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Multi-Modal Deep Learning Diagnosis of
Parkinson’s Disease—A Systematic Review

Vasileios Skaramagkas™, Anastasia Pentari, Zinovia Kefalopoulou™, and Manolis Tsiknakis

Abstract— Parkinson’s Disease (PD) is among the most
frequent neurological disorders. Approaches that employ
artificial intelligence and notably deep learning, have been
extensively embraced with promising outcomes. This study
dispenses an exhaustive review between 2016 and January
2023 on deep learning techniques used in the prognosis
and evolution of symptoms and characteristics of the dis-
ease based on gait, upper limb movement, speech and
facial expression-related information as well as the fusion
of more than one of the aforementioned modalities. The
search resulted in the selection of 87 original research pub-
lications, of which we have summarized the relevant infor-
mation regarding the utilized learning and development
process, demographic information, primary outcomes, and
sensory equipment related information. Various deep learn-
ing algorithms and frameworks have attained state-of-the-
art performance in many PD-related tasks by outperforming
conventional machine learning approaches, according to
the research reviewed. In the meanwhile, we identify signif-
icant drawbacks in the existing research, including a lack
of data availability and interpretability of models. The fast
advancements in deep learning and the rise in accessible
data provide the opportunity to address these difficulties
in the near future and for the broad application of this
technology in clinical settings.

Index Terms— Artificial intelligence, deep learning, deep
neural networks, Parkinson’s disease, speech, facial

expressions, gait, upper limbs, tremor.

ARKINSON’S disease (PD) is the second most common
Pneurological disease after Alzheimer’s, affecting 2-3% of
the population over 65 years of age globally [1]. Neuronal loss
in the substantia nigra, which causes dopamine deficiency in
the striatum, and intracellular inclusions containing aggregates

of a-synuclein are the neuropathological hallmarks of PD.
Moreover, environmental and lifestyle factors, sex and age,
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in combination with genetics, all contribute to the pathogenesis
of PD.

Even though there is presently no cure for PD, pharmaco-
logical approaches based on dopamine substitution, as well
as surgical techniques such as deep brain stimulation (DBS)
provide substantial improvement of motor symptoms. While
mortality is not increased in the first decade after disease onset,
eventually doubles compared to the general population, with
falls and aspiration pneumonia being the leading causes of
hospitalization and decease.

PD is clinically defined by the presence of bradykinesia and
at least one additional cardinal motor symptom (rigidity or rest
tremor), in combination with other supporting and exclusion-
ary features [2], [3]. Reduced facial expression, handwriting
diminishing (micrographia), speech and voice impairment,
as well as difficulty swallowing, all represent additional motor
aspects of PD. The aforementioned motor symptoms gradually
interfere with patients’ daily activities, negatively affecting
their quality of life. Progression of motor dysfunction with
increasing gait abnormalities and onset of postural instability
further compromise patients’ autonomy and safety. Although
the motor symptoms define the clinical syndrome, a majority
of PD patients have other complaints that have been clas-
sified as non-motor, probably related to non-dopaminergic
pathways. These include mood and mental alterations, such
as depression, lack of motivation or apathy, and a declining
cognitive capacity. Fatigue, sleep disturbances, autonomic (i.e.,
orthostatic hypotension, urogenital dysfunction, constipation,
and excessive sweating), as well as sensory complaints are
common components of the clinical spectrum of PD. Non-
motor symptoms are present in the early stages of the disease,
while some antedate the onset of cardinal motor features by
years even decades [4]. However, these symptoms become
increasingly prevalent and are major determinants of quality
of life, progression of overall disability and mortality, as the
disease advances [5].

The diagnosis of Parkinson’s disease is mostly dependent
on the patient’s clinical evaluation [6], [7]. The Movement
Disorder Society - Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS) is currently regarded as the gold standard
for the evaluation and monitoring of PD [8], followed by
the well-established Hoehn and Yahr (H&Y) scale. Although
there are some interesting possibilities, there are no clear
biomarkers for PD, and all pertinent research findings support
the clinical diagnostic confirmation. Even more difficult is
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the identification of the disease in its early stages, since
the symptoms’ heterogeneous appearance and progression
result in complicated clinical presentations of PD [9]. For-
tunately, Machine Learning (ML), a field of Artificial Intel-
ligence (AI) which is defined as the capability of systems
to autonomously acquire knowledge and detect patterns from
experience or existing data without being explicitly pro-
grammed [10], has become increasingly successful in identify-
ing nonlinear connections in high-dimensional data. Moreover,
a cutting-edge machine learning technology, Deep Learning
(DL), has recently achieved success and increased performance
that surpasses state-of-the-art in several health areas [11].
DL allows the entry of high-dimensional and unprocessed data
and automatically learns its representation through the use of
Deep Neural Networks (DNN), which need minimum feature
engineering work on data preprocessing [12].

DL strategies are essential to manage such complex data
extracted from sensor-enabled devices [13]. During the last
decade, there has been a rapid development in the use of DL
modeling techniques that employ sensor data to track, monitor,
and predict the course of Parkinson’s disease [14], [15].
Other techniques involve the use of biomarker data sets, such
as dopamine transporter data from tomographic images and
serum cytokines, to evaluate classification performance using
shape features derived from produced regions of interest [16].
Additionally, a recent study provided evidence that Al can
identify people, who suffer from PD, from their nocturnal
breathing and could accurately estimate the disease severity
and progression [17].

Nowadays, research on the development of wearable sen-
sory equipment for the detection of symptoms or characteris-
tics of PD has made significant progress [18]. The sensors can
be located in different parts of the body and are associated with
different modalities and combinations thereof. The proper use
of sensors and the selection of the investigated modalities can
offer provision to more remote healthcare services and tailored
diagnoses [19]. In addition, these digital sensors enable the
autonomous, non-disruptive collection of real-world data [20].
Meanwhile, the real-time nature of wearable technology and
the depth of insight into a patient’s vitals enable physicians to
detect disease early and provide the most accurate diagnoses,
whether in-clinic or remotely [19]. Therefore, it is of utmost
importance the use of sensors to obtain biomarkers from
modalities, that can offer real-time monitoring and thus, may
accurately reflect everyday symptoms and their variation.

In the presented systematic literature review (SLR) we focus
on studies that employ DL methods towards PD diagnosis
by utilizing data from the modalities of gait, upper limb
motion, speech and facial expressions. Information from the
aforementioned four modalities can be obtained from wearable
devices during daily life activities in real-time, outside of
the clinical settings, and thus, can provide caregivers and
clinicians with a more realistic picture of the progression of the
disease, leading to more personalized treatment of the patient.

The rest of the manuscript is structured as follows:
Section II provides with a description of the most common
PD symptoms related to the investigated modalities and the
importance of their use for PD diagnosis is highlighted.

Further, Section III comprises of the related recently published
reviews regarding the use of Al to the diagnosis of PD. Further,
the research method followed in this review is presented in
detail in Section IV, including the research goal and questions,
the study search and selection strategy as well as the extraction
of information from the selected surveys. In Section V, our
findings are analyzed and the research questions are answered
in detail. Finally, in Section VI, we summarize and discuss
our results and the possible limitations of our work whilst in
Section VII we draw the main conclusions from our review.

Il. MANIFESTATION OF PD SYMPTOMS

In this Section, the clinical features of Parkinson’s dis-
ease regarding the modalities of gait, upper limb motion,
speech and facial expressivity, both motor and non-motor, are
described in the context of the progression of the disease.

A. Analysis of Gait

Gait impairment is an evolving condition, and different
patterns of gait disturbances can be detected throughout the
progression of PD, such as reduced smoothness of locomotion,
increased interlimb asymmetry [21], decreased speed, reduced
step length [22], shuffling steps, increased double-limb sup-
port, defragmentation of turns, decreased balance and postural
control [23].

In addition, data related to gait mechanisms are utilized
to create strategies for predicting the risk of falling. Falls
represent a significant risk factor that greatly influences the
quality of life of Parkinson’s patients [24]. Falls in people with
severe Parkinson’s disease are often related to a paroxysmal
symptom known as “Freezing of Gait” (FoG). More than
60% of PD patients experience some form of freezing as the
disease progresses, and insufficient knowledge of the patho-
physiology and circuit mechanisms limits the effectiveness
of treatment [25]. Considering this, FoG is characterized as
an episodic (seconds-long) failure to create an effective step,
and its pathophysiology likely involves context-dependant
dysfunction across multiple neuronal levels, including cortical,
subcortical and brainstem regions [26]. FoG can occur at the
beginning of the first step, when turning, performing several
tasks, walking through narrow spaces, arriving at a destination,
or walking through doors. Accelerated pacing (festination),
another sign of Parkinson’s disease, is clinically characterized
as the patient’s tendency to walk forward in increasingly rapid
and shorter steps, with the patient’s center of gravity shifting
forward, over the supporting leg. There is evidence that indi-
viduals with Parkinson’s disease who frequently present FoG
follow a pattern of accelerated pacing prior to “freezing” [27].
Several studies show that, among a number of gait metrics,
step duration, step length, double support time and swing
time might be used to create models that predict episodes of
FoG [28].

Therefore, an objective and quantitative analysis of the
modality of gait could potentially improve the current
approach, which may aid in Parkinson’s disease patient diag-
nosis, symptom monitoring, therapy management, rehabilita-
tion, and fall risk assessment and prevention.
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B. Analysis of Upper Limb Motion

Typically, the motor manifestations of PD have a localized
onset (i.e. reduced arm swing, hand tremor [29]). Uncertainty
exists over the appearance of a recognized somatotopic pat-
tern of development and progression of motor symptoms in
PD. According to patterns based on postmortem studies and
in vivo positron emission tomography (PET) imaging, motor
indications of Parkinson’s disease should begin in the lower
extremities and progress upward [29]. However, the majority
of neurologists would concur that the early motor symptoms
of PD manifest in the upper limbs. This is a subjective
conclusion based on the experience, which might be influenced
by observational bias. Therefore, the motor manifestations of
the upper limb may be more apparent to patients and clinicians
than the early, modest impairments of the lower limb and
face [30].

Tremor, which is defined as an involuntary, rhythmic, and
oscillating movement of a body part, is one of the most
common symptoms of PD [31] and is referred as Parkinsonian
tremor (PT). The objective of the tremor analysis is to quan-
tify PD tremor, which is rhythmic, has a typical frequency,
and is more prevalent in the hands during rest [32]. There
are various types of tremor, each with unique causes and
characteristics [33]. The clinical picture, the correct inter-
pretation of medical history, and the doctor’s experience all
contribute to a more precise determination of tremor type.
Despite the existence of a variety of diagnostic methods for
Parkinson’s disease and tremor, their rapid and effective dif-
ferentiation, especially in their early stages, proves especially
challenging due to their wide variety of causes and symptom
similarities [34].

In addition to tremor episodes, freezing phenomena are
a significant cause of disease-related disability in PD [35].
Freezing occurs most frequently during walking (FoG), as well
as during swallowing, speech, and especially repetitive move-
ments of the upper limbs [36]. As with FoG, freeze of the
upper limbs impairs daily activities such as handwriting, tooth
brushing, typing, and bimanual coordination to a significant
degree [37]. Consequently, it is essential to determine the
cause and detect the abnormalities in the motion of the upper
limbs in order to effectively reduce and treat the associated
syndrome.

C. Analysis of Speech

Speech is an essential biological feature of human beings
and impairments in voice can indicate possible disorders, such
as PD. The majority of PD patients develop a variety of speech
disorders while speech might be affected years before the main
motor symptoms of the disease appear [38]. Therefore, the
modality of speech is crucial to be investigated early and in
depth.

The most important and common impairments include
reduced loudness, monopitch, monoloudness, breathy and
hoarse voice quality, reduced stress and imprecise articula-
tion [39], [40]. These changes in speech belong to the hypoki-
netic dysarthria category and can be exploited as possible
biomarkers so as to identify early signs of this neurological

disorder [41]. Sustained vowels as well as reading sentences,
words and short texts have been employed to distinguish the
PD patients from healthy controls [38], [42]. Moreover, impre-
cise articulation, phonation and prosody have been observed in
specific consonants, as mentioned in [41]. All these symptoms
can be characterized as mild, moderate or severe [38].

D. Analysis of Facial Expressions

Facial expressions constitute a fundamental source of infor-
mation for disease analysis, manifested in the early stages of
the disease, even years before diagnosis [43]. Hypomimia,
also known as facial amimia, is one of the most prominent
clinical indications of Parkinson’s disease, characterized by
a decrease or lack of spontaneous facial movements, small-
amplitude and low-velocity voluntary orofacial movements,
and emotional expressiveness. Moreover, it has been reported
that there is a possible relationship between amimia and other
axial symptoms, such as gait freezing [44].

Observable signs include, among others, abnormalities asso-
ciated with a deeper indentation of the eyelids, a star-
ing expression, involuntary mouth opening, and stiffness
in the orbicularis oculi muscles [45]. On the upper face,
hypomimia often is often presented as a reduction in blink
rate, but on the lower face, spontaneous smiling difficulties
are noticed [46]. In addition, the early manifestations of facial
muscle movement-related symptoms along with their possible
correlation with motor symptoms of PD highlight the need
for more research to be conducted on the alterations of facial
expressions.

[1l. RELATED WORKS

In recent years, the number of publications on the applica-
tion of deep learning to the diagnosis of PD has increased.
Although previous studies have reviewed the use of machine
learning in the diagnosis and assessment of PD, they were
limited to the analysis of motor symptoms, kinematics, and
wearable sensor data as well as the utilization of traditional
ML techniques [47], [48]). Recently, [49] provided a com-
prehensive analysis of the influence of machine learning and
deep learning approaches applied towards Parkinson’s disease
diagnosis on the development of new research areas based
on neuroimaging techniques as well as physiological signals
obtained from speech, gait and handwriting. In addition, this
research investigates the existing status and potential appli-
cations of data-driven Al technologies in the diagnosis of
Parkinson’s disease.

Healthcare services are gaining interest in computer-aided
diagnostic (CAD) technologies based on artificial intelligence
methods that can perform automated diagnosis of Parkinson’s
disease. To this goal, authors in [50], collected 63 stud-
ies (2011-2021) on deep learning from various modalities
including brain analyses (SPECT, PET, MRI, and EEG) and
motion symptoms (gait, handwriting, speech, EMG). They
demonstrated that deep learning models can reach excellent
prediction accuracy for Parkinson’s disease, particularly the
convolutional neural network (CNN) model, which has been
widely recommended by studies focusing on image classifica-
tion for brain imaging and handwriting analysis. Additionally,
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the CNN model worked well with one-dimensional inputs
such as EEG and speech analysis. This work suggests that
academics will be incentivized to use more explainable and
interpretable methodologies in deep learning-based CAD tools,
which will subsequently be adopted by end-users and enhance
the health care results for the increasing number of people
affected by PD around the world.

In order to offer a complete overview of the data modalities
and machine learning algorithms utilized in the diagnosis
and differential diagnosis of PD, [51] conducted a literature
evaluation of papers published through 2020, using PubMed
and IEEE Xplore. This study examines the aims, data sources
and types, machine learning methods, and associated outcomes
of 209 papers that were included. These results reveal a strong
potential for the implementation of ML techniques and novel
biomarkers in clinical decision making, resulting in a more
systematic and accurate diagnosis of Parkinson’s disease.

In this systematic review, we aim to (a) comprehensively
summarize published studies that applied advanced DL models
to the diagnosis of PD-related symptoms and estimation of
disease severity levels for an exhaustive overview of data
sources, data types, deep learning models, and associated
outcomes, (b) assess and compare the feasibility and efficiency
of the different DL methods in the diagnosis of PD by utilizing
information obtained from four different modalities: gait,
upper limb motion, speech, and facial expressions, (c) provide
machine learning practitioners interested in the diagnosis of
PD with an overview of previously used models and data
modalities and the associated outcomes as well as the different
PD diagnostic targets in relation to each modality studied,
and (d) present and comment upon the variety and types
of sensors used to acquire the desired information from the
studies modalities. The application of Al to clinical and
non-clinical data of different modalities has often led to high
diagnostic accuracies in human participants, therefore may
encourage the adaptation of cutting-edge DL algorithms and
novel biomarkers in clinical settings to assist more accurate
and informed decision making.

IV. RESEARCH METHOD

This study was designed and carried out by following guide-
lines for systematic literature reviews [52]. We followed the
process depicted in Fig. 1, which can be divided into the three
common phases of planning, conducting, and documenting.

The objective of Phase 1, i.e. the Planning phase, was to:

« establish the need for a review of DL methods imple-

mented towards the diagnosis of PD.

« identify research goal and more importantly questions,

and

« define the protocol to be followed by the research team

for carrying out the work in a systematic and pinpoint
manner.
The output of the Phase 1 is a detailed review protocol.

The objective of Phase 2 was to perform the SLR by
carrying out all the steps defined in the review protocol,
as follows:

o Search and selection: Four peer-reviewed databases

were searched automatically. Then, possible entries were

filtered to create the final list of studies to be reviewed.
After selection, we performed comprehensive backward
and forward snowballing.

« Data extraction form definition and classification frame-
work: We compared and categorized studies considering
research topics [53]. This was accomplished methodically
with keywording.

o Data extraction and synthesis: We examined each main
research in depth, hence completing the associated data
extraction form. Forms were gathered and aggregated
for further analysis and synthesis. We also reviewed
and analyzed the previous data. This task elaborated on
extracted data to address each research question.

In Phase 3, we analyzed and synthesized the data. For inde-
pendent replication and verification, we developed a thorough
replication kit. We include search and selection raw data, the
full list of important research, and data extraction raw data.

A. Research Goal and Questions

The goal of this study was to identify, classify, and evaluate
trends, focus, and open challenges in existing research on the
diagnosis of Parkinson’s disease by utilizing cutting-edge deep
learning techniques. Our focus is to search for deep learning
methods utilized towards the detection of various indicators of
Parkinson’s disease such as motor and non-motor symptoms,
severity levels or other PD related characteristics [54].

Our overall goal can be refined into the following specific
research questions (RQ), for each of which we also provide
primary objective of investigation:

o RQ1: What are the most advanced DL methods used for
the diagnosis of PD and the assessment of PD severity
using the modalities of interest?

e RQ2: Has DL being used for non-conventional PD-
related diagnostic targets?

o RQ3: Could the fusion of multi-modal information offer
more personalized and accurate diagnosis?

o RQ4: Which sensing systems are used to analyze the
symptoms of PD related to speech, facial expressions,
upper limb movement and gait?

Based on the review results obtained by answering RQI,
we offer a deep knowledge of the most advanced DL tech-
niques and frameworks employed towards the diagnosis of
PD, its symptoms and severity levels from data obtained from
the modalities of speech, gait, upper limb motions and facial
expressiveness. Answering RQ2, gives an insight regarding
the existence of DL models aiming to the identification of
non-conventional PD diagnostic targets. Moreover, answering
RQ3 helps the community to understand whether there is
potential in the adoption of DL methods based on the fusion
of different modalities and space for improvement in this
research area. Finally, by answering RQ4 we provide a solid
foundation for a thorough comparison of existing sensory
equipment solutions that are currently used to extract the
necessary information which are then processed and served
as input to the DL models.

contribution is useful for both (i) researchers to further
contribute to this research area by defining new approaches
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Fig. 1. Overview of the SLR process.

or refining existing ones, and (ii) practitioners to better under-
stand existing methods and techniques and thereby to be able
to adopt the one that better suites their research and business
goals.

B. Search and Selection Strategy

In this phase, we gathered the set of research studies
that are relevant and representative for our purposes. Before
performing the actual search and selection of relevant studies,
we manually selected a set of ten pilot studies. They were
selected based on the authors’ knowledge of the targeted
research domain (i.e., DL methods for multi-modal PD diag-
nosis) and on an informal preliminary screening that we
performed on the available literature on the topic. Selected
pilot studies fulfil our selection criteria (see below) and they
are presented in Table I. Pilot studies were used to validate
our search and selection strategy; more specifically, we used
them to have quick feedback about the goodness of our search
string to be used for the automatic search and for guiding the
refinement of the selection criteria.

1) Automatic Search: During this phase, automated searches
were conducted on the electronic databases and indexing
systems specified in Table II. As indicated in [64], we selected
four of the largest and most comprehensive scientific databases

and indexing systems in biomedical engineering, namely
SCOPUS, IEEE Xplore Digital Library, PubMed, and ACM
Digital Library in order to cover as much relevant material
as possible. The selection of these electronic databases and
indexing systems was strongly affected by their high accessi-
bility, their capacity to export search results to well-defined,
computation-friendly formats, and the fact that they have
been acknowledged as an efficient way to conduct systematic
literature reviews in biomedical engineering.

To create the search string, we considered initially the
research questions and afterwards the set of pilot studies.
Then, we retrieved a list of relevant concepts, their synonyms,
abbreviations, and alternative spellings, and merged them
with ANDs and ORs to form the final search string. The
search string displayed below was evaluated by conducting
pilot searches on the four sites and comparing the findings
to all pilot studies, which were required to be included in
the acquired results. The actual search strings used for each
database were obtained by syntactically modifying them to the
unique database’s properties. We searched for the search string
on the paper’s title, abstract, and keywords; the automated
searches yielded 3342 possible studies.

parkinson*
AND
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TABLE |
PILOT RESEARCH STUDIES

H Title ‘ Year ‘ Ref. H
Multi-Scale Sparse Graph Convolutional Network For the Assessment of Parkinsonian Gait 2022 | [55]
Detecting Freezing of Gait in Parkinson’s Disease Patient via Deep Residual Network 2021 | [56]
CNN-Based PD Hand Tremor Detection Using Inertial Sensors 2021 | [57]
Evaluation of Recurrent Neural Network Models for Parkinson’s Disease Classification Using Drawing Data 2021 | [58]
Automated video-based assessment of facial bradykinesia in de-novo Parkinson’s disease 2022 | [99]
Improving Parkinson Detection using Dynamic Features from Evoked Expressions in Video 2021 | [60]
Deep Learning-Based Parkinson’s Disease Classification Using Vocal Feature Sets 2019 | [61]
Parkinson Disease Detection Based On Speech Using Various Machine Learning Models and Deep Learning Models 2021 | [62]
End-2-end modeling of speech and gait from patients with parkinson’s disease: comparison between high quality vs. smartphone data 2021 | [63]
Biomechanical parameters assessment for the classification of Parkinson Disease using Bidirectional Long Short-Term Memory 2020 | [64]

TABLE Il
ELECTRONIC DATABASES AND INDEXING SYSTEMS
CONSIDERED IN THIS RESEARCH

H Name Type Findings H
SCOPUS Indexing system 1476
IEEE Xplore Digital Library Electronic 462
database
PubMed Electronic 433
database
ACM Digital Library Electronic 971
database

disease OR phenotyp* OR symptom* OR stage* OR severity
AND
diagnos* OR assess* OR identif* OR classif* OR recogn*

AND

lower limb* OR gait OR face OR facial OR speech OR

voice OR tremor OR upper limb* OR multimodal* OR

multi-modal*
AND
machine learning OR deep learning OR neural net*

2) Impurity and Duplicates Removal: Due to the nature of
electronic databases and indexing systems, search results may
contain items that are obviously not research papers, such as
conference and workshop proceedings, international standards,
textbooks, book chapters, etc., as well as duplicates. At this
step, we manually eliminated impurities and merged dupli-
cates. Fig. 2 presents the percentage of the studies included
between years 2016 and 2023.

3) Selection Criteria: After removing impurities and dupli-
cates, our inclusion and exclusion criteria were applied to all
the remaining research to determine their possible inclusion
in the set of studies. Each study was analyzed in two steps:
initially, its title, keywords, and abstract were considered;
secondly, if the analysis did not result in a clear conclusion,
the introduction and conclusion parts were reviewed. The
following selection criteria were applied:

Inclusion Criteria for Peer-Reviewed Literature:

1) Studies proposing DL-based PD diagnostic methods

based on gait, speech, facial and upper limb movement
characteristics.

2016

1% 6%

2017

2020
18%

Fig. 2. Percentage of papers included between January 2016 and
January 2023.

2) Studies subject to peer review [65].

3) Studies written in English.

4) Studies available as full-text.

Exclusion Criteria for Peer-reviewed literature

1) Secondary and tertiary studies (e.g., systematic literature
reviews, surveys).

2) Studies in the form of tutorial papers, short papers (<
3 pages), poster papers, editorials, manuals, because they
do not provide enough information.

3) Studies that do not involve subjects diagnosed with
PD, but healthy volunteers mimicing movements and
symptoms caused by the disease.

4) Studies that do not include any information about the
DL models that were employed.

To select studies objectively, two researchers actively par-
ticipated in this phase (V.S. and A.P.). More specifically,
by following the method proposed in [66], each potentially
relevant study was classified by the researchers as relevant,
uncertain, or irrelevant according to the selection criteria
above. Studies classified as irrelevant by both raters were
immediately excluded, while those marked as relevant were
preliminary included. For the uncertain cases, the selection
team discussed with the mediation of one more researcher, the
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Screening

Records identified
based on title, abstract
and keywords

Records excluded

n=2985
n=3342
Eligibility

Full-text articles
assessed for

Not relevant to research
questions and objectives

eligibility
n=270
n=357
Included
46 - Gait
Articles included in 17 - Upper limbs
the final review 14 - Speech

4 - Facial expressions

n=287 6 - Multi-modal

Fig. 3. Prisma model depicting no. of records included and excluded.

mediator (MT). The Prisma model, shown in Fig. 3, depicts
the overall paper review process, the studies included, and
provides the number of research papers involved at each stage
of the pipeline.

C. Data Extraction

At the beginning of this phase, we have developed a data
extraction form to be used to collect data retrieved from
each primary study, as shown in Table IIl. For addressing
specific questions about the identified research, we took into
account standard information such as the title, authors, type,
and publication year of each study. For the research questions,
we followed a systematic procedure based on keywording
for defining the characteristics of each cluster of the data
extraction form and obtaining the corresponding data from the
studies.

The objective of the keywording was to create an extraction
form that was compatible with previous research and took
their features into consideration [53]. Specifically, we gathered
keywords and topics by reviewing the complete texts of
pilot studies. The gathered keywords and concepts were then
clustered in order to organize them according to the selected
categories. During the actual extraction process, we obtained
any relevant information that did not fit on the data extraction
form. We assessed the collected additional data and, when

TABLE IlI
DATA EXTRACTION FORM AND ITS CATEGORIES
H Category Description H
References list of contributed authors in each publication
Subjects The number of subjects participated
Experiment(s) Followed procedure for data gathering
Diagnosis Diagnosis target
Development Data pre and post-processing, filtering and prepara-
process tion of input to the model
Model DL models and methods employed
Performance Outcome of the models based on testing data
metrics

necessary, modified the data extraction form to better accom-
modate the data; previously analyzed studies were re-analyzed
using the modified data extraction form. This procedure was
not complete until all studies had been analyzed. The final
total number of studies considered and evaluated was 87.

V. DATA ANALYSIS AND SYNTHESIS

In this Section we will focus in providing answers to the
questions framed in Section IV, based on the analysis of
the available evidence in the studies reviewed. Each subSec-
tion will cover one distinct research question.

A. Advanced DL Methods for PD Diagnosis and Severity
Assessment Based on the Investigated Modalities

In the next subsections we will present the advanced deep
learning techniques and frameworks that have been reported in
the literature for the detection of PD’s intensity and evolution
based on the analysis of gait, upper limb motion, speech and
facial expressiveness. With the term “advanced” we refer to
recent DL techniques that go beyond the most commonly
used methods and either are based on the fusion of DL
algorithms or either explore cutting-edge techniques such as
attention models, autoencoders, and Generative Adversarial
Networks (GANSs) [67], [68]. The presented literature review
identified a number of advanced DL-based models built for PD
diagnosis based on the discussed four modalities. The results
are depicted in Tables IV - V.

1) Analysis of Gait: As described in Section II, the objec-
tive and quantitative analysis of the modality of gait could
potentially lead to a more automatic diagnosis of PD and its
symptoms. Based on the findings of the presented literature
review, advanced DL methods have been developed accepting
as input gait signals during various walking trials. Notably,
the majority of studies aim towards the automatic identifica-
tion of FoG-related events, as until now, the assessment of
FoG requires well-trained experts to perform time-consuming
annotations via real-time or vision-based observations. The
respective studies are presented in Table IV.

In order to make a clinical diagnosis, it is time-consuming
and subjective for professionals to evaluate the patient’s stride.
Currently, the formulation of FoG identification as a human
action recognition job in video analysis offers a viable answer
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to these problems. Nevertheless, the majority of existing
human action detection algorithms are inadequate for this task,
as FoG is extremely delicate and is readily disregarded when
it is obscured by irrelevant motion. A novel action detection
technique, the convolutional 3D attention network (C3DAN),
comprised of a Spatial Attention Network (SAN) and a
3-dimensional convolutional network (C3D), was developed
to address this issue [69]. SAN seek to produce a coarse-
to-fine attention area, whereas C3D extracted discriminative
characteristics. The suggested method can pinpoint the atten-
tion region without requiring manual annotation and extract
discriminative characteristics from beginning to conclusion.
The suggested C3DAN approach for quantifying FoG in
PD was assessed on a video dataset gathered from 45 PD
patients in a clinical environment and achieved an accuracy
of 79.30%. Further, acceleration signals consisted of 237 FoG
occurrences were acquired from 10 PD patients’ lower back
during walking trials in [70]. From successive gait cycles,
acceleration patterns and spectrograms were generated and
used for FoG detection model training and various domain
contributions to FoG detection model training were evaluated
by comparing the model’s performance. Deep convolutional
layers in conjunction with recurrent layers (DeepCNN-LSTM)
were learned offline and then used to detect FoG or non-
FoG events. The authors achieved an average FoG detection
accuracy of 94.30% using the acceleration spectrogram as
input.

Another research attempt [71] combined CNN and LSTM
networks for FoG recognition. In particular, the authors pro-
posed a FoG detection system in which hand-crafted features
were fed to a hybrid CNN-LSTM model for additional feature
learning and classification. The manually produced features
with time-frequency representation were recovered from the
raw sensor data using a discrete wavelet transform (DWT)
on many levels. The CNN and bidirectional long short-term
memory network (BiLSTM) hybrid deep learning architecture
was then utilized to extract deep features and categorize FoG
events with an accuracy of 90.01%. Concerning hybrid neural
networks, researchers in [72] outlined a deep learning-based
strategy consisting of a hybrid Neural Network constructed by
merging a CNN, LSTM, and DNN. This approach produced a
classification accuracy that was 3.90% higher than comparable
efforts. Finally, squeezed and excited deep learning was uti-
lized to solve the FoG detection issue using wearable sensors
in [73] by proposing a SE-CNN deep learning model. Each
convolutional layer integrated channel-specific input from the
squeeze and excitation module due to this mechanism. The
Daphnet dataset was utilized to assess the suggested deep
learning model, which obtained 95.66% accuracy when com-
pared to other based methods.

Since FoG events may be identified through the motion
patterns of joints, scientists defined vision-based FoG detection
as a fine-grained graph sequence modelling challenge by
modeling the anatomic joints in each temporal segment with
a directed graph [74]. To describe FoG patterns, a novel
graph sequence recurrent neural network (GS-RNN) with
graph recurrent cells that accept graph sequences of dynamic
structures as inputs was presented. Experimental results on

more than 150 films collected from 45 patients indicated that
the suggested GS-RNN for FoG identification displayed good
performance with an AUC of 0.80. To overcome the lack of
data, patient-independent models were employed to identify
FoG and demonstrated high sensitivity but low specificity,
or vice versa. Authors in [75] created a Deep Gait Anomaly
Detector (DGAD) employing a transfer learning-based tech-
nique to increase FoG detection accuracy, while examining the
influence of data augmentation and extra pre-FoG segments
on the prediction rate. Seven patients with Parkinson’s disease
undertook a variety of everyday walking exercises while wear-
ing inertial measuring units with the target models account-
ing for 87.40% of FoG onsets. Additionally, researchers
in [76], presented the classification of FoG episodes utiliz-
ing Wi-Fi and radar imaging by leveraging multiresolution
scalograms formed by channel state information (CSI) imprint
and micro-Doppler signatures produced by reflected radar
signal. 120 participants participated in a variety of activities,
including walking at varying speeds, voluntary stops, sitting
and standing, and FoG-inducing exercises. Combining the
pictures received from both sensing approaches, the suggested
improved Autoencoder was utilized to identify FoG episodes
via a data fusion procedure. Using data fusion, the suggested
technique achieved an overall accuracy of 98.00%.

Due to the limited number of patients and characteristics in
the most frequent utilized datasets for the use of deep learning,
the bulk of research concentrate on binary classification tasks,
particularly the distinction between PD and non-PD subjects
and the presence of FoG in PD patients. However, the early
detection of varying degrees of disease severity would addi-
tionally aid doctors and likely result in a more individualized
disease evaluation.

Following this perspective, a novel PD-ResNet structure
based on the ResNet unit was introduced in order to achieve
the automated recognition of PD severity based on the H&Y
scale (early PD: H&Y score < 2.5, moderate to advanced PD:
H&Y score > 2.5 [17]. In this study, polynomial enhanced
dimensions technology was used to increase the dimension-
ality of the input data features, and synthetic minority over-
sampling technique (SMOTE) was employed to accomplish
sample balance. Further, PD-ResNet which gathers abundant
feature information and effectively solves the gradient problem
along with an enhanced focus loss function were suggested.
Experiments demonstrated that the proposed PD-ResNet with
enhanced focused loss function could identify H&Y stage
efficiently with an accuracy of 92.00%.

Furthermore, researchers in [77] performed pairwise analy-
sis of gait data and introduced a novel method for assessing
the relative severity level of PD patients based on the scores
of UPDRS scale (normal, mild, and moderate severity level).
In order to achieve this objective, a novel deep learning
architecture for pairwise rating of multivariate time-series
data acquired by Ground Reaction Force (GRF) sensors worn
on the foot was developed. In 10-fold cross validation, the
proposed model, called Ranking by Siamese Recurrent Net-
work with Attention, achieved 81.00% with an AUC of 0.88.
To realize automated quantitative assessment of gait motor
disorder in PD patients using gait videos, authors in [55]
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proposed a two-stream spatial-temporal attention graph convo-
lutional network (2s-ST-AGCN) under deep supervision and
model-driven scheme. In particular, the spatial organization
and temporal dynamics of the joints and bones were modeled.
Experiments done on a clinical dataset to demonstrate the
usefulness of the proposed model for identifying PD severity
levels (MDS-UPDRS scores 0-4) yielded satisfactory results
with an accuracy of 98.90%.

The review also identified two surveys utilizing advanced
DL methods for PD recognition. By fusing and aggregating
data from several sensors on the lower limbs, a unique
hybrid model was suggested by [78] to discover the gait
differences amongst three neurodegenerative disorders (ALS,
PD, HD). Utilizing a spatial feature extractor (SFE), represen-
tative features of pictures or signals were generated. A novel
correlative memory neural network (CorrMNN) architecture
was developed to extract temporal characteristics from the
two modalities’ input in order to collect temporal information.
The researchers then incorporated a multiswitch discriminator
to link the observations with individual state predictions,
achieving an accuracy of 99.00%. Finally, authors in [79]
created a deep time series-based method for the detection
of aberrant walking patterns in the gait dynamics of elderly
individuals based on a hybrid LSTM-MLP network. The
results demonstrated a testing accuracy of 70.00%.

2) Analysis of Upper Limb Motion: As already mentioned in
previous Sections, motor symptoms occurring at upper limbs
(fingers, wrists, hands, upper arms) are common manifesta-
tions of PD. Table IX in the Appendix summarizes the studies
and their findings that employ DL methods for the detection
of PD using motion characteristics presented in the upper
limbs.

Looking at Section II, a typical manifestation of PD is the
tremor symptom occurring at fingers, wrists and hands [80].
This type of tremor, also known as pathological hand tremor
(PHT), compromises manual aiming, motor coordination, and
movement dynamics and it is also considered as the main char-
acteristic of the condition of essential tremor (ET) [81]. Effec-
tive treatment and management of the symptoms depends on
the accurate and timely identification of the afflicted individ-
uals, with the PHT features serving as a crucial parameter for
differential diagnosis [33]. To this goal, the presented review
identified two surveys that utilized advanced deep learning
for discriminating between ET and Parkinson’s tremor (PT).
The respective studies are presented in Table V. Researchers
in [82], integrated Gated Recurrent Unit (GRU) and LSTM
algorithms. Initially, accelerometer sensors were utilized to
capture hand tremors in each subject’s three axial dimensions.
These data are then pre-processed via the conventional scalar
function and scaled in-unit variance, passed through the GRU
model, and then served as input into the LSTM model to
enhance its performance. Finally, they utilized a blockchain
network to confirm the testing accuracy of the trained model,
which was 74.10%. Additionally, in [83] a data-driven NeurD-
Net model was proposed analyzing the kinematics of the
hand classifying between PD and ET. NeurDNet was trained
on more than 90 hours of hand motion signals includ-
ing 250 tremor evaluations from 81 patients, exceeding its

state-of-the-art equivalents with a differential diagnostic accu-
racy of 95.55%.

Considering the detection of PD, researchers in [84] studied
the applicability of CNN and CNN-BLSTM models using
time series classification. Raw time series from pen-based
signals were employed from the CNN-BLSTM and various
data augmentation methodologies were presented in order to
train these algorithms for PD detection on large-scale data.
In this context, the Multi-Modal Collection (PDMultiMC)
collection was produced [85], which contains recordings of
online handwriting, voice signals, and eye movements. The
HandPDMultiMC dataset, a subset of PDMultiMC, contains
examples of handwriting from 42 participants (21 PD and
21 controls). Experimental results on the dataset revealed
that CNN-BLSTM models trained with jittering and synthetic
data augmentation provided the highest performance for early
PD identification (97.62% accuracy) when combined with
synthetic data augmentation.

3) Analysis of Speech: As a fundamental biological charac-
teristic of humans, voiceprint is widely utilized in medical
research and diagnostics, particularly in the identification
of Parkinson’s disease [89]. Despite the fact that there are
several symptoms and features that signal PD, voice charac-
teristics play a significant part among the predictive factors,
as explained in Section II. A person with PD exhibits a variety
of vocal impairments, including trembling and poor speaking.
Voice analysis has the added advantages of being non-invasive,
inexpensive, and easy to diagnose. The presented literature
review identified a number of ardent researchers that invented
new models and refined current ones to classify between PD
and healthy subjects. The selected studies can been seen in
Table V.

To address the restricted amount of current patient
voiceprint datasets and samples, [86] developed a Spectro-
gram Deep Convolutional Generative Adversarial Network
(S-DCGAN) for sample augmentation. S-DCGAN created a
high-resolution spectrogram by adding network layers, the
Spectral Normalization (SN) approach, and a feature matching
strategy. To enhance the samples, spectrograms with high
similarity and low distortion were chosen based on the Struc-
tural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio
(PSNR). Fréchet Inception Distance (FID) and GAN-train
results demonstrated the data’s potential to generalize. More-
over, the authors built the ResNet50 model with a Global
Average Pooling (GAP) layer to efficiently collect and catego-
rize voiceprint data in order to increase recognition accuracy.
Finally, comparison tests on various models and classification
techniques were performed with the results indicating that the
S-DCGAN-ResNet50 hybrid model achieved the maximum
voiceprint recognition accuracy of 91.25% and sensitivity of
92.5%, allowing it to discriminate between PD patients and
healthy individuals more precisely than the simpler DCGAN-
ResNet50.

Finally, in a study in [87], Shimmer, Jitter, Harmonic param-
eters, Frequency parameters, Detrended Fluctuation Analy-
sis (DFA), Recurrence Period Density Entropy (RPDE), and
Pitch Period Entropy (PPE) related features were employed
and Conv-XGB had been selected to differentiate PD from
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TABLE IV
SUMMARY OF SELECTED STUDIES EMPLOYING ADVANCED DL MODELS FOR PD-RELATED DIAGNOSTIC
PURPOSES BASED ON THE MODALITY OF GAIT
Ref. | Subjects Experiment(s) | Diagnosis Development process Model Performance Modality
metrics
45 PD TUG FoG / not FoG Automatic region localizaiton (SAN), end- | CNN + At- | Acc. =.79, Sens. | Gait
[70] to-end discrimination feature extraction, 5- | tention =.68, Spec. = .81
(6\%
10 PD (OFF) | WAL, FoG / not FoG Filtering, segmentation, SMOTE, HO CNN-LSTM Acc. = .94, Sens. | Gait
[71] RWAL, =.96, Spec. = .95
ADL
10 PD (OFF) | WAL, FoG / not FoG Multi-level discrete wavelet transform, seg- | CNN- Acc. = .90 Gait
[72] RWAL, mentation BiLSTM
ADL
21 PD (ON- | ADL FoG / not FoG Filtering, segmentation, temporal, | CNN- Sens. = .87, Spec | Gait
[73] OFF) frequency, MFCC feature extraction, | LSTM-DNN = .87, AUC = .94
LOSO-CV
10 PD (OFF) | WAL, FoG / not FoG Filtering, segmentation,10-CV SE-CNN Acc. = .96 Gait
[74] RWAL,
ADL
45 PD TUG FoG / not FoG Anatomic joint graph sequence, adjacency | GS-RNN Acc. = .82, Sens. | Gait
[75] matrix estimation, Res-Net50 vertex, C3D =84, Spec. = .82,
vertex and C3D context feature extraction, AUC = .89
5-CV
7 PD WALN FoG / not FoG Filtering, segmentation, transfer learning, | hybrid CNN Sens. = .87 Gait
[76] data augmentation, LOSO-CV, 70/30
120 (PD + | WAL, SIT, | FoG / not FoG Wireless Wi-Fi signals and channel state in- | Autoencoder Acc. = 98 Gait
[77] ALS) STD formation extraction, radar technology and | NN
micro-Doppler signatures, 10-CV, HO
296 PD | TUG, PD severity | Polynomial elevated dimensions technology, | PD-ResNet Acc. = .92, Pr. = | Gait
[17] | (ON) / 161 | RWAL, (H&Y) SMOTE, improved focal loss, 10-CV, 90/10 .94, Sens. = .90,
HC WALN Spec. = .94, f1 =
92
93 PD / 73 | WAL PD severity (UP- | RSRNA architecture for pairwise ranking, | Siamese Acc. = .82, AUC | Gait
[78] HC DRS) attention learning mechanism, 10-CV Recurrent =.89
Network
with
Attention
142 PD RWAL PD severity (UP- | multi-scale spatial-temporal attention-aware | 2s-ST-GCN Acc. = .99 Gait
[55] DRS) mechanism spatial-temporal feature extrac-
tion, deep supervision strategy, 5-CV
25 ALS /20 | RWAL HC/PD/ALD/ | Spatial feature extractor (SFE) CorrMNN Acc. = .99 Gait
[79] HD / 15 PD HD
/ 16 HC
60 (PD + | WAL PD / non-PD Segmentation, temporal feature extraction hybrid Acc. = .70, Pr. = | Gait
[80] | HC) LSTM-MLP .65, Sens. = .70

WAL: Walking, RWAL: Roundtrip Walking, ADL: Activities of Daily Living, TUG: Times-Up-and-Go test, SIT: Sitting on chair, STD: Standing,
WALN: Walking Narrow path, SMOTE: Synthetic Minority Oversampling TEchnique, HO: Hyperparameter Optimization, CV: Cross Validation,
SAN: Spatial Attention Network, LOSO: Leave-one-subject-out, MFCC: Mel Frequency Cepstral Coefficients, ResNet: Residual network, C3D: 3D

convolution, CorrMNN: Correlative memory neural network

healthy controls. Based on the results of this study, the
Conv-XGB model provided better results than individually
using CNN and XGBoost. Additionally, a stacked auto-
encoder deep neural network architecture was presented to
categorize the voice signals of Parkinson patients and healthy
individuals [88]. As input to the stacked autoencoder deep
network, a spectrogram and scalogram of voice signals were
utilized. Support vector machine (SVM) and Softmax clas-
sifiers were utilized to evaluate the retrieved features and
the stacked auto-encoder based time-frequency features with
softmax classifier achieved the highest level of accuracy
(87.00%).

4) Analysis of Facial Expressions: Expressions on the face
represent the prevalent symptoms of Parkinson’s disease. The
majority of the time, medical professionals identify Parkin-
son’s disease in patients through intrusive, costly, and arduous
medical testing as well as careful overtime monitoring. Thus,
it is vital to design an alternative, cost-effective, and lasting
approach that can aid the physician in analyzing the entire
behavior of PD patients [90]. However, based on the results
of this review, only a few studies have utilized the modality
of facial expressions to diagnose PD-related characteristics
by integrating deep learning algorithms, as can be observed
in Table XTI in the Appendix. These algorithms follow more



SKARAMAGKAS et al.: MULTI-MODAL DL DIAGNOSIS OF PD—A SYSTEMATIC REVIEW 2409
TABLE V
SUMMARY OF SELECTED STUDIES EMPLOYING ADVANCED DL MODELS FOR PD-RELATED DIAGNOSTIC PURPOSES
BASED ON THE MODALITIES OF UPPER LIMB MOTION AND SPEECH
Ref. | Subjects Experiment(s) | Diagnosis Development process Model Performance Modality
metrics
17 PD / 15 | Hand poses | PT/ET Standardization, blockchain network for | GRU + | Acc. =.74 Upper
[83] | ET (rest) model validation LSTM limbs
47 PD / 34 | Hand poses PT /ET FFT, Hamming window, 75/25, 5-CV, HO | NeurDNet Acc. = .96 Upper
[84] | ET (grid search) (CNN+QDA) limbs
21 PD / 21 | Writing PD / HC Jittering and synthetic data augmentation CNN- Acc. = .98 Upper
[85] | HC tasks BLSTM limbs
20 PD / 20 | Phonation PD / non-PD Voice-related feature extraction, spectro- | S-DCGAN- Acc. = 91, Sens. Speech
[87] | HC exercises gram computation, structural similarity in- | ResNet50 =.92, Spec. =.90
(/al, lo/ and dex values and Peak Signal to Noise Ratio
/) (PSNR) for data augmentation, global aver-
age pooling
23 PD / 8 | Phonation PD / non-PD Shimmer, jitter, frequency and harmonic | Conv XGB Acc. = .88 Speech
[88] HC exercises parameter feature extraction, DFA, RPDE,
PPE, 3-CV
50 PD / 50 | Phonation PD / non-PD Time-frequency representations, continuous | SADN Acc. = .87 Speech
[89] HC exercses, wavelet transformation, auto-encoder-based
monologue, feature extraction
text reading,
sentence
expression,
rapid
repetition
(/pal,  Ital,
/ka/)

HO: Hyperparameter Optimization, CV: Cross Validation, DFA: Detrended Fluctuation Analysis, RPDE: Recurrence Period Density Entropy, PPE:
Pitch Period Entropy, S-DCGAN: Spectrogram Deep Convolutional Generative Adversarial Network, ResNet: Residual network

traditional DL architectures as typical CNNs dominate over
other models such as LSTMs regarding the differential diag-
nosis of PD, the symptom of hypomimia and the emotional
expressiveness.

B. DL for Non-Conventional PD-Related Diagnostic
Targets

In this Section we focus on studies that do not concern com-
mon PD-related diagnostic targets as identified in Section II
as well as our conducted literature review.

1) Vascular Parkinsonism: Vascular Parkinsonism (VaP) is
often characterized by lower body parkinsonism with early
and quick impairment of gait and/or postural control and
less tremor, in contrast to Idiopathic Parkinsonism (IPD).
Patients with VaP often present a characteristic shuffling gait,
but may also exhibit significant FoG, even in early stages
of the disease [91]. Two studies evaluated the effectiveness
of some machine learning strategies in distinguishing IPD
and VaP gait and are presented in Tables VII - 1. In [92],
two supervised machine learning techniques, Multiple Layer
Perceptrons (MLPs) and Deep Belief Networks (DBNs), were
utilized to undertake a comparative classification study. The
decisional space consisted of gait characteristics, with or
without neuropsychological test (Montreal cognitive assess-
ment (MoCA) score), that were rated highest in an error
incremental analysis. For the classification task of identi-
fying parkinsonian gait by discriminating between patients
(IPD+VaP) and healthy controls, both algorithms achieved
excellent accuracy (93.00% with or without MoCA). In the

classification test of the two patient groups (VaP and IPD),
the DBN classifier performed better (73.00% with MoCA)
than the MoCA classifier. In 2021, a new approach for gait
pattern differentiation that used CNNs based on gait time
series with and without the influence of levodopa medication
was proposed [93]. The gait data of VaP patients, IPD patients,
and healthy people were collected using sensors worn on
both feet. Utilizing the linear support vector machine, lasso,
and random forest, recursive feature elimination was used to
determine the ideal feature subset that led to the best outcomes.
Multiple hyperparameters and feature subsets were utilized
to implement CNNs. The best CNN classifier obtained an
accuracy of 86.00% when the impact of levodopa medication
(OFF/ON state) was considered simultaneously. The drug
reaction to levodopa increased classification performance.

2) Multiple FoG Events: The combination of freezing of gait
prediction and rhythmic laser signals may assist PD patients
in overcoming FoG episodes. Two research sought to use the
poor gait patterns, before FoG, to develop DL-based models
for multi-class FoG prediction [94], [95]. For the accurate
classification of the gait prior to FoG (pre-FoG), the slope of
the impaired gait pattern was used to define the individualized
pre-FoG phase. On the basis of the pre-FoG phase and the
relabeled gait data, the customized labeled FoG prediction
LSTM and CNN models were constructed, yielding positive
performance results. In another research [96], using machine
learning methods, the freezing of gait event was identified
prior to its commencement, hence producing walking, FoG,
and gait transition classes. Using the Boruta technique for
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feature selection, the DMLP-based model was applied to
5-second windows with an average accuracy of 78.00%.

3) Speech Dysarthria Recognition: In the earliest stages
of PD, 90% of patients experience voice abnormalities,
specifically hypokinetic dysarthria [97]. Researchers in [39]
examined the problem of speech-based categorization of
amyotrophic lateral sclerosis (ALS) patients, Parkinson’s
disease patients, and healthy controls (HC). To this goal,
a spectrogram-based method is utilized with a 2D-CNN.
By feeding overlapping windows to the CNN, temporal ele-
ments were taken into account through the use of short
signal segments or broad analysis filters. A categorization of
dysarthria into three classes (ALS, PD, or HC) was conducted.
In addition, authors conducted a classification experiment for
PD severity (3 class). Both baseline Mel frequency cepstral
coefficients (MFCC) data and log Mel spectrograms were
utilized in experiments. For a variety of audio durations,
classification results indicate that models trained on log Mel
spectrograms regularly outperform MFCC’s, achieving an
accuracy of 93.00%.

Additionally, a multitask learning scheme was developed
in [41] to evaluate the severity of several speech deficits
in PD patients. Consideration was given to a CNN-based
deep learning strategy for multitask learning. Time-frequency
representations of segment transitions between voiced and
unvoiced segments served as input to CNNs. The evaluated
tasks corresponded to subscores of a comprehensive scale
developed to assess the patients’ dysarthria impairments. Mul-
titask learning enhanced the generalization of CNN, resulting
in more representative feature maps for assessing the speech
symptoms of PD patients. The results suggested that training
a CNN in a multitasks learning scheme is preferable to
training individual CNNs to learn tasks for each deficiency
of PD patients. The aforementioned research are presented in
Table X in the Appendix.

4) Alterations in Facial Expressions - Hypomimia: In clinical
practice, the evaluation of hypomimia symptoms remains
subjective or is confined to the identification of a few
landmarks that inadequately explain the disease’s subtle man-
ifestations [59]. A recent study [98] presented a novel digi-
tal biomarker, represented as a spatio-temporal convolutional
representation that learns facial movement patterns to dif-
ferentiate between Parkinson and control patients as seen
in Table XI in the Appendix. The suggested architecture
constructs a representation using 3D convolutional layers that
are combined from inception modules, achieving salient face
expression activation maps. In a retrospective investigation
including 16 Parkinson patients and 16 controls, this method
was verified. Using 480 video sequences, the architecture
achieved an average accuracy of 91.87% in a disease clas-
sification condition task.

Further, researchers in [99], tested whether contempo-
rary computer vision techniques may be used to detect
veiled facial features and measure medication states in PD.
In order to identify PD hypomimia signals, a CNN model
was trained, using pictures collected from videos of PD
patients and controls. This trained model was applied to
clinical interviews with 35 PD patients in their drug-induced

and non-induced motor states. Conclusively, the algorithm
detected PD hypomimia with a test set AUC of 0.71, compared
to 0.75 for expert neurologists using the UPDRS-III Facial
Expression score. In addition, the classification accuracy of
the model for on and off drug states in clinical samples
was 63.00% compared to 46.00% when utilizing clinical rater
scores.

C. Fusion of Multi-Modal Information

Although preclinical Parkinson’s disease detection has been
investigated, a practical, cost-effective, and comprehensive
screening diagnostic has not yet been developed [100]. Due to
the high heterogeneity and complexity in the progression of
PD, as well as the difficulties in collecting a single time-point
measurement of a single sign, it would be almost impossible
to fulfill the aim of precise treatment and severity evaluation
without incorporating a combination of bio-signals from differ-
ent modalities. In this work, we identified a number of studies
that followed a multi-modal approach towards PD diagnosis
and are depicted in Table VI.

Researchers in [63] proposed a unique classification method
for PD patients and healthy controls utilizing Bidirectional
Long Short-Term Neural Networks (BLSTM). SensHand and
SensFoot inertial wearable sensors for upper and lower limb
motion analysis were utilized to capture motion data for thir-
teen tasks drawn from the MDS-UPDRS Part III. The retrieved
spatiotemporal and frequency characteristics were used to each
participant as a single input for the development of a recurrent
BLSTM to distinguish between the two groups. Maximum
achievable accuracy was 82.40% and the respective findings
demonstrated that the selected features greatly contributed to
assessing the long-term pattern in BLSTM for the evaluation
of the PD, and that the increase in batch size could affect
the accuracy of the training and testing models. Furthermore,
a DMLP classifier for mobile phone-based behavior analysis
was presented in [105] to evaluate the course of PD patients by
assessing their speech and movement patterns, as monitored by
a smartphone accelerometer in their pockets at various times
of the day. Popular machine learning classification algorithms
were applied to a dataset from UCI and a dataset collected by
the authors in order to classify each patient as Parkinson’s pos-
itive or negative. In addition, the performance of each approach
based on its ability to appropriately categorize patients into
one of these groups was evaluated, thus proving that, DMLP
outperformed the rest of the models on both datasets.

Research in [102] offered a multimodal investigation of
the motor skills of PD patients, accounting for deep learn-
ing architectures based on time-frequency representations and
CNNs that integrate information from speech, handwriting,
and gait signals. The proposed method replicated the inca-
pacity of patients to initiate and terminate movement of their
lower and upper limbs and vocal muscles while carrying out
the studies outlined in Table VI. The feature maps learned
by the CNN trained with multimodal input allowed for the
interpretation of the neural network’s hidden representations.
The initial convolutional layers of the CNN trained using
time-frequency representations of speech revealed statistically
significant differences between PD patients and controls. With
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TABLE VI
SUMMARY OF SELECTED ARTICLES FROM THE LITERATURE ON PD AND ITS SYMPTOMS DIAGNOSIS BASED ON MULTI-MODAL DATA
Ref. | Subjects | Experiment(s) Diagnosis Development process Model Perfromance Modal.
metrics
64 PD / | MDS-UPDRS PD / non-PD Biomechanical feature extraction, | recurrent | Acc. = .82, Sens. | gait,
[64] 50 HC tasks normalization, standardization, zero- | BLSTM =.92, Spec. =.76 | upper
padding, 70/30, HO limbs
20 PD/ | ADL, WAL, SIT, | PD / non-PD Filtering, segmentation, normalization, stan- | DMLP Pr. = .98 Speech,
[102] | 20 HC STD dardization, 70/30, shimmer, jitter, spread, gait
acceleration time series feature extraction,
leave-one-out 10-CV
44 DDK,  Writing | PD severity Transitions identification with FFT, ex- | CNN Acc. = .56 Speech,
[103] | PD(ON) and drawing, tended Geneva minimalistic acoustic pa- gait,
/40 HC | WAL rameter set, hand kinematic features, gait upper
kinematic feature extraction, 80/10/10, HO limbs
(Bayesian tuning), Fusion: Emdeddings
from the 3 bio-signals at the last hidden
layer of each CNN are concatenated towards
multi-modal vector formation serving as in-
put to a radial basis SVM
87 PD / | AFT, WAL, | PD / non-PD Segmentation, rhythm, spatial variability, | RF+LR | Acc. = .82 Speech,
[104]| 46 HC Voice test, and fatigue, temporal and frequency, total | + DNN gait,
memory test score, number of levels attempted, and num- | + CNN upper
ber of incorrect responses feature extraction, limbs
10-CV, Individual Source Model Evalua-
tion, Classifier Ensemble
88 PD / | AFT, WAL, | PD / non-PD Filtering, change point detection algorithm, | RNN AUC = .79, fl- | Speech,
[105] | 46 HC Voice test, TCN feature extraction, Temporal Encoder score = .82 gait,
memory test with Multi-modal Attention, Embedding upper
Self-Attention Pooling, 5-CV limbs

WAL: Walking, ADL: Activities of Daily Living, SIT: Sitting on chair, STD: Standing, HO: Hyperparameter Optimization, CV: Cross Validation,

AFT: Alternate Finger Tapping, DDK: diadochokinetic analysis, TCN: Temporal Convolutional Networks

the final handwriting-trained CNN layer, comparable results
were obtained. The combination of the three bio-signals was
the most reliable method for classifying PD patients according
to their disease stage. CNNs seemed ideal for modeling the
problems of Parkinson’s disease (PD) patients to initiate and
terminate the movement of separate limbs, allowing for the
correct categorization of PD patients and control participants.

Combined dataset deconstruction with multi-source ensem-
ble learning enabled participants with incomplete data to be
included in the training of machine learning models, as demon-
strated in [103]. Using multi-source ensemble learning in
conjunction with CNNs that capitalize on the quantity of the
available data, researchers achieved an accuracy of 82.00%
in PD classification, 9.00% more compared to conventional
strategies. The rise in accuracy was attributed in part to the use
of CNNs with a DNN and in part to the development of models
employing a large cohort of participants. Finally, [104] pre-
sented a unique time-series based on deep learning method to
Parkinson’s Disease prediction using remotely and irregularly
acquired speech, hand motion, and gait data from smartphones.
Using the Neural Ordinary Differential Equations, researchers
synced discrete data to unified observational time points
in order to generate multimodal time-series representations.
In both the temporal and modality aspects, two hypothesized
attention processes acquired key characteristics from noisy
signals in an adaptive manner. The success of the suggested
method was shown by insights and better quantitative and
qualitative outcomes on a large public dataset.

D. Sensory Equipment for Detection of PD-Related
Clinical Signs

1) Sensors Capturing PD Gait: The analysis of gait, and
specifically the analysis of the various events taking place
during the stance phase and swing phase, is essential for
the treatment of a variety of orthopaedic and neurological
disorders [106]. The detection of typical gait events is a helpful
technique for improving gait analysis, evaluating therapies for
abnormal gait, and developing devices and sensors for gait
support [22], [107], [108]. Therefore, gait analysis requires
the quantified study of the parameters related to force, time
and distance, by calculating a range of important temporal and
spatial characteristics [109].

To analyze key features and movement patterns in
normal and pathological gait, a variety of methods for
computer-assisted analysis have been developed and are in
clinical use. Human gait characteristics are detected by fixed
devices such as optical motion capture systems, floor-based
force platforms, and electronic treadmills, which are consid-
ered as “golden standards” [110]. However, these systems are
only suitable for hospitals or hospital facilities due to their
size, high cost, and the need for specialized personnel.

Video-based motion capture systems and instrumented
motion analysis systems, have been well studied for obtaining
gait characteristics. From the total forty-four (46) studies, 20%
utilized COTS camera equipment in order to capture the body
poses and motion of the subjects providing the researchers
with precise lower limb markers for gait analysis. However the
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value of the camera-based setups has been mostly limited to a
laboratory context, they are expensive and require specialized
movement laboratories [111].

In alleviating the limitations of camera-based systems, wear-
able motion sensing devices and systems have been developed
for accurate gait analysis in daily life settings. In particular,
recent technological advancements in microelectromechanical
systems (MEMS) have enabled the design and development of
lightweight and low-cost inertial measurement units (IMUs)
based wearable sensors that are used for gait and balance
monitoring [112], [113]. The authors in [114] report results
that indicate the superiority of IMUs over camera-based setups
regarding reliability and precision for the detection of PD
based on gait related features. Therefore, it is well-established
that mobile inertial measuring equipment, i.e. accelerometers,
gyroscopes and magnetometers, are capable of objectively
tracking gait motion [115], [116]. Based on the results of our
literature review, almost half of the selected surveys (45%)
capitalized on the accuracy and reliability offered by IMUs
and consequently used them to analyse gait and extract gait
related characteristics. More specifically, the aforementioned
studies used data obtained from IMUs placed primarily on the
trunk (waist, lower back, chest), ankles and thighs at rates
of 33, 31 and 20% respectively, according to the present
literature review. Other sites where IMUs were placed were
the wrists, calves and feet. Fig. 4 presents the placement and
the percentage of the studies that employ IMU sensors on
different lower extremities sites.

Nevertheless, due to the well-known defects associated with
inertial sensor measurement data, such as time-variant sensor
biases and measurement noise [117], there is an increasing
need to exploit other types of sensors integrated in wearable
devices. One such type of sensors are insole-based plantar
pressure monitoring systems, that have risen to prominence
as a key wearable tool for monitoring the course of chronic
disease in patients. Internal plantar pressure measurement
insoles and foot switches are the cutting-edge technology
for gait phase analysis, since each phase can be associated
with a specific value of the sensor output. Insoles offer
better resolution compared to foot switches, as they allow the
recording of the whole foot contact with the ground, which
is not affected by the positioning of the foot switch [107],
[118]. In addition, an important advantage is the ease of use
as minimal intrusion is achieved.

Consequently, insole-based plantar pressure monitoring sys-
tems are expanding rapidly around the globe, with several
research institutes and businesses demonstrating an increased
interest in the field [119]. In gait analysis, they are frequently
used to count steps and extract spatiotemporal information.
They are regularly used in stability investigations to identify
the center of pressure and, consequently, postural stabil-
ity [120]. Although plantar pressure insoles have proven to
be reliable for the analysis of gait and walking patterns, only
30% of the total number of selected studies have utilized insole
systems, possibly due to their higher cost concerning hardware
equipment but also software licences. Interestingly, none of
the studies combined two or three of the aforementioned
technologies (cameras, IMUs, insole pressure sensors). Finally,
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Fig. 4. The location of sensors for the assessment of PD severity and
tremor based on gait.

in 5% of the selected studies the sensory equipment was not
specified.

Typically, while normal gait steps have a main frequency
from 0.5 to 3 Hz, FoG events present a main frequency to the
range of 6 to 8 Hz [121]. Therefore, it is essential to note, that
the maximum and minimum sampling frequencies between all
IMUs and pressure sensors used in the selected studies were
found to be between 1080 and 30 Hz respectively, whereas the
maximum and minimum frames per second between all the
studies that employed camera-based equipment were 240 and
25 fps respectively.

2) Sensors Capturing Upper Limp PD Motion and
Tremor: Considering the importance of studying the motion
of upper limbs towards the detection of PD and its evolution,
the majority of the studies selected in this review utilized
IMUs for PD detection, estimation of PD severity or the
identification of Parkinson’s tremor (PT). Specifically, in 44%
of the studies the IMUs were placed on the subjects’ wrists,
in 25% they were placed on the subjects’ fingers and the
metacarpal area, and in 6% of the studies they were placed
on the area, as shown in Fig.5. The rest of the studies did not
clarify the exact point of placement of the IMUs. Furthermore,
in addition to using IMUs, the hand position during clinical
evaluation tasks was captured from a 3-camera setup in [122].
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Fig. 5. The location of sensors for the assessment of PD severity and
tremor based on the movement of the upper limbs.

Additionally, a number of studies used digitized tablets to
locate the coordinates of the pen during handwriting tasks
and smartphones placed on a desk to analyze finger tapping
activity.

Concluding, the characteristics of Parkinson’s disease
tremors have been thoroughly investigated. It has been
reported that the frequencies of the classical rest tremor,
isolated postural tremor, and kinetic tremor during slow move-
ment are 3-7 Hz, 4-9 Hz, and 7-12 Hz, respectively [123].
The sensory equipment used in the relevant reviewed studies
obtained motion information from the upper limb extremities
with sampling rates ranging from 40 Hz to 12 kHz, enough
to satisfy the Nyquist theorem.

3) Sensors Capturing PD Speech: As speech is considered
of major importance for the early detection of PD patients,
the way of recording the subjects’ voice is a crucial issue
in addition to the appropriate selection of the tasks to be
performed. As PD patients suffer from a variety of neuro-
logical symptoms, the recording should be more convenient.
As a consequence, initially, the data are usually recorded at
44.1 kHz or 48 kHz [124], [125]. The choice of the recording
devices includes cell phones, so as to make the recording pro-
cedure available at any environment [39]. Moreover, in other
studies, systems consisting of extend USB sound card with
low level noise combined with microphones of “clip-on” type
are used [42]. Furthermore, notice that, the understanding
of neurological disorders through speech requires not only
recordings of good quality but also of a satisfying duration
for their accurate analysis, usually not very long. Finally, for
the creation of a well-defined dataset, important role play the
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Fig. 6. Pie chart representation of various deep learning models used in
PD diagnosis based on gait, upper limb, speech and facial expressions
modalities.

age and the balanced number of male and female subjects’
choice [40], [41].

4) Sensors Capturing PD Facial Expressions: Expressions
on the face represent the prevalent symptoms of Parkinson’s
disease. The majority of the time, medical professionals iden-
tify Parkinson’s disease in patients through intrusive, costly,
and arduous medical testing as well as careful overtime
monitoring. Thus, it is vital to design an alternative, cost-
effective, and lasting approach that can aid the physician
in analyzing the entire behavior of PD patients [90]. In the
studies reviewed, researchers record the facial expressions
of participants by using high resolution digital cameras in
order to identify relevant biomarkers and patterns that link
the hypomimia with PD.

VI. DISCUSSION

The primary objective of this survey is to examine and
project future research directions in the field of DL-based PD
diagnosis techniques. This review provides a comprehensive
overview of advanced deep learning based approaches for
PD manifestations prediction by utilizing data from different
modalities and in particular gait, speech, upper limbs and facial
movements. We have analysed the importance of collecting
physiological signals from these different modalities to diag-
nose Parkinson’s Disease.

Based on the results presented in this literature review,
almost one third (30%) of the total investigated studies made
use of CNNs to reach their diagnostic targets, as depicted
in Fig. 6. Moreover, CNNs were additionally employed in
combination with other DL algorithms such as LSTMs or
attention models. LSTM networks were the second most
widely used models while a vast majority of the studies made
use of simpler neural network models such as deep multi layer
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Fig. 7. Diagrams representing the accuracy rates of utilized DL methods. The thin black line refers to the standard deviation of the accuracy, in the

cases where same models were used for the same classification target.

perceptrons. Additionally, 11% of the selected studies followed
the more classical deep neural network concept to achieve
their diagnostic targets. In addition, most articles considered
accuracy, specificity, and sensitivity as metrics to validate the
developed PD classification models’ performance.

Observing Fig. 7, three (3) diagrams can be distinguished
which vary according to the number of participants in each
study. Each graph shows the accuracy rate of the applied model
in relation to the 5 main classification targets as identified
in the literature review i.e. FoG detection, PT detection,
PD detection, PD severity and PT severity. The highest success
rates were observed in studies that carried out analysis of gait
and reached accuracy rates of over 98.00%, thus highlighting
the efficiency of this particular modality in PD identification.
These studies focused on the identification of PD and FoG
events, but also on the discrimination of the level of severity
of the disease. In fact, two of these studies involved more
than 100 volunteers, which may have intrigued researchers
to explore and investigate the potential of more complex DL
models such as Autoencoders and two-stream spatial-temporal
attention graph convolutional network (2s-ST-AGCN). Inter-
estingly, among the studies with the highest accuracy scores
and despite the widespread use of CNNs in the selected
studies, only one of them used this technique and even in
combination with RNN, towards FoG detection.

Regarding the studies that dealt with the detection of disease
characteristics using upper extremity movement data, and by
looking at Fig. 7, we can observe that research on the upper
extremities has focused either on the recognition of the disease
or on the identification of PT and classification of its severity.
The recognition of the disease was performed successfully
at a rate of 97.00% by the hybrid CNN-LSTM model and

by a DMLP neural network. With the same percentage, the
existence of the PT was also identified by the CNN algo-
rithm. Interestingly, the classification of the severity levels of
tremor was successfully performed at rates between 83.00 and
91.00%, which are among the lowest success rates of the upper
limbs related studies investigated.

The majority of the research that used the speech modality
aimed at identifying or differentially diagnose PD. According
to the results of this literature review, the highest recognition
rate was achieved by the NNge model and reached 96.00%.
The classification of the disease severity levels was similarly
high. More specifically, the levels of dysarthria were classified
at a rate of 93.00% by the CNN model. Finally, novel network
architectures such as ResNet, Conv XGB and SADN achieved
a high rate in disease recognition above 87.00%.

The difficulty in altering facial expressions and the phe-
nomenon of hypomimia are a result of the muscle stiffness
caused by Parkinson’s disease. Thus, the CNN model was
able to identify among PD and non-PD patients at a rate of
92.00%, while in another study with the same diagnostic target
the LSTM model achieved a 76.00% rate.

Without a combination of biosignals from various modal-
ities, it would be nearly impossible to achieve the goal of
precise treatment and severity evaluation, as previously stated.
As mentioned, the highest accuracy rates in the single modality
studies were related to the binary diagnosis of the disease.
In accordance to this, the highest accuracy rate in the selected
multi-modality studies (82.00%) is found when attempting to
classify between PD and non-PD subjects. Notably, the two
models that achieved this rate were the recurrent BLSTM
model and the DL architecture combining DNN and CNN
models. In fact, we must highlight the importance of a large
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TABLE VI
SUMMARY OF SELECTED ARTICLES FROM THE LITERATURE ON PD AND ITS SYMPTOMS DIAGNOSIS
BASED ON LOWER LIMB MOVEMENT AND GAIT
Ref. Subjects Experiment(s) Diagnosis Development process Model Performance metrics
24 PD (OFF) | ADL, RWAL, WALN | FoG / not FoG Filtering, segmentation, stepwise tem- | DMLP Acc. = .86
[127] poral and frequency feature extraction
method, mutual information-based fea-
ture selection
10 PD (OFF) | WAL, RWAL, ADL FoG / not FoG Segmentation, temporal feature ex- | AHN Acc., Sens., Pr. = .88
[128] traction, DT for ranking feature im-
portance, SVM-RFE feature selection,
70/30
67 PD TUG FoG / not FoG Morlet wavelet transform, segmenta- | 2D- Acc. = .89, Sens. = .82,
[129] tion, 80/20, model regularization CNN Spec. = .96
10 PD (OFF) | WAL, RWAL, ADL FoG / not FoG RNN and LSTM comparison, transfer | LSTM Acc. = .88
[130] learning, 50/50
10 PD (OFF) | WAL, RWAL, ADL FoG / not FoG Segmentation, comparison with CNN, | DRN Sens. = 86, Spec. = .94
[56] LSTM, ResNet-50
38 PD (ON) | RWAL FoG / not FoG Filtering, segmentation, temporal and | DNN Acc. = .98
[131]| /21 HC frequnecy feature extraction, Pearson
feature selection, 10-CV
10 PD (OFF) | WAL, RWAL, ADL FoG / not FoG Filtering, segmentation, 10-CV CNN Sens. = .93, Spec. = .87
[132]
4 PD FoG / not FoG Full-wave rectification, fitlering, seg- | CNN Acc. = .94
[28] mentation, Daubechies wavelet trans-
form, peak detection algorithm, time,
spatiotemporal, physiological feature
extraction, stratified 3-CV, HO (grid
search)
118 PD / 21 | ADL FoG / not FoG Segmentation, multi-input network CNN Sens., Spec. = .88
[133]| HC
10 PD (OFF) | WAL, RWAL, ADL FoG / not FoG Temporal and frequency feature extrac- | ProtoNN | Sens. = .95, Spec. = .99
[134] tion, 10-CV
10 PD RWAL FoG / not FoG Segmentation, 75/25 2D Acc. = .99, Sens. = 97,
[135] CNN- Spec. = .99, Pr. = .89
RNN
11 PD (OFF) | RWAL, WALN FoG / not FoG Segmentation, CoP and GRF feature | LSTM Sens. = .72, Spec. = .81
[136] extraction, one-freezer-held-out cross
validation
18 PD RWALN FoG / not FoG Segmentation, SMOTE, ADAptive | DMLP Sens. = .82, Spec. = .94,
[137] SYNrthetic technique, statistical feature fl-score = .88 (p-d), Sens.
extraction, LOSO-CV, 60/40 = .68, Spec. = .90, fl-
score = .64 (p-i)
5 PD (ON) RWAL+, WALN+ FoG / not FoG / | Filtering, segmentation, basic signal | CNN Sens. =.92, .92, .94, Spec.
[96] pre-FoG and statistical feature extraction, = .98, .96, .95
ANOVA and mutua information future
selection, leave-one-subject-out 10-CV,
70/30
10 PD (OFF) | WAL, RWAL, ADL FoG / not FoG / | Filtering, Hampel outlier identifier, | LSTM Acc. = .89, Sens. = .90,
[95] pre-FoG polynomial interpolation, segmentation, Spec. = .87
80/20
10 PD (OFF) | WAL, RWAL, ADL FoG / not FoG / | Segmentation, temporal and frequency | DMLP Acc. = .78, Sens. = .72,
[97] Transition feature extraction, Boruta algorithm for Spec. = .85 (FoG detec-
feature selection, 70/30 tion)
93 PD / 73 | WAL PD / non-PD Normalization, statistical feature ex- | LSTM Acc. = .98, fl-score = .98
[138] | HC traction, 70/20/10
17 ALS / 20 | RWAL PD / non-PD Filtering, SMOTE, phase synchroniza- | DMLP Sens. = 1.00, Spec. = .81,
[139]| HD / 15 PD tion with Hilbert transform, PCA, tem- AUC = 93
/16 HC poral feature extraction

WAL: Walking, RWAL
Roundtrip Walking + cognitive task, WALN+: Walking Narrow path + cognitive task, DT: Decision tree, PCA: Principal Component Analysis,
SVM: Suppor vector machine, RFE: Recursive feature elimination, ANOVA: Analysis of variance, SMOTE: Synthetic Minority Oversampling

TEchnique, HO: Hyperparameter Optimization, CV: Cross Validation, LOSO: Leave-one-subject-out, ResNet: Residual network

Studies presented in Table IV are not presented in this Table.

: Roundtrip Walking, ADL: Activities of Daily Living, TUG: Times-Up-and-Go test, WALN: Walking Narrow path, RWAL:
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TABLE VI
SUMMARY OF SELECTED ARTICLES FROM THE LITERATURE ON PD AND ITS SYMPTOMS DIAGNOSIS
BASED ON LOWER LIMB MOVEMENT AND GAIT (CONTINUE)
Ref. | Subjects Experiment(s) Diagnosis Development process Model Performance metrics
40 PD (OFF) | WAL PD / non-PD Kalman filter, statistical feature extrac- | DMLP Acc. = .89, Sens. = .89,
[140]| / 40 HC tion, segmentation, 10-CV Spec. = .89, fl-score = .87
93 PD / 73 | WAL PD / non-PD Phase space reconstruction, Empirical | DNN Acc. = .99
[141]| HC mode decomposition, GRF positions
feature extraction, LOSO-CV
93 PD / 73 | WAL PD / non-PD n/a Stacked Acc. = .89
[142]| HC CNN
93 PD / 73 | WAL PD / non-PD Layer-wise  relevance propagation, | 2D- Acc. = .95
[143] | HC 60/20/20, HO CNN
88 PD / 94 | WAL PD / non-PD 90/10, 5-CV, LSTM, ID-CNN, | 1D- Acc. = .83, Pr. = .80, Sens.
[144]| HC CNN+LSTM comparison CNN = .76, fl-score = .78
11 PD / 11 | RWAL PD / non-PD Spatiotemporal ~ feature  extraction, | CNN Acc. = .95
[145]| HC retro-propagation process fro saliency
maps, tracking of maximum activation
values in the previous dense layers
and pseudo-deconvolution process for
feature selection, leave-one-out CV
93 PD / 73 | WAL PD / non-PD, PD | 10-CV, HO DMLP Acc. =.99, Acc. = .99
[146] | HC severity
76 PD (ON) | WAL PD / non-PD, PD | Spatial, spatiotemporal, kinematic fea- | DNN Acc. = .98, Sens. = .89,
[147]| / 67 HC staging ture extraction, PCA, 80/10/10 Spec. = .89, Acc. = .77,
Sens. = .77, Spec. = .91
93 PD / 73 | WAL PD severity Spatiotemporal feature extraction, seg- | CNN Pr. = .87, Sens. = .85, f1-
[148] | HC mentation, 18 parallel 1D-Convnets score = .85
18 PD / 42 | TUG PD severity Mask R-CNN for body area detection, | CNN Acc. = .91, Pr. = .92, Sens.
[149]| HC spatial and temporal feature extraction, =91
temporal and spatial fusion module, 3-
Cv
14 VaP / 15 | RWAL vap / iPD / non- | Multiple regression normalization, Spa- | RF- Acc. = .79 (OFF), Acc. =
[94] iPD / 36 HC PD tial, temporal, foot clearance feature | CNN .82 (ON), Acc. = .86 (ON
(OFF-ON) extraction, RFE throug Linear Kernel and OFF)
SVM and Lasso feature selection, 5-
CV, HO
15 VaP / 15 | RWAL vap / iPD / non- | Normalization, temporal, spatial, spa- | DMLP, Acc. = .93, Acc. = .73
[93] iPD / 15 HC PD, VaP / IPD tiotemporal feature extraction, Kruskal- | DBN
Wallis test, Mann- Whitney test with
Bonferroni correction feature selection,
75/25, 10-CV
32 PD / 16 | RWAL Advanced PD | 5-CV CNN Acc. = .93, Sens. = 1.00,
[150] | HC / not-adv. PD, Spec. = .90, Acc. = 1.00,
early-PD / non- Sens. = .99, Spec. = 1.00
PD
524 PD / 43 | iSAW PD / ET Kinematic, spatial, temporal, spatiotem- | DMLP Acc. = .89, Pr. = .61, Sens.
[151]| ET poral feature extraction, SMOTE, strat- = ..61, fl-score = .61
ified 3-CV
10 MS /7 9 | WAL PD / MS / HC Segmentation, 3D joint keypoints ex- | CNN Acc. =.79, AUC .93
[152]| PD/ 14 HC traction, 5-CV

WAL: Walking, RWAL: Roundtrip Walking, PCA: Principal Component Analysis, SMOTE: Synthetic Minority Oversampling TEchnique, HO:
Hyperparameter Optimization, CV: Cross Validation, LOSO: Leave-one-subject-out, ResNet: Residual network
Studies presented in Table IV are not presented in this Table.

database, as the highest rate of classification of disease was
found in two studies with over 100 participants, while the
lowest (56.00%) was found in a survey with 84 subjects.

A. Challenges and Limitations

Despite the significant contributions made through a com-
prehensive synthesis of the most pertinent information on
deep learning methods for clinical diagnosis, this systematic

review has some limitations. It is acknowledged that col-
lecting actual patient data is the most difficult task in the
healthcare sector compared to other research fields. In most
instances, neurodegenerative disease-related medical datasets
are imbalanced. Specifically, deep learning studies for each
investigated modality (gait, upper limb motion, speech, facial
expressiveness) may utilize either public or private datasets to
train their models. Therefore, comparing the performance of
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TABLE IX
SUMMARY OF SELECTED ARTICLES FROM THE LITERATURE ON PD AND ITS SYMPTOMS DIAGNOSIS BASED ON UPPER LIMB MOVEMENT
Ref. | Subjects Experiment(s) Diagnosis Development process Model Performance metrics
21 PD / 21 | Hand poses (rest) PD / HC Wavelet paket decomposition, Energy, | DNN Acc. = .95
[153]| HC Mean value, Variance, Entrop feature
extraction
PD / HC Typing procedure PD / HC Stratified k-CV, HO (grid search) LSTM Acc. =.76
[154]
58 PD / 29 | Writing tasks PD / HC 2 stacked LSTMs LSTM Acc. = 91, Sens. = 1.00,
[58] HC Spec. = .65, fl-score = .94
21 PD / 21 | Writing tasks PD / HC Jittering and synthetic data augmenta- | CNN- Acc. = 98
[85] | HC tion BLSTM
55 PD / 45 | Writing tasks PD / Young HC, | Kinematic, non-linear dynamics and | DMLP Acc. = .97, Acc. = .78
[155]| YHC / 49 PD / Eldery HC neuromotor features extraction, meta-
EHC parameter optimization, leave-ne-out
CV, grid search
43 PD Hand poses (rest, pos- | PD severity Filtering, Windowing, Frequency and | DNN Acc. = 91, Sens. = .90,
[156] ture) amplitude related features extraction Spec. = 91
398 (PD or | Hand poses (resting, | PT / ET Frequency and amplitude features ex- | CNN Acc. = .78, Spec. = .67,
[157]| ET) stretching,  winging, traction, HO (grid search), 80/20, 10- Sens. = .86, Pr. = .79, f1-
and vertically CV, score = .83, AUC = .77,
winging) FPR = .33
17 PD / 15 PT/ET Standardization, blockchain network | GRU + | Acc. = .74, Comm. Cost
[83] ET for model validation LSTM = 448 bits, Comp. cost =
0.056 ms
47 PD / 34 | Hand poses (rest, | PT /ET FFT, Hamming window, 75/25, 5-CV, | Neur- Acc. = .96
[84] ET postural, weight- HO (grid search) DNet
holding, finger-to- (CNN +
nose motion) QDA)
17 PD Hand poses (rest, pos- | RT / PT Daubechies4 wavelet function, win- | DNN Acc. =.95 (RT) Acc. = 91
[158] tural) dowing, time and frequency features (PT)
extraction, tremor eigenvalues extrac-
tion, PCA
5SPD /5 HC | Walking tasks PT / No PT Filtering, statisitical features extraction | CNN Acc. = 97, Sens. = .92,
[57] Spec. = .97, fl-score =
.94, time = 80 1026 s
30 PD Clinical evaluation | PT / No PT Segmentation, 5-CV, leave-one-out | CNN Acc. = .94, Pr. = .89, Sens.
[159] tasks evaluation = 1.00 , fl-score = .94
6 PD ADL, Clinical evalua- | PT / No PT CNN trained on tremor and activity | DMLP Acc. = .89
[160] tion tasks spectra
20 PD (ON) | Writing tasks PT severity HOG and 2D-CNN feature extraction, 1D Acc. = .83, Sens. = .85,
[161]| /20 HC stratified 5-CV CNN Spec. = .81, AUC = 91
92 PD Hand poses (rest) PT severity Filtering, FFT CNN Acc. = .85, Kappa = .85,
[162] Corr. = .93, RMSE. = .35
31 PD / 14 | ADL in the wild PT severity Filtering, linear interpolation, segmen- | DEEP- Pre. = .99, Sens. = .90,
[163]| HC tation, Leave-one-out CV MIL- Spec. =.99, fl-score = .94
CNN
24 PD (OFF) | ADL PT severity Filtering, windowing, frequency related | LSTM r=.77, MAE = 1.32
[164] features extraction, Wilcoxon rank sum
feature selection, subject-based leave-
one-out CV, HO (grid search)

HO: Hyperparameter Optimization, CV: Cross Validation, FFT: Fast Fourier Transform, PCA: Principal Component Analysis, HOG: Histogram of
Oriented Gradients, PT: Parkinson’s Tremor, ET: Essential Tremor, GRU: Gated Recurrent Unit
Studies presented in Table V are not presented in this Table.

two deep learning models that were not trained with the same
dataset could be quite challenging.

Furthermore, due to the significant variability of the stud-
ies with respect to the case of data and presentation of
results, it was difficult to directly compare the outcomes
associated with each type of model across studies, as some
studies failed to indicate whether model performance was

evaluated using a test set, and/or results given by models
that did not yield the best per-study performance. In addition,
it is our view that there is a lack of research on facial
movement and expressiveness, as well as analyses involving
multiple modalities. This makes it difficult to identify the
model that performs better in these two categories. Lastly,
the vast number of deep learning models proposed for gait
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TABLE X
SUMMARY OF SELECTED ARTICLES FROM THE LITERATURE ON PD AND ITS SYMPTOMS DIAGNOSIS BASED ON SPEECH
Ref. | Subjects Experiment(s) Diagnosis Development process Model Performance metrics
23 PD / 8 | Phonation exercises PD / non-PD Shimmer, jitter, frequency and har- | Conv Acc. = .88
[88] HC monic parameter feature extraction, | XGB
DFA, RPDE, PPE, 3-CV
51 PD / 27 | Text reading and | PD /non-PD Speech rhythm and prosodic feature ex- | DNN Acc. = .83, Sens. = .79,
[42] | HC monologue traction, LOSO-CV Spec. = .79 (monologue
exercise)
23 PD / 8 | Phonation exercises PD / non-PD Shimmer, jitter and FO related feature | NNge Acc. = .96
[165]| HC extraction, SMOTE, 10-CV, HO (ran-
dom search)
23 PD / 8 | Phonation exercises PD / non-PD Shimmer, jitter and FO related feature | Opt-NN Acc. =.95, Pr. = .95, Sens.
[166] | HC extraction, denoising, PCA feature re- = .95, fl-score = .95, MSE
duction, HO, 10-CV = .05, MAC = .05
188 PD / 64 | Voice recordings PD / non-PD TQWT, TF, MFCCs, WT, VF feature | LSTM Acc. = .94, Sens. = .96,
[167]| HC extraction. data normalization, feature Spec. = .96, Pr. = 91, fl-
mapping and convertion to RGB, 10- score = .93
CV, 70/30
564 PD /192 | Phonation exercises PD / non-PD Oversampling technique, 10-CV, HO | LSTM Acc. = 91
[62] | HC & 23 PD (random search), 90/10
/ 8 HC
20 PD / 20 | Phonation exercises | PD / non-PD Voice-related feature extraction, spec- | S- Acc. = 91, Sens. = .92,
[87] HC (/a/, /o/ and /u/) trogram computation, SSIM values and | DCGAN- | Spec. = .90
PSNR for data augmentation, Global | ResNet50
Average Pooling
41 PD / 40 | Phonation exercises | PD / non-PD Spectrogram analysis. data downsam- | DCNN Acc. = .76
[40] | HC (sustained /a/) pling, windowing (overlapping), re-
moval of silent speech parts, 75/15/15,
10-CV
60 PD / 60 | SPON, IMAG, | PD / HC / ALS, | Windowing, log MEL spectrograms | CNN Acc. = .93 (DIDK), Acc.
[39] HC /60 ALS | PHON, DIDK PD speech sever- | computation, 5-CV, 80/20 = .87 (DIDK)
ity
50 PD / 50 | Phonation exercses, | PD / non-PD Time-frequency representations, SFTF- | SADN Acc. = .87
[89] | HC monologue, text CWT, auto-encoder-based feature ex-
reading, sentence traction
expression, rapid
repetition (/pa/, /ta/,
/kal)
80 PD Repetition of | PD speech sever- | ASR feature extraction), eGeMAPS, | DNN Acc. = .80
[38] sustained vowels | ity Pearson feature selection
(/al, /il and Nu/), text
reading, dialogue
50 PD / 50 | Sustained phonation, | Dysarthria sever- | Time-frequency representations, multi- | CNN Acc. = .54
[41] HC word, and | ity task learning
monologue, text
reading, sentence
expression, rapid
repetition (/pa/, /ta/,
/kal)
188 PD / 64 | Voice recordings PD / non-PD Time-frequency, MFCCs and Delta | ResNet- Acc. = .84
[168] | HC features in MFCC, baseline, energy | 50
and entropy based feature extraction,
SMOTE
23 PD / 8 | Phonation exercises PD / non-PD Data cleaning, feature scaling DNN Acc. = .95
[169] | HC

SPON: Spontaneous speech/ monologue, IMAG: describing images, PHON: Sustained Phonation, DIDK: Diadochokinetic tasks, HO: Hyperparameter
Optimization, CV: Cross Validation, LOSO: Leave-One-Subject-Out, SMOTE: Synthetic Minority Oversampling TEchnique, DFA: Detrended
Fluctuation Analysis, RPDE: Recurrence Period Density Entropy, PPE: Pitch Period Entropy, PCA: Principal Component Analysis, WT: wavelet
transform, TF: time-frequency, TQWT: tunable Q-factor wavelet transform, MFCCs: Mel frequency Cepstral coefficients, VF: vocal fold, SSIM:
Structural Similarity Index, PSNR: Peak Signal to Noise Ratio, SFTF-CWT: Short time Fourier transformation - Continuous wavelet
transformation, ASR: Automatic Speech Recognition, S-DCGAN: Spectrogram Deep Convolutional Generative Adversarial Network
Studies presented in Table V are not presented in this Table.

analysis makes it difficult to identify the most effective

model.

Parkinson’s disease requires early diagnosis and treatment
to minimize its impact and preserve patients’ independence.
Early and accurate clinical diagnosis of PD is especially

VIlI. CONCLUSION

crucial in the context of emerging neuroprotective treatments.
While prodromal diagnosis primarily relies on non-motor
symptoms, our systematic review proposes a multi-modal deep
learning approach to enhance early clinical diagnosis based
on motor signs. By integrating data from various sources,
DL-based solutions aim to improve the accuracy of clinical
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TABLE XI
SUMMARY OF SELECTED ARTICLES FROM THE LITERATURE ON PD AND ITS SYMPTOMS DIAGNOSIS BASED ON FACIAL EXPRESSIONS
Ref. | Subjects Experiment(s) Diagnosis Development process Model Performance metrics
16 PD / 16 | Phonation exercise PD/ non-PD Inclusion of inception-like 3D layers, | CNN Acc. =.92, Pr. = .96, Sens.
[99] HC embedding representation, LOSO-CV, = .87, fl-score = .91, AUC
HO =.95
70 PD Expression mimicing | Normal / happy / | Face detection, 80/20, HO CNN Acc., Pr., Sens., fl-score =
[170] angry / sad 93
33 PD / 31 | Smiling exercise PD/ non-PD Relative coordinates and positional jit- | LSTM Pr. = .86, Sens. = .66, f1-
[171]| HC ter for feature extraction (facial expres- score = .75
sion amplitude and shaking of small
facial muscle groups)
107 PD / | Interview process Hypomimia Face detection, Set of hypomimia de- | CNN AUC = .71, Acc. = .63
[100] | 1595 HC detection, Med. | tection threshold, 72/25
State

HO: Hyperparameter Optimization, CV: Cross Validation, LOSO: Leave-One-Subject-Out

diagnosis and support clinical decision-making. Such accurate
decision-making systems based on DL models can facilitate
early clinical diagnosis of PD and improve patient outcomes.
In this study, we reviewed 87 studies on deep learning for
four modalities (gait, upper limb motion, speech, and facial
expressions) and their fusion. For the purpose of diagnos-
ing Parkinson’s disease and improving the model’s accuracy,
numerous studies have focused on gait, upper limb movement,
and speech signals using both conventional and advanced
techniques. However, there may be a need to investigate other
diagnostic modalities that can be obtained outside of clinical
settings, such as facial muscle movement signals. Additionally,
signal fusion from multiple modalities is required to achieve
more complex diagnostic goals, such as the disease’s severity.
Taking this into consideration, even more difficult is the
identification of the disease in its early stages, since the
symptoms’ heterogeneous appearance and progression result
in complicated clinical picture of PD. Therefore, clinical
research is also directed at deep phenotyping of the disease,
an extensive analysis of the disease’s distinct components that
exceeds the scope of standard medical records. Deep learning
models should be enriched to get high accuracy in the diag-
nosis of Parkinson’s disease. Finally, we believe that metrics
other than specificity and sensitivity could be introduced to
produce even better provisions for experts in diagnosing PD.
These recommendations can probably solve the challenges in
enhancing the accuracy of Parkinson’s disease classification.

APPENDIX
See Tables VII-XI.
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