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Dynamic Community Detection for Brain
Functional Networks During Music Listening

With Block Component Analysis
Yongjie Zhu , Jia Liu , and Fengyu Cong , Senior Member, IEEE

Abstract— The human brain can be described as a com-
plex network of functional connections between distinct
regions, referred to as the brain functional network. Recent
studies show that the functional network is a dynamic
process and its community structure evolves with time
during continuous task performance. Consequently, it is
important for the understanding of the human brain to
develop dynamic community detection techniques for such
time-varying functional networks. Here, we propose a tem-
poral clustering framework based on a set of network gen-
erative models and surprisingly it can be linked to Block
Component Analysis to detect and track the latent com-
munity structure in dynamic functional networks. Specif-
ically, the temporal dynamic networks are represented
within a unified three-way tensor framework for simultane-
ously capturing multiple types of relationships between a
set of entities. The multi-linear rank-(Lr, Lr, 1) block term
decomposition (BTD) is adopted to fit the network gen-
erative model to directly recover underlying community
structures with the specific evolution of time from the
temporal networks. We apply the proposed method to
the study of the reorganization of the dynamic brain net-
works from electroencephalography (EEG) data recorded
during free music listening. We derive several network
structures (Lr communities in each component) with spe-

Manuscript received 4 March 2023; revised 4 May 2023;
accepted 12 May 2023. Date of publication 18 May 2023; date of current
version 26 May 2023. This work was supported in part by the National
Natural Science Foundation of China under Grant 91748105, in part by
the National Foundation in China under Grant JCKY2019110B009 and
Grant 2020-JCJQ-JJ-252, and in part by the Fundamental Research
Funds for the Central Universities in the Dalian University of Technology
in China under Grant DUT20LAB303. (Corresponding authors:
Yongjie Zhu; Fengyu Cong.)

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted by
the Ethics Committee of the University of Helsinki, and performed in line
with the Declaration of Helsinki.

Yongjie Zhu is with the Department of Computer Science, University
of Helsinki, 00560 Helsinki, Finland, and also with the Department
of Neuroscience and Biomedical Engineering, Aalto University, 00076
Espoo, Finland (e-mail: yongjie.zhu@helsinki.fi).

Jia Liu is with the Department of Biomedical Engineering, Fac-
ulty of Engineering, Lund University, 22363 Lund, Sweden (e-mail:
jia.liu@bme.lth.se).

Fengyu Cong is with the School of Biomedical Engineering, Faculty of
Medicine, and the School of Artificial Intelligence, Faculty of Electronic
Information and Electrical Engineering, Dalian University of Technol-
ogy, Dalian 116024, China, and also with the Faculty of Information
Technology, University of Jyväskylä, 40014 Jyväskylä, Finland (e-mail:
cong@dlut.edu.cn).

Digital Object Identifier 10.1109/TNSRE.2023.3277509

cific temporal patterns (described by BTD components)
significantly modulated by musical features, involving sub-
networks of frontoparietal, default mode, and sensory-
motor networks. The results show that the brain functional
network structures are dynamically reorganized and the
derived community structures are temporally modulated
by the music features. The proposed generative modeling
approach can be an effective tool for describing community
structures in brain networks that go beyond static methods
and detecting the dynamic reconfiguration of modular con-
nectivity elicited by continuously naturalistic tasks.

Index Terms— Dynamic community detection, brain con-
nectivity, module detection, generative model, EEG, tensor
decomposition, block term decomposition.

I. INTRODUCTION

THE functional architecture of the human brain can be
characterized as a neuronal-synchronized network of

interconnected brain regions [1], [2]. Many studies of elec-
trophysiological brain networks have provided new insights
into human behavior and cognition [3], [4], [5]. Early research
focused on static functional connectivity (FC) patterns over
time based on the stationary assumption. Recently, growing
evidence has shown temporal dynamics of FC networks over
multiple time scales during continuous task performance and
resting states [6], [7], [8]. These network dynamics are critical
to brain functions [9], [10] and dysfunctions [11], [12], [13].
Although brain networks dynamically fluctuate over time,
FC networks tend to be temporally clustered into a finite num-
ber of putative connectivity states, that is, distinct connectivity
modules (communities or subnetworks) that transiently form
and dissolve during continuous task performance [14], [15],
[16]. Most of the research on dynamic FC states concentrates
on the transition among whole-brain network profiles only
considering connectivity edges [14], [17], [18]. However,
few studies focus on temporally switching in the topological
organization of functional brain networks such as the modular
or community structure.

Evidence from network neuroscience studies demonstrates
complex topological structures of both structural and func-
tional brain networks [19], [20], where the brain networks can
be decomposed into clusters of densely interconnected nodes
(referred to as modules or communities) that are relatively
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sparsely connected with nodes in other communities/modules.
These topological communities typically correspond to clus-
ters of anatomically neighboring and/or functionally related
brain regions which are involved in specialized functional
components [18], [20], [21]. Numerous community detection
algorithms have been developed for identifying underlying
community structures in brain networks. The most widely
used method in neuroimaging analysis is to apply modularity
maximization to the static brain networks, where nodes are
partitioned into non-overlapping and densely inter-connected
modules by maximizing an objective function of modular-
ity [22]. Most of them are only suited for analysis of static
or single-layer networks to define candidate communities at
a fixed time [23], but characterizing time-evolving networks
with community structures has received less attention.

The related studies for time-evolving networks primarily
focus on identifying clusters of a set of snapshots, i.e.
network connectivity patterns, that repeat themselves across
time [14], [15]. For example, Ou and his colleagues introduced
an approach based on statistical state modeling to identify
the network states through hierarchical clustering followed
by a Hidden Markov Model (HMM) [24]. In a similar
manner, Ma et al. identified the network states and their
transitions through independent vector analysis and Markov
modeling [25]. Vidaurre and colleagues have recently devel-
oped multiple methods based on HMM and applied them
to neuroimaging data, suggesting that functional networks
transiently reorganize on the timescale of milliseconds [15],
[16], [26], [27]. Under the subspace modeling approaches,
principal component analysis (PCA) [28] and independent
component analysis [29] are used to extract the FC patterns,
where it is assumed that brain networks are composed of
eigenconnectivities or independent components. An alternative
popular approach is based on k-means clustering of dynamic
functional connectivity networks (dFCNs) across time to iden-
tify the FC-states during rest, where it is assumed that a finite
number of FC patterns recur across time [14]. Although these
methods were beneficial to summarize the overall dynamic
brain activity, they failed to uncover the topological properties
of the whole-brain networks.

Although dynamic community detection technique [30]
has recently emerged as a powerful tool for tracking the
topological reconfiguration of brain networks [18], [31], [32],
[33], it is still not straightforward for module detection for
time-varying networks within or across multiple subjects.
We thus consider the tensor decomposition (or tensor com-
ponent analysis) based methods for such dynamic community
detection [18], [31], [34], [35], [36], [37] since the tensor
decomposition enables multi-timescale dimensionality reduc-
tion both within and across temporal evolution for multiple
subjects in a purely data-driven method. Tensor decompo-
sition has recently been regarded as an extension of PCA
for dynamic brain network analysis across subjects, where
time-frequency vectorized adjacency matrices were formed
into a tensor and decomposed into components characterizing
brain network patterns with spectral-temporal features [9],
[38], [39], [40] or temporal features [41], [42]. However,

in this case, the topological organization of brain networks is
unable to be directly revealed in the resulting components. For
such community detection in temporal brain networks, tensor-
based approaches typically model a network as a three-way
tensor and apply low-rank tensor decomposition to extract
latent components [42], [43]. Each component is made up of
three factors named “loading factors”. Two of the factors relate
to nodes and are used to generate a community with clustering
or binary classification [43]. The other loading factor contains
temporal information for tracking the temporal evolution [42].
Despite that these tensor-based methods have achieved success
in dynamic community detection for brain network analysis,
further analysis, such as k-means clustering or classification
of node loading factors, is required after tensor decompo-
sition to generate the community [34], [36]. Additionally,
these approaches with tensor decomposition fail to provide a
good generative model for the dynamic brain networks; more
precisely, the physical interpretations of the factors related to
nodes and the temporal dimension are unclear.

In this paper, to overcome the limitations mentioned above,
we introduce a framework based on a latent network gen-
erative model and block term decomposition (BTD) [44],
a variant of tensor decomposition [45], [46], [47], for detect-
ing dynamic community evolution in time-varying brain net-
works during music listening. We first formulate a generative
model to characterize community structure in time-varying
brain networks, quantified by envelope correlation of EEG
recorded during free music listening. Then, we show how
to link the generative model to BTD and use it to learn
the latent community structures. Specifically, temporal con-
catenated connectivity matrices are organized into a three-
way tensor. Then, BTD with rank-(Lr , Lr , 1) term is applied
to extract the underlying community structures with a spe-
cific temporal mode. Different from previous tensor decom-
position such as CANDECOMP/PARAFAC (CP) model for
brain network analysis, the factors with rank Lr are able
to characterize Lr communities after the multi-linear rank-
(Lr , Lr , 1) BTD, which can discover the topological structures
of brain networks. Actually, the CP model can be considered
as rank-(1, 1, 1) decomposition and it is unable to reveal the
community structures so further analysis is needed for the
loading factors related to the node. After BTD, time series
of five long-term acoustic features were extracted from the
audio stimuli by music information retrieval techniques used in
previous studies [9], [48]. Finally, we analyzed the correlation
between temporal factors and the musical feature time series
to identify underlying community structures of brain networks
modulated by musical features.

The main contributions of this work are three-fold. First,
we propose a generative model to characterize the temporal
community evolution for dynamic brain functional networks.
Second, we show the proposed generative model can be
fitted with multilinear rank-(Lr , Lr , 1) BTD to learn the
latent community structures in the time-varying brain networks
without further analysis of the resulting BTD components.
Third, the proposed framework is then used for EEG networks
during naturalistic music listening to identify music-modulated
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Fig. 1. Analysis pipeline. EEG data were recorded during continuous music listening and then source-localized with wMNE. Source-localized
data were parcellated into 68 ROIs based on an anatomical brain template. After signal leakage correction, the Hilbert transformation was applied to
extract the amplitude envelopes of the ROIs’ time courses. An adjacent matrix was thus obtained by computing the correlation between the envelope
of separate regions for each time window. Then a three-way tensor was formed including two node modes and a temporal mode. Nonnegative BTD
decomposition was applied to the temporally concatenated tensor across subjects. The node factor matrix of extracted components with rank-Lr
is able to characterize the topological structures of the latent network patterns, which encodes Lr communities or node clusters, and the temporal
courses represent the time evolution of the modular patterns. On the other hand, musical features were extracted using acoustic feature extraction.
The temporal courses of decomposed components and musical feature time series were analyzed to examine the modulated brain networks.

community structures, which demonstrate its effectiveness in
time-varying modular detection for brain networks.

II. MATERIALS AND METHODS

A. Notation
In this paper, scalars are denoted by lowercase letters

(a, b, · · · ), vectors are denoted by boldface lowercase letters,
such as (a, b, · · · ), matrices are written in boldface uppercase
letters (A, B, · · · ), and high order tensors by boldface calli-
graphic letters (A,B, · · · ). Operator ◦ represents outer product
of vectors, ⊗ denotes the partitionwise Kronecker product, ⊙
represents Khatri–Rao product and ⊙c denotes columnwise
Khatri–Rao product [49]. The superscripts ·T and ·† indicate
the transpose and Moore–Penrose pseudoinverse, respectively.

B. Data Description and Preprocessing
EEG data from 14 right-handed adults between the ages

of 20 and 46 were used in the current study. No participant
reported a history of hearing loss or neurological disease and
none of them had music expertise. This research was approved
by the local ethics committee and has no conflicts of interest.
We presented subjects with a piece of music, which was played
via audio headphones. The used music was a 512-second
long musical segment of modern tango, which had a suitable
duration for the experimental setting due to its high range
of fluctuation in several musical features [9], [50]. EEG data
were collected at a sampling rate of 2048 Hz with BioSemi
electrode caps of 64 channels when participants were naturally
listening to the continuous musical segment.

In this paper, we studied five well-known long-term acoustic
features consisting of tonal and rhythmic features, which

were computed by using a frame-by-frame analysis technique
[48], [50]. we set the length of each frame as three seconds
and the overlap between adjacent frames as two seconds. Thus,
a time course with 510 samples was created for each musical
feature with a sampling rate of 1 Hz. The five acoustic features
include two tonal musical features, Mode and Key Clarity, and
three rhythmic features, consisting of Fluctuation Centroid,
Fluctuation Entropy, and Pulse Clarity.

In preprocessing steps, EEG data were re-referenced by
common average electrodes and were visually inspected to
reject typical artifacts. We interpolated bad channels with a
mean value of their spherical adjacent channels. We used
a 50 Hz notch filter to remove powerline interference. High-
pass and low-pass filters with 2 Hz and 35 Hz cutoffs were
then applied since our previous investigation of the frequency
range revealed that no useful information was observed in
higher frequencies [48], [51]. Finally, we down-sampled the
EEG data to 256 Hz. Independent component analysis (ICA)
was applied to individual EEG data to remove EOG artifacts
(e.g. eye blinks) [52].

The schematic diagram of subsequent data processing is
shown in Figure 1. Following data preprocessing, we esti-
mated the forward model and inverse model using a
MATLAB-based toolbox Brainstorm [53]. The symmetric
boundary element method (BEM) was applied to compute the
forward model with a default MNI MRI template (Colin 27).
To solve the inverse model, we used weighted minimum-norm
estimate (wMNE) [54]. The reconstructed cortical surface was
decimated to 4098 evenly distributed vertices per hemisphere
with 4.9 mm spacing. Depth-weighted L2-minimum-norm
estimate was computed for all current dipoles with a loose
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orientation of 0.2. The inverse solution was noise-normalized.
Then, the cortical surface was parcellated into 68 anatomical
regions based on the Desikan-Killiany Atlas (DKA) [55]. For
each parcel, we performed a principal component analysis
to extract orthogonal components that describe the activity,
ordered by amount of variance explained. We selected the
first principal component as a representation of the parcel’s
time course of activity. Thus, for each subject, a source-level
data matrix P was created with dimension n × nt , where
n = 68 represents the number of anatomical regions and nt
represents the number of samples.

C. Dynamic Functional Connectivity
Network Construction

We attempt to obtain an all-to-all whole-brain FC network
by computing connectivity between all pairs of DKA regions.
In M/EEG, a significant confound of electroencephalography
source connectivity is that the ill-posed inverse problem and
inaccuracies in the forward solution lead to a degree of spatial
ambiguity and mislocalization of source [29], [56]. In other
words, two source-level time signals (e.g. from two brain
regions) might be significantly correlated, merely due to ‘sig-
nal leakage’ [17]. The obtained connectivity between spatially
separate brain areas might be inaccurate without careful con-
trol. To solve this issue, we performed the orthogonalization
of source-reconstructed signals, a widely used technique for
leakage reduction [29]. Following signal leakage correction,
the Hilbert transformation was applied to extract the amplitude
envelopes of the time courses. The dynamic FC networks
were constructed for each subject by calculating the Pearson
correlation, X ∈ Rn×n , between different n = 68 DKA regions
using a sliding window approach [14]. The rectangular win-
dow length was set as 3 seconds and the overlap was 2 seconds
between two adjacent windows, resulting in a sampling rate
of 1 Hz in the temporal dimension. This sampling rate was in
line with the musical feature time series.

For each subject, a sequence of functional brain networks
G = {G t (V, Et )|t = 1, . . . , τw} is constructed, where G t
is the network snapshot at time t , V = {vi }

n
i=1 is a set of

n nodes and Et is the set of edges at time step t . Here,
the nodes are the 68 DKA regions (n = 68), and the
edges Et are constructed with X t , which is the adjacency
matrix representing the network at time step t . τw = 510 is
the total number of time windows. The adjacency matrices
were temporally concatenated across subjects, resulting in a
group-level functional brain network G with τ = τw × n p,
where n p is the number of subjects.

D. Generative Model for Dynamic Functional Networks
To allow module detection, we here extend the temporal

clustering model under the CP framework in [34] to a gener-
ative model under the BTD framework. We model a dynamic
network functional brain networks G = {G t (V, Et )|t =
1, . . . , τ } as a mixture of R generative models{Sr

}
R
r=1. Sr

contains the same set of nodes V , for r = 1, . . . , R, with Lr
communities (or subnetworks/modules) {Cr

lr }
Lr
lr=1. We assume

that the probability that a node i ∈ V belongs to a community

Cr
lr in Sr follows a Bernoulli distribution, denoted as P(i ∈

Cr
lr ) = ar

ilr . At time step t , the l th community in the r th

generative model Sr generates the connection between two
nodes i , j with probability ar

ilr ar
jlr λ

r
t , where λr

t is defined
as an connection-generating rate or strength. λr

t changes
throughout time and can be modeled as a time series, which
here represents the temporal evolution of the communities.
Consequently, the r th generative model Sr generates the edge
with the sum across Lr communities at time step t :

(ar
il1ar

jl1+ · · · +ar
ilr ar

jlr+ · · · +ar
i Lr

ar
j Lr

)λr
t =

Lr∑
lr=1

(ar
ilr ar

jlr )λ
r
t

(1)

which could be considered as the expected number of connec-
tions generated between i and j in Sr at time t .

Align and compact adjacency matrices, X t , temporally into
the third mode of a third-order tensor, namely X::t = X t ,
t = 1, . . . , τ . Element Xi j t can be interpreted as the number
of connections (the strength of connections) observed between
node i and j at time step t . Thus, the model approximates Xi j t
by summing the Eq. (1) across R generative models as follow:

Xi j t ≈

R∑
r=1

(

Lr∑
lr=1

(ar
ilr ar

jlr )λ
r
t ) (2)

In other words, the dynamic community detection problem
is here to find R network generative models Sr (or latent
source components), their temporal evolution (connection-
generating) λr

t , and the probability that node i belongs to
the one of communities in the generative source Sr , ar

ilr , for
r = 1, . . . , R; t = 1, . . . , τ ; lr = 1, . . . , Lr ; and i = 1, . . . , n.
We can thus formulate the objective function as follow:

min
∑

i, j∈V

∑
t

∥Xi j t −

R∑
r=1

(

Lr∑
lr=1

(ar
ilr ar

jlr )λ
r
t )∥

2
F

s.t. 0 ≤ ar
ilr ≤ 1; for i = 1, . . . , n

λr
t ≥ 0 (3)

We suppose that the number of the generative components
R and the community number Lr , r = 1, . . . , R in each
component are given here merely for simplicity of exposition.

E. Learning Dynamic Community Structures With
Rank-(L, L, 1) BTD Model

To estimate the community structure in Eq. (3), we rewrite∑R
r=1(

∑Lr
lr=1(a

r
ilr ar

jlr )λ
r
t ) in Eq. (3) to

∑R
r=1(ar

i arT
j λr

t ) with
vector format, where ar

i ∈ RLr . The optimization problem in
Eq. (3) can further be rewritten as,

min
Ar ,cr
∥X −

R∑
r=1

(Ar · AT
r ) ◦ cr∥

2
F

s.t. 0 ≤ Ar ≤ 1; for r = 1, . . . , R

cr ≥ 0 (4)

where Ar := [ar
1 · · · a

r
n] ∈ Rn×Lr , cr := [λ

r
1 · · ·λ

r
τ ]

T
∈ Rτ .

Surprisingly, the optimization problem in Eq. (4) can be solved
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Algorithm 1 ALS
Input: ALS(X ∈ Rn×n×τ , R, L1, L2, . . . , L R)
Output: A ∈ Rn×R̂, C ∈ Rτ×R̂

1 begin
2 initiazation for A, C
3 repeat
4 Update A:
5 Ã = [(A⊙ C)†

· (A⊙ C) · AT
]
T
+

6 for r = 1 to R do
7 Ãr = QR Q R-factorization
8 Ar ← Q
9 end

10 A = [A1 · · ·AR]

11 Update C:
12 T = (A1 ⊙c A1)1L1 · · · (AR ⊙c AR)1L R

13 C← [T†
· T · CT

]
T
+

14 until convergence;
15 end;

by using the BTD framework with rank-(Lr , Lr , 1) [44]. The
multilinear rank-(Lr , Lr , 1) terms decomposition factorizes a
three-way tensor into a sum of R low multilinear rank terms,
each of which can be written as the outer product of a rank Lr
matrix and a vector as shown in Eq. (4). Loading matrix Ar
with rank-Lr is able to characterize the modular structures of
the latent network pattern, which encodes Lr communities or
node clusters since the elements represent the probability that
the n nodes belong to which communities. The node cluster
of each community can be obtained by the largest entry in the
corresponding row of Ar . That is, if k = arg max j {(Ar )i j },
then node vi belongs to kth node cluster. cr character-
izes the temporal evolution of the community structures
(see Fig. 1).

Like CP-based tensor decomposition, there are many
approximate algorithms for rank-(Lr , Lr , 1) BTD decomposi-
tion, such as multiplicative updating (MU) method, alternating
least squares (ALS) and hierarchical alternating least squares
(HALS) [57]. Here, we use the structured data fusion ALS
implementation by the Tensorlab [58], which is so far the
most widely used computation scheme for the BTD model.
The ALS algorithm applies a gradient descent method to
solve the minimization problem in Eq. (4) iteratively. At each
iteration, one of the factor matrices is updated while other
factor matrices are fixed. We define A := [A1 · · ·AR] ∈ Rn×R̂ ,
C := [c1 · · · cR] ∈ Rτ×R̂ , where R̂ =

∑R
r=1 Lr . For brief

illustration, consider estimating A, fixing C, resulting in the
following update rule:

A← arg min
0≤A≤1

∥X−
R∑

r=1

(Ar · AT
r ) ◦ cr∥

2
F , for fixed C

(5)

It can be estimated as a linear least-squares problem and
has a closed-form solution. The update procedure for A
and C is summarized in Algorithm 1. The detailed solution

of rank-(Lr , Lr , 1) terms decomposition using ALS and its
convergence analysis can be found in [44] and [49].

F. Model Order Selection
When estimating the multi-linear rank-(Lr , Lr , 1) BTD

model, a natural question follows: how to select R and Lr
from the experimental data? So far there is unfortunately
still no gold standard method for model order selection of
the BTD model in the literature [59]. A common practice is
to determine R and Lr that result in rational decomposition
results according to the data fitting values and the prior
knowledge of data features. Here, we use the model fitting
method, based on the measurement of the data fitting, as a
reference to choose the model order. Data fitting is computed
based on model reconstruction error and the explained variance
of data. Let component number R ∈ [1,R] and the rank
Lr ∈ [1,L], where R and L are the empirically maximal
number of latent components and rank. The data fit can be
obtained as

Fit (R, Lr ) = 1−
∥X −

∑R
r=1(Ar · AT

r ) ◦ cr∥
2
F

∥X∥2F
(6)

We can fix one of them, R or Lr to examine the changes
in the data fitting. Unlike PCA, the estimation of BTD may
have local minima (suboptimal solution), and not guarantee
that optimization routines will converge to the global optimal
solution. Thus, we run the ALS optimization procedure at
each component number R or each rank value Lr 20 times
from random initial conditions. Generally, the candidate model
order R̃ and rank L̃r can be thought of as the appropriate
selection when the data fitting no longer increases as the
number increases.

G. Temporal Modulation of the Community Structure by
Musical Features

To examine how musical features temporally modulate the
topological (module) structures of brain functional networks,
we here adopt temporal modulation analysis for each musical
feature, time courses of modular structures (components), and
subject. Previous studies have shown that the topological
organization of functional networks temporally evolves to
support ongoing cognitive function [14], [29]. We here attempt
to perform a correlation analysis between the temporal courses
of modular patterns and musical time series, by assessing
the statistical significance of temporal correlations based on
a surrogate permutation procedure [9], [29]. We obtain R
BTD components with two loading factors, characterizing
the temporal evolution (represented by cr ) and topological
structures of brain networks (represented by Ar with rank Lr ).
The temporal factor matrix C (C ∈ Rτ×R) is first reshaped
as a three-way tensor C (C ∈ Rτw×n p×R). which consists of
an individual time course for each BTD component. For each
BTD component and each subject, we calculate the correlation
coefficients between each musical feature time series and time
courses as the modulation scores. We then evaluate which BTD
component is significantly modulated by examining whether
its modulation score is significantly different from the scores
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Fig. 2. Results of simulation data. Left: the modular structures and temporal profiles of three synthetic brain network patterns. Right: the
corresponding modular structures and temporal profiles of reconstructed brain patterns. I, II, and III represent the three components respectively.
Note that the scale of the amplitude is different between simulated and reconstructed temporal profiles due to the scaling indeterminacy in tensor
decomposition.

of surrogate data. We generate the surrogate data with a
phase-randomization procedure [60], which randomizes the
intrinsic phase and retains the properties of the temporal course
in the spectral domain. The phase-randomization procedure is
repeated 5000 times for each BTD component. We compute
the correlation coefficients between musical feature time series
and phase-randomized time courses to generate a distribution
of modulation scores from surrogate data. The 95th percentile
(p = 0.05) of surrogate modulation scores are chosen as
the threshold (the control modulation score for comparisons)
for each subject. This significant level was corrected based
on Bonferroni correction for multiple comparisons across
the multiple components i.e., pcorrect = 0.05/R. For each
component, we finally use two-tailed t-tests for the modulation
score of each musical feature to determine which component
(brain network pattern) is modulated significantly differently
at pcorrect = 0.05/R level from the defined threshold.

III. RESULTS

A. Simulation Results
We first validated the proposed approach with simulation

data, which provided the instruction to study the performance
of the methodology. The performance of the Pearson corre-
lation of the envelope with signal leakage reduction, as a
metric to investigate functional connectivity at the source level,

has been well validated in a previous study [29]. Therefore,
we would not test the performance of connectivity metrics
repeatedly in the current study. We only validated the ability
of rank-(Lr , Lr , 1) BTD, for dynamic functional networks,
to extract the community structures and the temporal evolving
over time scales of minutes.

We constructed dynamic functional networks with adja-
cency matrices (n = 68 nodes, τ = 200 time points). The
tensor representation of the networks was obtained by the outer
product of adjacency matrices and temporal profiles. That is,
Msim = Ssim +Nsim =

∑R
r=1(Ar

sim Ar
sim

T ) ◦ cr
sim +Nsim ,

where Nsim ∈ Rn×n×τ is a noise tensor with dimensions same
as Ssim . We predefined three community structures (R = 3)
and each of them included four communities or node clusters
(Lr = 4, r = 1, 2, 3). We generated binary networks by using
the node clusters. Their temporal evolution was modulated
by triangle, square, and sine waves (Fig. 2). We showed the
case under the signal-to-noise ratio (SNR) of 10dB. One
can observe that the three latent brain network patterns with
distinct topological structures and temporal modes were suc-
cessfully extracted using multilinear rank-(Lr , Lr , 1) BTD.

B. Results From EEG Data Recorded During Music
Listening

The proposed method was applied to dynamic functional
networks constructed from the naturalistic music listening
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Fig. 3. Results from music-listening data. A. For each subject, the modulation scores are estimated from the correlation analysis of temporal
courses of BTD components and music features (see Section II-G). Error bars display the standard errors of the mean across subjects. An asterisk
shows that the BTD component is modulated significantly differently (p < 0.05; corrected) from the surrogate data. B. The modular patterns of
3D visualization. Each dot/node indicates one brain region of the DKA atlas and nodes in the same community have the same color. The node
cluster or community is obtained from the Ar matrix with rank Lr, which encodes the node membership information. Row I shows two unilateral
auditory modules, sensorimotor and frontoparietal modules; row II indicates strong frontotemporal and temporoparietal modules; row III shows
frontotemporal and frontoparietal subnetworks.

EEG dataset to detect the community structures across sub-
jects. Fig. 3 shows the estimated brain network with spe-
cific modular patterns from BTD components: their modular
structure profiles and their modulation scores by five musical
features. The mean and standard deviation of the modulation
score were reported across subjects. Here, R = 5 components
(with 4 community clusters for each, that is, Lr = 4, r =
1, . . . , R) were extracted by BTD based on data fitting analysis

(see Fig. 4), and we presented 3 components that showed
significant musical feature modulation. We observed unilateral
auditory modular subnetworks (modules 2 and 4 in Row I of
Fig. 3) and two bilateral frontoparietal functional subnetworks
(modules 1 and 3 in Row I of Fig. 3). The auditory sub-
networks showed strong clustering in the temporal lobe. The
regions involved by the frontoparietal subnetworks were part
of the frontoparietal network (FPN), which here was composed
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of the dorsolateral prefrontal cortex and posterior parietal
cortex. Such community structures were temporally modulated
by the Mode and Pulse Clarity features. Row II of Fig. 3
showed the sensorimotor networks (module 4), frontotemporal
subnetworks (modules 1 and 2), and temporoparietal subnet-
works (module 3), which seemed to be related to the anterior
higher-order cognitive brain networks in accordance with
previous literature [27]. The involved regions were part of the
default mode network (DMN) which here contains temporal
poles, the ventromedial prefrontal cortex, and the posterior
cingulate cortex. They also involved Broca’s area which was
often associated with semantic integration. The time course
of this modular pattern was significantly modulated by the
Fluctuation Centroid. There were three modules detected in
Row III, showing strong clusters in the visual subnetworks,
frontotemporal and frontoparietal subnetworks. This modular
pattern was significantly modulated by the Pulse Clarity.

IV. DISCUSSION

In this study, we proposed a BTD-based framework applied
to EEG data, which enabled us to characterize the dynamic
topological properties of electrophysiology brain networks
during natural music listening. We formed a three-way tensor
including temporal evolution of functional connectivity at
the source level and then applied multilinear rank-(Lr , Lr , 1)

decomposition to detect the modular structures of time-varying
brain networks. We derived large-scale brain network topo-
logical structures during freely listening to music, which was
characterized by BTD components. Such BTD component,
we referred to as a modular pattern, was represented with
a distinct topological pattern of functional networks across
the set of predefined atlas regions spanning the whole brain.
These modular patterns of topology-specific envelop-coupling
were found to be temporally modulated by musical features
and corresponded to plausible brain functional sub-systems,
consisting of auditory, sensorimotor, and higher-order cog-
nitive subnetworks. To the authors’ knowledge, this might
be the first complete formulation of a BTD-based generative
model method for module detection of electrophysiology brain
networks using ongoing EEG.

Simulation results showed the effectiveness of the pro-
posed method for the detection of community structure in
time-varying brain functional networks. When applied to the
EEG data recorded during the continuous music listening task,
the proposed approach identified more diverse community
structures in addition to the typical assortative organization
in brain networks, which was related to auditory and semantic
information processing as well as higher-order cognitive func-
tions. These types of network architecture seemed to be asso-
ciated with music perception and were temporally modulated
by the acoustic musical feature extracted from music. Their
topological structures might allow the network to engage in
a wider functional repertoire, e.g., integration of information
across different brain regions in higher-order cognitive pro-
cesses. Different from CANDECOMP/PARAFAC(CP)-based
methods, our proposed method allowed the mutual existence
of multiple communities (modules or subnetworks) in the
same components (brain patterns) due to the multi-linear rank

decomposition. For example, we found bilateral frontotem-
poral communities (modules 2 and 4 of Row II in Fig. 3)
involved a subdivision of the DMN network that subserves
a semantic integration and the ventromedial prefrontal cortex
was typically specialized for emotion regulation. The subnet-
works also involved Broca’s areas, which are typically related
to language processing. Previous studies demonstrated that
brain functional networks engaged in music processing have
strict similarities with that of language processing [61], [62].
Thus, the nodes of the subnetwork including Broca’s areas
could be implicated during continuously listening to music.
These subnetworks were also identified in the previous study
with two independent CP components based on CP-based
methods [9].

We also observed bilateral frontoparietal communities
(modules 1 and 3 of Row I in Fig. 3) in the FPN network that
subserved an integrative function between periphery commu-
nities in the left and the right hemisphere during auditory or
semantic comprehension and unilateral auditory subnetworks
(modules 1 and 3 of Row I). This asymmetry modules 2 and
4 might be associated with the language network that displays
some degree of hemispheric lateralization. The nodes of the
language network would be implicated during naturalistic
language comprehension task performance. Indeed, this left
lateralized subnetwork is anchored in the angular gyrus with
extensions to the inferior frontal gyrus, inferior temporal
gyrus, and a number of nodes spanning the inferior to superior
precentral gyrus. These regions are consistent with previous
accounts of semantic cognition [61], [62]. The parietal module
(module 4 of Row II in Fig. 3) was related to the motor
networks and it was believed that perception and execution of
actions are strongly coupled in the brain as a result of learning
a sensorimotor task, which facilitated not only predicting
the action of others but also interacting with them [63].
During music listening, a tight coupling emerged between
the perception and production of sequential information in
hierarchical organization [9], [63]. Brain regions associated
with motor networks could be involved due to imitation
and synchronization during musical activities (e.g. ensemble
playing or singing). These subnetworks involved in auditory
areas (Row III in Fig. 3) played an important function in music
perception in agreement with previous studies [9], [50].

Tensor decomposition especially with CP model analysis
methods has been applied for the multi-way neuroimaging data
in cognitive research since it enables multi-timescale dimen-
sionality reduction both within and across subjects or condi-
tions with unsupervised learning [9], [39], [48]. This provides
the possibility of module detection of dynamic time-varying
brain functional networks. The majority of studies for brain
networks typically applied the CP model to examine the
temporal, spectral, or spatial features of brain connectivity
networks, which is unable to detect the modular structure in
resulting CP components simultaneously. This results in the
requirement for further analysis such as clustering of the net-
work factor of CP components when looking at the topological
structure of the networks. To overcome this limitation, the
proposed methods adopted block component analysis, rank-
(Lr , Lr , 1) BTD. The resulting BTD components include the
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Fig. 4. Data fitting curves in the function of the component number
and rank number. A. Fit versus component number R obtained by
computing the BTD of EEG data for Lr = 4, r = 1, . . . ,R. B. Fit versus
rank number Lr obtained by computing the BTD of EEG data for R = 5.

node factor matrix with rank-Lr , which is able to characterize
the topological structures of the latent network pattern. That
is the rank-Lr encodes Lr communities or node clusters.
Actually, tensor decomposition with the CP model can be
considered a special case of rank-(Lr , Lr , 1) block term
decomposition (i.e., Lr = 1). Intuitively, the rank Lr of the
node factor matrix is capable of characterizing the membership
of nodes in the network. This, on the other hand, explains why
the tensor decomposition with the CP model fails to detect the
community structures (Lr = 1 one community left).

The key parameters for the BTD-based methods are the
determination of the component number and rank number,
which is less well prescribed and not a limitation of the
proposed approach directly. In the absence of theoretically
motivated methods for parameter selection, we here opted
instead to repeat the data fitting analysis for different values
to select a relatively rational number. Fig. 4A shows the data
fitting with different component numbers when fixing the rank
Lr = 4. We can see the data fitting no longer increases or
increases slowly when R = 5. Fig. 4B shows the data fitting
with different rank numbers, indicating that data fitting almost
stays constant as Lr increases. Finally, we set the R = 5 and
Lr = 4 according to the data fitting analysis and previous
experience. Note that such data fitting analysis only provides a
reference and instruction and is not able to accurately estimate
the underlying true numbers of BTD components.

For the parcellation, we chose the DK atlas as the template
since the scalp electrodes are not very dense. Although beyond
the scope of the current work, the other atlas could also be
used in our method after source leakage correction. In addition,
note that the topological structure with specific four modules
is a whole pattern with one corresponding temporal evolution
instead of four independent module patterns.

V. CONCLUSION

We introduced a framework based on a latent network
generative model and related it to BTD for detecting dynamic
community evolution in time-varying brain networks dur-
ing continuous music listening. It allows us to identify the
topological structures of dynamic brain networks and their
time evolution during naturalistic stimuli. The majority of
approaches for brain networks failed to reveal the topological

structures of time-varying networks. Here, we apply block
component analysis, rank-(Lr , Lr , 1) BTD, to the adjacent
tensor. The node factor matrix of BTD components with rank-
Lr is able to characterize the topological structures of the
latent network pattern, which encodes Lr communities or node
clusters. We validate the proposed method in simulation and
then apply it to the EEG data recorded during free music
listening. The identified brain patterns with distinct topological
structures were in line with those previously published in the
fMRI and EEG studies. The proposed method looks valuable
for the characterization of the temporal evolution of brain
networks with specific community structures during freely
listening to music or other naturalistic stimuli.
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