorsal cingulate,
and medial and lateral posterior parietal cortices [5].
Functional near-infrared spectroscopy (fNIRS) is a relatively
new neuroimaging modality applied for the measurement
of cognitive load in naturalistic environments [6], [7]. The
fNIRS measures neuronal activity by indirectly measuring
changes in cerebral blood oxygenation, the blood oxygenation
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level-dependent (BOLD) functional image of the brain [8],
similar to the functional Magnetic Resonance Imaging (fMRI),
by noninvasively imaging temporal and spatial variation of
the oxygenated (HbO2) and deoxygenated (Hb) hemoglobin
concentrations [9].

Functional near-infrared spectroscopy could be utilized to
measure the cognitive workload of the operators in stressful
critical jobs such as military operations, command and control,
air traffic control (ATC), and drone operations. Most fNIRS
studies measure brain response differences in pre-selected
participant groups [10], control vs experimental groups [11],
[12], or under certain experimental conditions [7], [13]. These
studies use statistical analysis to test predefined hypotheses
and study the group differences. However, in the real-
world dynamic high-stakes task situation where a group
of homogeneous trained personnel is deployed, such as in
the military and first-responder operations [14], a different
approach is paramount.

Studying the relationship between task, performance and
the hemodynamic response of the brain (TPH) is crucial,
especially when fNIRS is intended to deploy in mission-
critical environments. The performance of personnel involved
in high-stakes tasks is not only dependent on the training
they underwent, acquired skills, and physical and cognitive
capability, but also it may depend on other human factors
such as sleep quality, medication, lifestyle, emotion, stress,
diet, physical exertion or as complex as the entire life
experience [14], [15], [16]. Hence, the relationships between
TPH could be subjective and can dynamically vary due to
various unmeasurable factors.

In this work, an experimental protocol was developed as
explained in Section II-B using n-back WM tasks to study
the variation in the relationship between the WM load, task
performance, and the brain’s hemodynamic responses in the
unknown sub-groups of individuals, which were automatically
derived from a single homogeneous group implementing
the unsupervised machine learning (ML) method. The use
of a portable fNIRS system, WearLight [Fig. 1], helped to
collect the brain’s hemodynamic responses in the naturalistic
environment while the participants performed the WM tasks.
The protocol consists of four different n-back conditions
(0 to 3-back) spread across 32 blocks of trials (8 blocks
of each condition). The spreading was pseudo-randomized.
A previously developed fNIRS system by the author was
upgraded to collect the brain’s signal in this experiment
[Section II-A]. The fNIRS signal processing method is
explained with a flowchart in Section II-C. After computing
hemodynamic responses, an unsupervised k-means clustering
approach presented in this paper formed unique participant
groups using the brain responses [Section II-D]. The TPH
relationship differences in the clusters and their characteristic
were studied. Also, a new inverse efficiency score (I E S′),
a performance scoring method, was introduced in Section II-E.

Using the presented method, evaluating TPH of each
member in a homogeneous group in real-time and form-
ing/reforming small units with similar or complementary
exhibiting characteristics on the field may be helpful to achieve
the overall best outcomes. The real-time TPH metrics may help

Fig. 1. WearLight fNIRS system. A user is wearing an fNIRS montage
cap connected to the battery-operated controller for the brain imaging.

commanders make better insights about the current situation
and make decisions for the anticipated task demands. For
example, with the TPH analysis, a commander might create
specialized units for various tasks that are more or less
cognitively and/or physically challenging (known as force
management decision [17]). In addition, TPH metrics can aid
leaders and trainers the useful information to create training
protocols.

Results presented in Section III showed that on average
hemodynamic response increased and task performance
diminished with the WM load. And the k-means cluster-
ing to group participant from a homogeneous participant
group was instrumental in studying the subtle differences
in the relationship between experimental conditions, task
performance, and the brain’s hemodynamic responses in
the suggested groups. The new IES also provided distinct
score ranges for different cognitive load levels as opposed
to the overlapping score ranges of the traditional IES
method. Soldiers go through intensive training, however, the
hemodynamic response, behavior, and cognitive and task
performance may vary within and across soldiers on a given
day depending on various factors [14], [15]. Using the method
presented in this paper, real-time monitoring of the cognitive
and task performance of soldiers, and dynamically forming
small units to accomplish the goals of a mission could be
helpful.

II. MATERIALS AND METHODS

Functional near-infrared spectroscopy (fNIRS) is an optical
brain imaging method based on measuring the temporal
variation of oxy-hemoglobin (HbO2) and deoxy-hemoglobin
(Hb) blood concentration on the cortical surface of the
brain [18], [19]. Since an fNIRS channel is formed with an
NIR light source and a detector (commonly called optodes),
by placing and mapping the spatial distribution of multiple
of such optodes on the scalp similar to Fig. 2, it is possible
to image a large cortical area of a brain. An fNIRS cap
holds optodes, separates a detector from a corresponding
source by a distance of about 25-45 mm, and comfortably
places the optodes on the head as seen in Fig. 2 (A). The
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Fig. 2. (A) A participant wearing the fNIRS optode montage for
the experimental study. (B) The fNIRS montage designed for the
experiment. LEDs (red), detectors (green), and fNIRS channels (blue
line) on a 10-20 standard EEG electrode system.

sources are sequentially turned ON and OFF at a high rate
and the detectors measure the light reflected back from the
cortical surface of the brain. The NIR light absorption by the
HbO2 and Hb on the cortical area is wavelength dependent
and hence performing spectroscopic measurements at least at
two wavelengths, fNIRS computes the 1HbO2 and 1Hb over
time.

In this study, the brain activity, in terms of BOLD
hemodynamic response, was continuously recorded while
participants performed n-back WM tasks in an experimental
protocol presented in Section II-B. In an n-back WM task,
participants are sequentially presented with items (letters,
numbers or patterns, etc.), and participants are engaged in
remembering the previous n set of rapidly sequentially flashing
items at any moment of time. The participants are asked to
respond when the current item (stimulus) is the identical to
the nth item before the current item. The task difficulty level
can be raised by increasing n, as the greater the n, the more
items participants need to remember from the continuously
shifting sequence of items. Thus, WM load increases with
n. The participants respond using an input device such as a
keypad, switch, or mouse. Both the participants’ task responses
and the fNIRS brain signal can be simultaneously recorded,
synchronizing the data with the tasks. The participants’ task
performance can be measured by looking at the number of

targets missed, wrong reactions, and reaction time along with
the brain’s hemodynamic signals due to the WM load.

A. Neuroimaging Using WearLight
In this work, the brain signal recording was done using

a laboratory-developed wearable continuous-wave fNIRS
system. A previously developed WearLight fNIRS system [20]
was upgraded for this study. A head montage was designed
to accommodate four LED light sources and eight photodiode
detectors to cover the prefrontal area of the brain. The LEDs
emit 770 and 850 nm (peak wavelengths) NIR light. The
maximum optical power was below 5 mW. The source-detector
distances were about 35-45 mm. The source and detector
landmark is shown in the 10-20 standard EEG electrode
system in Fig. 2 (B). This montage provided 14 usable
fNIRS channels (blue lines in Fig. 2 (B). Figure 2 (A)
shows a participant wearing an fNIRS optode montage
cap. The montage cap was interfaced with the control unit
of the WearLight system. A computer, securely connected to
the WearLight system via WiFi, controlled the fNIRS system
and collected data. A previous graphical user interface (GUI)
software [21] was customized for this study. The GUI software
controled the WearLight system, displayed data in real time
for signal quality checking, and saved data with a unique time-
tagged file identifier. In addition, this software also recorded
both TTL hardware and Software trigger to mark any event.
The advantages and features of the WearLight fNIRS system
in terms of hardware architecture and design, compatibility,
signal quality, comfort and ease of customization, etc are
presented in the previous papers [20], [21], [22]. Before the
recording started, the optode-scalp interface was improved
by carefully parting the hair underneath the optodes while
assessing the signal quality on the GUI software. A computer
with two displays, one for the participant and one for the
experimenter, was used for the n-back task presentation. Both
the n-back task data and the fNIRS data samples were time
stamped, and there were additional software triggers in the
GUI software; these features helped to align task performance
data and the fNIRS data with the task in the post-processing
phase. After a data collection session, fNIRS data and the task
performance data files were securely stored in a file folder for
post-processing using the data processing flowchart discussed
in Section II-C.

B. Experimental Paradigm
For this experiment, participants were asked to comfortably

sit in front of a computer display. The display presented
a stream of English alphabet letters, and participants were
required to compare the currently presented letter with the
letter that occurred n steps back. When the letter matched,
participants responded by pressing the “0” button on the
keypad with their dominant hand to identify the targeted
stimulus. BCI2000 [23] controlled the task presentation and
recorded the user response. The button pressing data, stimulus,
and fNIRS data were time stammed in the experiment to
help evaluate participants’ performance, engagement level,
and hemodynamic response with respect to the task. There
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Fig. 3. Experimental paradigm. (A) Conceptual diagram of 0, 1, 2, and
3-back task, and (B) 32 task blocks, each block is either 0, 1, 2 or 3-back
condition. The sequence of the four conditions was pseudo-randomized.

were four different n-back task difficulty levels, 0, 1, 2, and
3-back as shown in Fig. 3 (A). In the 0-back task condition,
participants were asked to respond to a single predefined target
letter “A”. In the 1-back task condition, the target was the
letter matching just the previous letter. In the 2-back and
3-back task conditions, the targets were the letters that were
identical to the letter presented two and three letters before
the current letter, respectively.

In total, there were 32 task blocks [Fig. 3 (B)]. Each block
had a 0, 1, 2, or 3-back task condition, and the order of the four
conditions was pseudo-randomized. The order of the 32 task
condition blocks was [0 1 2 3 1 2 3 0 2 3 0 1 3 0 1 2 0 1 2 3 1 2
3 0 2 3 0 1 3 0 1 2]. Each block contained 3 target and 6 non-
target letters. The sequence of the target and non-target letters
was also randomized. In total, 288 letters appeared on the
screen. Every letter was displayed for 500 milliseconds, and
the screen was left blank for 2.5 seconds. Thus in 3 seconds,
a new letter was presented resulting in each block lasting
(9 × 3) 27 seconds. There were 18 seconds of Rest period
between the task blocks, including 3 seconds for Clue to
display information about which task condition (0, 1, 2, or
3-back) was about to start. In the Rest period, participants were
instructed to relax so that hemodynamic activity could return
to baseline. An instructional training session was conducted
before the actual recording, where the task was explained and
participants performed a short practice session. The entire data
acquisition was for about 24 minutes as seen in the time-axis
of Fig. 3 (B).

This study included 25 healthy participants (11 female and
14 male), who were right-handed, had a mean of 15 years of
formal education, and ages 22-27 years (mean age = 23 years).
The participants were the senior year students of STEM
education and had fairly similar educational backgrounds. The
participants were informed before the experimental study and
gave written consent. In the recruitment process, participants
completed a screening questionnaire. Criteria for inclusion
included no neurological illness or no medical record of head
trauma, at the time of the study no prescribed medication,
fluent in English, and good eyesight. The study was in
accordance with the approval of the Institutional Review Board
(No. 1203762-2).

C. Data Processing
The low-intensity optical measurement performed on a

living body in a naturalistic setting is often affected by
various artifacts, as contrast to performing experimental
studies on phantoms in a controlled environment such as on

Fig. 4. Flow chart of data processing. Brain hemodynamic and task
performance data were processed separately. After performing k-means
clustering, the task, performance, and hemodynamic (TPH) analysis
was performed.

a vibration-proof optical table [24]. The optodes used in this
study were designed through an iterative design process to
provide a suitable balance between comfortability and noise
immunity [22]. However, occasional movement artifacts in
the raw fNIRS signal were observed because participants,
who performed the tasks in a naturalistic unconstrained
manner, sometimes made abrupt movements. In addition, the
combination of other physiological noise signals such as
respiration, cardiac, and Mayer waves was present in the
fNIRS signal that was filtered out later. Visually inspecting the
quality of the fNIRS signal on GUI software and improving
the optode-scalp interface (if required) prior to the data
acquisition were emphasized for data quality control based
on previous experiments.

After the data collection, fNIRS signal processing was
performed using a custom-built MatLab script. The flow chart
of the data processing is shown in Fig. 4. After converting
the fNIRS measurements to optical density, the quality of
the data was accessed. The contaminated time blocks were
digitally marked and artifacts were removed. Artifacts were
identified visually and through signal processing methods
such as evaluating the signal amplitude above or below a
threshold of 10-15 standard deviations from the mean and
a threshold of 0.4 within a 6 second time period. After
that, motion artifact correction was performed using principal
component analysis (PCA) where a larger variation component
was excluded to remove the motion artifact from the time
series. Then a bandpass filter (0.01 Hz to 0.2 Hz) was applied
to keep the low-frequency fNIRS signal. Using modified Beer-
Lambert law (MBLL), the optical densities at wavelengths
770 and 850 nm, and their corresponding extinction coefficient
values, the relative concentration changes 1HbO2 and 1Hb
were computed. Since the fNIRS signal takes about 5 to
10 seconds to come to baseline level, with the stimulus
duration of 27 seconds [Fig. 3 (B)], and combining 5 seconds
of pre-stimulus and 13 seconds of post-stimulus duration,
epochs of [−5 to 40] was extracted. The segmented epochs
were coded with task block and task condition. Then for
each fNIRS channel, a block average was performed to find
the average hemodynamic response. The block averaging
was computed by taking mean of the hemodynamic activity
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Fig. 5. Grand block averaged hemodynamic response in the 1, 2 and
3 back condition. HbO2 (solid magenta lines) and Hb (solid green lines)
with ± standard error of means (SEM) bars. Vertical red, blue, cyan and
black lines are the event markers.

over the blocks that had the same task condition for each
participant [25]. In addition, the channel mean response was
computed by averaging all the fNIRS channels. Figure 5
presents the grand block averaging result, averaged over all
the participants. On average, HbO2 response increased with n,
the task difficulty level. The response for the 0-back condition
was minimal and hence excluded from the figures. The Hb
response was in the opposite direction of the HbO2 response,
which was expected. The average hemodynamic response over
the stimulus duration was used for the k-means clustering as
explained in Section II-D. The k-means clustering, and task,
performance, and hemodynamic response (TPH) analysis were
performed using various Python packages.

D. K-Means Clustering
Clustering algorithms can be applied to find unique groups

from multivariate data. Some popular algorithms are k-means
clustering, fuzzy c-means clustering, subtractive clustering,
mountain clustering, etc. Due to simplicity and applicability,
k-means clustering is widely used to group multivariate data
into k clusters. The k-means clustering method iteratively
minimizes a cost function to form clusters that are as compact
as possible and that are as separable as possible. The distances
between the clusters and the centroids of the clusters are used
to construct a cost function [26].

The k-means clustering method was utilized to find unique
groups of participants where the participants in a group have
a similar brain hemodynamic response trend in the four WM
task conditions. This was an unsupervised machine learning
approach as there was no additional instruction about the
participants and what characteristics to look for. The algorithm
was instructed to find groups from the brain’s hemodynamic
responses. The mean hemodynamic responses in the four task
conditions (four variables) of each participant were the input
for the k-means clustering algorithm. The within-cluster sum
of squares (WCSS) was plotted and the elbow method was
followed to find the optimal number of clusters (k = 3)
as shown in Fig. 6 (A). The unique hemodynamic responses
exhibited by the three groups are visible in the 2D plots
in Fig. 6 (B-D) and the 3D plot in Fig. 6 (E). Since the
response was minimal for the 0-back condition, the 0-back
condition was not plotted. After obtaining the three clusters
(participant groups), the mean hemodynamic responses of
the three groups and all the participants in one group (All)
were evaluated in the four n-back task stimulations to assess

the overall group differences that are shown in Fig. 6 (F).
On average, the hemodynamic responses of the three groups
and all the participants (All) increased with the task difficulty
(0 to 3-back). However, these increments have a unique trend
that is further discussed in the Results section.

E. Task Performance Analysis
The task performance data were analyzed for each

participant individually and for each group of participants
to assess the relationships between task condition, task
performance, and brain hemodynamic response. The task
performance data were also used to determine if participants
experienced any task difficulty at various levels, gauge
participant engagement, and detect any anomalies, such as
participant not performing the task; the data from the invalid
participation could then be excluded.

The task accuracy was calculated by counting the total
occurrence of wrong reactions, the ones when a participant
incorrectly responded a non-targeted letter as a targeted letter
by responding on the keypad (pressing the “0” key). The
reaction time was the time taken by a participant to respond
to a target letter. A missing response was when a participant
was unable to respond when a target letter was presented.
Missing responses were not included in the calculation of
accuracy and reaction time; rather they were considered as an
additional variable to compute the proposed IES explained in
Section II-E.1. Task performance was thus analyzed by using
five variables: accuracy, missing, reaction time, traditional IES,
and a proposed IES. The task performance in the four stimulus
conditions for the three participant groups was obtained from
the k-means clustering, and all participants together were also
analyzed.

1) Inverse Efficiency Score (IES): Inverse Efficiency Score
(IES) combines accuracy and speed to measure task
performance using a single consolidating variable [13], [27].
IES is calculated by dividing the reaction time (RT) by
accuracy (% correct) [(1)]. It can be viewed as the average
time spent on the correct responses. Since RT is measured in
milliseconds, from (1), the unit of IES is milliseconds too.
If two different task conditions cause the same average RT
but differ in accuracy, then the IES of the condition with the
higher accuracy will be less than the IES of the condition
with the lower accuracy. The lower the IES, the higher the
task performance. A trade-off between accuracy and speed
was observed in the cognitive task. Therefore, IES offers a
better summary of performance than use of a single isolated
variable (RT or % correct) as a performance metric.

I E S =
RT

100 − % error
=

RT
% correct

(1)

I E S′
=

RT × % missing
100 − % error

=
RT × % missing

% correct
(2)

Traditionally, target missing is not considered as a separate
variable, since the missed targets are counted as inaccurate
responses [27]. For this work, the relationship between
the target missing and task difficulty and performance was
studied. It was found that greater the task difficulty, the
higher the target missing. Because of this, target missing was
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Fig. 6. (A) The Elbow method was used to find the optimum number of clusters (k = 3). Two dimensional scatter plots of the hemodynamic
response of each group of participants (cluster): (B) 2-back vs 3-back, (C) 1-back vs 2-back, and (D) 1-back vs 3-back task, respectively. (E) The
hemodynamic response of the three clusters in 3D plot. (F) Average hemodynamic response (µ± σ) of the three groups and all the participants in
All group.

incorporated as a separate variable in the measurement of task
difficulty and performance, as shown in the construction of
I E S′ [(2)]. The proposed I E S′ can be viewed as the average
time spent on the correct responses with a penalty for missing
(scaling factor).

III. RESULTS

A. Task Performance
Task performance in the participant groups was analyzed,

and interesting differences between the groups were observed.
As presented in Fig. 7, on average, the task performance of
all the participants in the All group (magenta bars) degraded
with the task difficulty (0 to 3-back). On average, the accuracy
was 99.86%, 96.4%, 94.26%, and 90.43% for the 0, 1, 2, and
3-back tasks, respectively. The average reaction time was 465,
582, 685, and 806 ms, and the average target missing was
0.22%, 3.48%, 13.97%, and 32.76% in the 0, 1, 2, and 3-back
tasks, respectively. From one-way ANOVA tests performed
separately, accuracy, reaction time, and missing were found to
be significantly different (each p < 0.001) for all participants
across the four task conditions. Pairwise post hoc comparison
(Tukey HSD test) showed that all the pairs of groups were
also significantly different (p < 0.001).

The average accuracy, reaction time, and missing of the
three groups followed the same trends as observed for the
all groups with respect to task condition (magenta bars in

in Fig. 7), however each group performed slightly different
as seen in Fig. 7. The accuracy of Group 1 was consistently
highest for all the conditions. Group 3 consistently had the
second highest accuracy. However, in terms of reaction time,
Group 1 was comparable with Group 3 for the 0, 1, and 2-back
task conditions. In contrast, Group 2 consistently performed
poorly in terms of accuracy, reaction time, and missing.
Finally, Group 1 missed fewer targets in the 1 and 2-back
tasks compared to Group 3. However, Group 1 missed more
targets than Group 3 in the 3-back task.

B. Task, Performance and Hemodynamic (TPH)
The relationship between task-induced hemodynamic

response and task performance for the three groups and
for all participants together was analyzed. The average task
performance and hemodynamic response due to the four task
conditions are shown in the scatter plots for all participants
in Fig. 8. Task performance, as measured by percent correct,
reaction time, and percent missing, is on the x-axis and
hemodynamic response is on the y-axis. Legend colors
indicates participant group and the legend shape indicates
task condition. These same plots in Fig. 8 also illustrate
the relationship between task condition (legend shape), task
performance (x-axis), and hemodynamic response (y-axis).

Linear regressions were performed to examine trends in the
relationship between task performance (% correct, reaction
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Fig. 7. Average task performance (µ±σ) of the three groups and all the
participants together (All) in the four task conditions (0-back to 3-back):
(A) % correct, (B) reaction time, and (C) % missing, respectively.

time, and % missing) and the hemodynamic activity (1HbO2)
for the three groups and for all participants together. Linear
regression lines with 95% confidence intervals are included in
Fig. 8. Magenta, red and blue color lines represent Group 1,
2, and 3, respectively. The black regression lines, formed
by fitting data from all participants on the same plot, are
also plotted in Fig. 8 to compare all participants together
with the individual groups of participants. The equations
of the regression lines, also presented in Fig 8, differences
in slopes and intercepts for all the lines indicate that the
relationship between task performance and hemodynamic
response is different for each group. For example, the
sensitivities of the black, magenta, red, and blue color lines
in Fig 8 (A) are -0.0093, -0.0240, -0.0151, and 0.0081 µ

mol L−1 (% correct)−1, respectively. The Pearson correlation
coefficients of these regression lines are r = -0.720, -0.894, -
0.909, and -0.907, respectively. Similarly in Fig 8 (B) and (C),
the corresponding sensitivities of the black, magenta, red, and
blue color lines are 0.00028, 0.00043, 0.00029, and 0.00024

Fig. 8. Scatter plots of task performance vs hemodynamic response
of all the participants: (A) % correct vs ∆HbO2, (B) reaction time vs
∆HbO2, and (C) % missing vs ∆HbO2 in 0-back (triangles), 1-back
(squares), 2-back (circles), and 3-back (diamonds) task conditions in
Group 1 (magenta), Group 2 (red), and Group 3 (blue), respectively.
Four corresponding regression lines with 95% confidence intervals:
magenta (Group 1), red (Group 2), blue (Group 3), and black (all the
participants together) and their equations.

µ mol L−1 (RT in ms)−1, and 0.00321, 0.00471, 0.00416,
and 0.00230 µ mol L−1 (% missing)−1, respectively. The
corresponding Pearson correlation coefficients of the lines in
Fig 8 (B) and (C) are r = 0.877, 0.986, 0.980, and 0.852, and
r = 0.844, 0.938, 0.897, and 0.899, respectively.

In general, these plots reveal a linear relationship between
task performance and task condition (0, 1, 2, and 3-back).
As accuracy decreased, both reaction time and missing
increased with n for all participants. This suggests that,
with increasing n, participants experienced task difficulty
and performance degradation. The increase in hemodynamic
response (y-axis) with grater task difficulty [Fig. 8 (A-C)] is
most likely due to the increased cognitive load necessary to
complete more challenging tasks.
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Fig. 9. (A) Scatter plot of Inverse Efficiency Score (IES) vs ∆HbO2 for
all participant groups in the 0-back (triangles), 1-back (squares), 2-back
(circles), and 3-back (diamonds) task conditions in Group 1 (magenta),
Group 2 (red), and Group 3 (blue), respectively. (B) Average IES (µ±σ)
of the three groups and all the participants in All group.

1) Inverse Efficiency Score (IES): Inverse efficiency score
(IES) was calculated using a traditional method [(1)].
Figure 9 (A) presents inverse efficiency score vs hemody-
namic response for each participant. The legend shape and
color are for the task condition and participant group,
respectively. Figure 9 (B) presents the average IES of each
group and all the participants. Both IES and hemodynamic
response increased with task difficulty [Fig. 9 (A-B)].

However, there are important differences in the relationships
of these variables in the group level. As shown in Fig. 9 (B),
the average IES of Group 3 was the highest consistently in
all four task conditions. However, on average, Group 3 had
the highest hemodynamic response only in the 1 and 2-back
conditions; in the 3-back condition, it decreased significantly
as shown in Fig. 6 (F). In contrast, compared to Group 2
and Group 3, Group 1 had the lowest IES in all task
conditions [Fig. 9 (B)] and had the highest hemodynamic
response in the 3-back condition [Fig. 6 (F)]. Group 2 had
highest IES standard deviation (δI E S) [Fig. 9 (B)] but lowest
hemodynamic response standard deviation δHbO [Fig. 6 (F)].
For Group 2, IES and hemodynamic response each seem
to have a linear relationship with task difficulty. However,
on average, IES and hemodynamic response and their
corresponding standard deviations seem to have relationships
that are more linear with task difficulty for Group 1.

2) Proposed Inverse Efficiency Score (IES′): IES was
computed using a new method [(2)] that includes target
missing as a separate variable in IES construction to yield a
consolidating scoring capable of detecting subtle performance

Fig. 10. (A) Scatter plot of proposed Inverse Efficiency Score (IES′)
vs ∆HbO2 for all the participant groups in the 0-back (triangles), 1-back
(squares), 2-back (circles), and 3-back (diamonds) task conditions in
Group 1 (magenta), Group 2 (red), and Group 3 (blue), respectively.
(B) Average proposed IES (µ ± σ) of the three groups and all the
participants in All group.

differences in participants and clusters formed from relatively
homogeneous participants (in our case STEM students).
Figure 10 (A) and (B) present proposed IES vs hemodynamic
response and average propose IES, respectively. Figure 9 (A)
and Fig. 10 (A) present scatter plots of brain hemodynamic
response (y-axis) and task performance in terms of IES
(x-axis), but using two different methods. The comparison of
the two scatter plots shows that the relationship between task
performance across the four conditions and brain response
of the three participant groups is more distinctly separable
using the proposed IES [Fig. 10 (A)]. For example, the 3-back
condition (diamonds), 2-back condition (circles), and 1-back
condition (squares) have the proposed IES score ranges of [205
- 416], [62 - 177], and [14 - 30], respectively [Fig. 10 (A)].
These ranges are non-overlapping. Whereas the IES score
ranges using the traditional method are [7.4 - 10.3], [5.9 - 8.4],
and [5.2 - 7.0] for the same task conditions [Fig. 9 (A)]. These
ranges are overlapping, and it could be harder to differentiate
the task difficulty level using this scoring method for some
participant. The difference between the two methods can also
be visualized by comparing in Fig. 9 (B) and Fig. 10 (B),
where the height of the bars changes distinctly with the task
condition using the proposed IES method [Fig. 10 (B)]. Thus
the new IES method seems to be more sensitive in the WM
task for the homogeneous participants.

Correlation analysis was also performed to determine
how the variables % correct (Acc), reaction time (RT), %
missing (Miss), traditional Inverse Efficiency Score (IES),
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Fig. 11. Pearson correlation coefficients for the relationships between
of percent correct (Acc), reaction time (RT), percent missing (Miss),
traditional Inverse Efficiency Score (IES), proposed IES (New IES),
and hemodynamic response (HbO): (A) All participants, (B) Group 1,
(C) Group 2, and (D) Group 3.

proposed IES (New IES), and hemodynamic response (HbO)
are correlated with each other. As seen in Fig. 11 (A), the
correlation coefficients of HbO with IES and HbO with New
IES are equal, 0.83. However, IES is highly correlated (unity)
with reaction time, which is also true for Groups 1 to 3.
In contrast, the correlation coefficient of new IES with RT is
not unity, which is desirable. This suggests that the influence
of reaction time, along with the target missing and accuracy,
to study the differences between participants and participant
groups using the proposed new IES (I E S′) may be optimal.

IV. DISCUSSION AND CONCLUSION

Prefrontal cortex (PFC) activation during working memory
tasks has been demonstrated by various studies. This study
shows that WearLight fNIRS system can image hemodynamic
response on PFC during the WM task and supports other
studies. Most research has examined the relationships between
hemodynamic responses, user states, and cognitive load
conducted in laboratory environments using commercially
available fNIRS systems. These experimental setups may yield
little resemblance to real-world situations, limiting the general
interpretation of the study outcomes. Also, most studies
have focused on preselected participant groups (controlled vs
experimental).

In this work, a laboratory-developed portable fNIRS
system by the author was customized, and an experimental
protocol was developed to conduct the research in a
naturalistic environment. The participants in this study were
a homogeneous group as they were Bachelor of Science
in Engineering students with similar academic backgrounds.
Their understanding of the task was also evaluated in an n-back
task training and quiz session before the actual data acquisition
session. This resulted in high overall task engagement and
performance across all participants. However, differences in
TPH were observed. A new IES method combining reaction
time, missing, and accuracy demonstrated a better performance
evaluation than the more traditional IES method. Results
showed that target missing could be an indication of cognitive
overloading, as well as a sign of higher task engagement.

Also, increasing task difficulty demanded more cognitive
effort, resulting in higher hemodynamic activation with (n)
and diminishing task performance.

This work also describes methods to find unique groups
of individuals by implementing the unsupervised machine
learning approach on the brain’s hemodynamic signal and to
study the subtle TPH relationship differences between those
groups. The TPH relationships could vary dynamically as they
depend on various human factors. Evaluating TPH in real-
time could help commanders make better insights, and forming
small units based on the current status could lead to the overall
best task outcomes.

Wearable fNIRS is a promising neuroimaging technology
that can be applied in the naturalistic environment to monitor
cognitive load. This could also lead to the development of
predictive technology combining advanced ML algorithms
that select an individual or a group of individuals with
certain characteristics in terms of the relationship between
task, performance, and cognitive and physical load. However,
accessing the individual or team status merely from the
brain’s hemodynamic response may not be sufficient to predict
performance outcomes. Other physiological measurements
using body sensor network (BSN) and adopting a multi-modal
approach could bridge the gap between state classification,
cognitive and physical performance prediction, and the
mitigation of performance degradation.

This work is a step towards the implementation of fNIRS
in the high-stakes environment and describes a method to find
subsets of trained personnel solely from the brain’s fNIRS
signal. This technique could be applied to form small units in
real-time while the personnel are already engaged in mission-
critical tasks. This work also contributed to current research in
which a multi-modal approach combining different sensors and
systems was implemented, and a BSN to collect data in both
laboratory and field settings was created. These studies enable
the measurement and prediction of a multitude of cognitive,
behavioral, and physical parameters.
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author and do not reflect the official policies or positions of
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