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Abstract— Brain-computer interface (BCI)-based motor
rehabilitation feedback training system can facilitate motor
function reconstruction, but its rehabilitation mechanism
with suitable training protocol is unclear, which affects
the application effect. To this end, we probed the elec-
troencephalographic (EEG) activations induced by motor
imagery (MI) and action observation (AO) to provide an
effective method to optimize motor feedback training.
We grouped subjects according to their alpha–band sen-
sorimotor cortical excitability under MI and AO condi-
tions, and investigated the EEG response under the same
paradigm between groups and different motor paradigms
within group, respectively. The results showed that there
were significant differences in sensorimotor activations
between two groups of subjects. Specifically, the group
with weaker MI induced EEG features, could achieve
stronger sensorimotor activations in AO than that of other
conditions. The group with stronger MI induced EEG fea-
tures, could achieve stronger sensorimotor activations in
the MI+AO than that of other conditions. We also explored
their classification and brain network differences, which
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might try to explain the EEG mechanism in different
individuals and help stroke patients to choose appropriate
subject-specific motor training paradigm for their rehabili-
tation and better treatment outcomes.

Index Terms— Brain–computer interface, motor imagery,
action observation, electroencephalographic activations,
motor feedback training.

I. INTRODUCTION

STROKE is a combination of local or global brain dys-
function caused by an unexpected vascular lesion in the

brain area. It is the first disabling malignant nervous system
disease in China and even in the world, with high incidence,
disability and recurrence [1], [2], [3]. The most common and
widely known dysfunction in stroke patients is limb movement
disorder, which in most cases affects the motor control of the
face, arms and legs on one side of the body, called hemi-
plegia [4]. Common motor function problems in hemiplegia
include muscle weakness, spasticity, increased reflexes, loss
of coordination, and apraxia. Impaired limb function largely
limits the patient’s ability to perform daily activities [5],
severely affecting his or her normal life [6], and effective
rehabilitation aids are urgently needed [7], [8], [9], [10].

Traditional rehabilitation training involves passive move-
ment of the hemiplegic limb with the help of a physical
therapist to promote muscle strength recovery and motor
nerve reconstruction to restore the motor function of the
limb [11], [12]. However, such passive rehabilitation does not
motivate patients to participate in training [13] and is not
sufficient to produce effective plasticity in the cerebral motor
cortex [14]. Although there are innate repair mechanisms in
the central nervous system after stroke [15], its endogenous
regeneration ability is limited [16]. Therefore, it is necessary
to use sports rehabilitation training to promote the recovery
of motor function after stroke. The motor feedback training
based on Brain-computer Interface (BCI) provides a new idea
for the rehabilitation of motor function, making the process
of motor rehabilitation training observable, quantifiable and
self-adjustable [17], [18].

The BCI-based motor rehabilitation feedback training sys-
tem can drive the external equipment to produce movement
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on the injured limb according to the patient’s subjective
motor intention and achieve the simultaneous activation of the
central nervous system and peripheral nervous system, thus
effectively promoting the recovery of motor function of stroke
patients [19], [20], [21]. However, there are problems such
as unclear rehabilitation mechanisms with suitable training
protocol at present, which limit the the application effect of
the system [22]. MI and AO are two main types of motor
evoked paradigms that are considered as promising tools for
motor rehabilitation [23]. Studying their related rehabilitation
mechanisms can help stroke patients choose their own motor
evoked paradigms in motor rehabilitation, so that patients can
get better therapeutic effects. MI refers to the preview of motor
behavior in the brain, which belongs to the hidden phase of
motor intention [24], [25]. AO is the conscious and structured
observation of human movement [26].

During imagination and observation, the brain retrieves
motor events with similar characteristics from a library of
motor instructions and mobilizes motor-related cortex to men-
tally imitate the imagined or observed movements, thereby
facilitating motor function recovery in the injured limb [22].
Gatti R et al. revealed that AO as a novel strategy for learning
complex motor tasks is superior to MI in the early stages of
motor learning [27]. Taube W et al. explored cortical activa-
tion in MI, AO and AO+MI conditions, respectively. fMRI
imaging results showed that MI elicited bilateral activation in
the supplementary motor area, shell nucleus and cerebellum,
and AO+MI activated ventral and dorsal premotor cortex
and primary motor cortex, but no significant activation was
found in the supplementary motor cortex, premotor cortex,
primary motor cortex and cerebellum in the AO condition [28].
Clark S et al. investigated the differential excitability of the
corticospinal tract in MI and AO conditions, respectively,
evaluating metrics using MEPs evoked by transcranial mag-
netic stimulation. The findings suggested that both conditions
produced similar facilitation on MEPs [29]. That said, there are
no consistent results from the current studies on MI and AO
in terms of promoting early motor learning and motor cortex
activation effects. Therefore, it is important to investigate the
causes of the differences in EEG activation induced by MI
and AO to help stroke patients choose the appropriate motor
evoked paradigm for their motor rehabilitation, so that they
can achieve better treatment outcomes.

We grouped the subjects according to the individual dif-
ferences of EEG activation induced by AO and MI, and
compared the EEG response characteristics of the two groups
to find the main reasons for this difference. We also explored
classification and brain network differences of MI and AO,
which might try to explain EEG mechanism in different indi-
viduals and choose the appropriate motor evoked paradigm for
stroke patients in the motor rehabilitation feedback training,
so as to provide theoretical basis and experimental support
for shortening the rehabilitation process and obtaining better
treatment effects.

II. METHODS

A. Subjects
The study was conducted in the Neural Engineering

and Rehabilitation Laboratory of Tianjin University and all

experiments were approved by the Ethics Committee of Tian-
jin University. A total of 26 healthy subjects participated our
experiments, all of whom were graduate students at Tianjin
University, and 13 of them were female. The age range of
the subjects was 20-28 years old, with a mean age of 23.8 ±

1.7 years. All subjects did not have any history of neurological
disease and had normal or corrected-to-normal visual acuity.
Each subject was clearly informed about the experimental
procedure and signed a written informed consent form before
recording the data.

B. Experimental Paradigm
We investigated the differences in EEG activations under

different motor evoked paradigms. For this purpose, the experi-
ment was designed with three experimental tasks, AO, MI, and
MI+AO. In the AO condition, subjects were only required to
observe the right hand grasp video during the task period.
In the MI condition, subjects were asked to imagine the same
right hand grasp action as in the video with textual cues.
In the MI+AO condition, subjects were not only required to
watch the video, but also to follow the video to imagine the
corresponding action. The time to complete a right-handed
grasp in the video was 1s. Before the experiment, subjects
were asked to watch the video in advance to become familiar
with the action to be observed and imagined, and to adapt to
the frequency of the hand grasp in the video so as to better
complete the experimental task.

In the experiment, the subjects were allowed to sit in a chair
in a comfortable manner of their choice and keep their hands
relaxed. Each experiment consisted of 3 sessions, each session
contained 40 trials and corresponded to one experimental
condition. The experimental paradigm for each session is
shown in Fig. 1. Each trial lasted 8 s, including 4 s of rest, 1 s
of preparation, and 3 s of task period. The experiment started
with a white circle in the center of the screen, which has lasted
4 s, during which the subject was asked to relax and rest.
The white circle then turned red and lasted for 1s, prompting
the subject to enter the MI preparation phase. After this
period, the red circle disappeared and the monitor presented
a 3 s video of a right-handed grasp, for a total of 3 grasps
during the task period. In the MI condition, the monitor no
longer showed the grasp video during the task period, but
displayed the words “please imagine” for the same duration
of 3 s, during which the subject was asked to imagine the
right-hand grasp three times. During the experimental phase,
subjects were asked to refrain from physical movements and
to minimize blinking during the imagery task to ensure the
stability of the collected EEG data.

C. EEG Signal Acquisition and Preprocessing
Experiments were performed using the 64-channel

SynAmps2 EEG amplifier system (Neuroscan, Australia)
and its accompanying 64-channel Quik-Cap electrode cap to
acquire EEG signals from the subjects. The electrodes are
made of Ag/AgCl and are positioned according to the interna-
tional standard 10-20 system, where the overhead electrode
located between CZ and CPZ is the reference electrode and
the forehead GND is used as ground. The sampling rate
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Fig. 1. Experimental setup. Schematic diagram of the experimental
paradigm for each session and experimental scene diagram.

is 1000 Hz and the bandwidth is 0.5-100 Hz. In addition,
a 50 Hz trap filter is used to filter out industrial frequency
interference. During EEG signal acquisition, the impedance
of each electrode is kept below 20 k�.

To pre-process the raw signal, the EEG with an original
sampling rate of 1000 Hz was first downsampled to 200 Hz.
Subsequently, the downsampled EEG signal was filtered with
a 3rd order Butterworth bandpass filter in the frequency
range of 5-35 Hz to remove artifacts. The EEG data were
processed during the experiments using the EEGLAB toolbox
in MATLAB. EEGLAB, developed by the Swartz Center
for Computational Neuroscience Research at the University
of California, San Diego, is a MATLAB toolbox for pro-
cessing multichannel EEG signals. Users can process EEG
data through menu options in the GUI or write custom data
processing scripts through functions in EEGLAB [30].

D. Event-Related Spectral Perturbation Analysis

During MI and AO, neurons in the relevant cortex of
the brain generate synchronized oscillatory activity, which is
macroscopically manifested as ERD/ERS phenomena, mainly
in the alpha and beta (8-14 Hz and 15-28 Hz) frequency bands.
In order to investigate the energy changes of EEG signals in
subjects under different experimental conditions, we used the
Event-related Spectral Perturbation (ERSP) method to analyze
the EEG signals in the time-frequency domain. The ERSP
method averages the power spectrum in a short sliding time
window over multiple trials, and then presents the ERD/ERS
patterns corresponding to different task states [31]. They
represent the average power spectrum changes of the EEG
signal in response to the stimulus. They are defined by the

formula [30]:

ERSP ( f, t) =
1
n

∑n

k=1

(
Fk ( f, t)2

)
(1)

where n denotes the number of experimental trials, and
Fk( f, t) denotes the the spectral estimate of the kth trial
at a particular frequency f and time t . In this experiment,
the ERSP values of the key channels C3, FC3, and CP3
corresponding to the sensorimotor cortex, premotor cortex, and
supplementary motor cortex were analyzed.

Widespread low-alpha and low-beta band desynchronization
is associated with increased levels of attention and motor
system arousal during motor execution and action observation.
In contrast, high alpha and high beta band desynchroniza-
tion reflects the activation of neural circuits associated with
individual processing of motor commands and somatosensory
and visual feedback during motor execution and action obser-
vation [32]. To investigate the differences in EEG response
characteristics of subjects under different experimental condi-
tions throughout the task period, the average ERD values were
calculated in four frequency bands: low alpha band (8-10 Hz),
high alpha band (10-14 Hz), low beta band (15-20 Hz) and
high beta band (20-28 Hz).The ERD values were calculated
as shown in (2):

E RDvalve =
1
N

∑
f ∈F

∑
t∈T

(E RS P ( f, t)) (2)

where F denotes the frequency band to be calculated,
T denotes the length of the selected task period, and N refers
to the number of all time-frequency points within the selected
band time range. The ERSP values of 60 channels (with CB1,
CB2, M1, and M2 removed) were used to construct the brain
topography in this experiment.

Higher significance (reactivity) of frequency components in
the alpha as compared to the beta range during imagination
of hand movement was also reported previously [33], [34].
In general, the energy drop of subjects in the high alpha band
is more obvious than that in the low alpha band. And C3
channel is usually often selected in the study of MI [33], [35].
Therefore, after calculating the mean ERSP values under the
four frequency bands during the task, the subjects were divided
into two groups according to the ERD values in the high alpha
frequency band (10-14 Hz) of C3 channel under MI and AO
conditions. Group 1 (12 subjects): subjects with stronger MI-
evoked ERD characteristics than AO. Group 2 (14 subjects):
subjects with weaker MI-evoked ERD characteristics than AO.
We investigated the cortical EEG activation under the same
evoked paradigm between groups and different motor evoked
paradigms within the group, respectively.

E. PDC Based Functional Connectivity Analysis
Functional connectivity partly reflects potential interactions

between brain regions [36]. Functional connectivity between
brain regions can be analyzed using Partial Directed Coherence
(PDC). Partial Directed Coherence provides a clearer and more
direct frequency domain connectivity map of Granger causality
compared to Directed Coherence, especially when more than
two time series are analyzed simultaneously [37]. The specific
calculation process is as follows:
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For the multi-channel autoregressive model, it could be
expressed as follows:

x1 (n)

x2 (n)
...

xm (n)

 =

∑p

i=1
Ci


x1 (n − i)
x2 (n − i)

...

xm (n − i)

 +


w1 (t)
w2 (t)

...

w (t)

 (3)

In formula (3):

Ci =


c11i
c21i

c12i
c22i

· · ·
c1mi
c2mi

...
. . .

...

cm1i cm2i · · · cmmi


The brain network analysis of this experiment involved

38 channels of EEG signals, corresponding to m = 38.
According to the EEG signals of 38 channels, the parameters
of formula (3) were obtained and Fourier transformed, and the
transformed formula was shown in formula (4):

A ( f ) =

∑p

i=1
Ci e− j2π i f/ f s (4)

Ā ( f ) = I −

∑p

i=1
Ci e− j2π i f/ f s (5)

where I is identity matrix, and its dimension is m = 38.
Finally, the partial directed coherence of x j → xk was
calculated by formula (6):

P DC x j →xk ( f ) =
ak, j ( f )√∑m

i=1
∣∣ai, j ( f )

∣∣2
(6)

In formula (6), ak, j ( f ) refers to the j element in the k row in
matrix Ā ( f ), and ai, j ( f ) refers to the j element in the i row
in matrix Ā ( f ). The range of the normalized P DC x j →xk ( f )

is [0, 1], which indicates the proportion of this information
flowing to xk in all the information flows from x j . If the
proportion is greater than the set threshold, it is considered
that there is a connection between the two channels. If the
proportion is less than the threshold, it is determined that there
is no connection between the two channels. The final PDC
value is a 38 × 38 matrix, and the elements in the matrix
reflect the intensity and direction of information flow between
each channel.

A directed weighted brain network map can be constructed
by calculating the resulting PDC values. After drawing the
brain network topology of the subjects under different task
conditions, the characteristics of the brain network are ana-
lyzed using parameters such as causal flow. A higher value of
causal flow indicates a greater causal influence of the node on
the whole system.

F. Classification
To investigate the difference in the classification accuracy

between the two groups under MI conditions, EEG data from
15 channels (F3, FZ, F4, FC3, FC4, C5, C3, CZ, C4, C6,
CP3, CP4, P3, PZ, P4) of sensorimotor cortical were selected
to classify the two-class condition of task and resting periods.
First, the EEG data of 3 s task period and resting period
were intercepted in each trial separately. A 3s data segment

was divided into 11 data segments of 2s length by a sliding
window with a window width of 2 s and a step size of 0.1 s.
So there are 40 trial × 11 = 440 samples in the resting period
and 40 trial × 11 = 440 samples in the task period, i.e.
880 samples in total. The EEG data were then divided into
training and test sets by a 20-fold cross-validation method
(836 samples in the training set and 44 samples in the test
set), and the Common Spatial Pattern (CSP) filter and Support
Vector Machines (SVM) with a linear kernel were built in
the training set and applied to the test set. Finally, 20-fold
cross validation was used to calculate the final classification
accuracy.

G. Statistical Analysis
The paired and independent sample t-test were used to

analyze the mean ERD values generated by subjects under
different experimental conditions and the mean ERD values
between two groups under the same experimental conditions.
The classification accuracy between group 1 and group 2 was
also analyzed by t-test. The statistical analysis software used
for the experiments was SPSS software (IBM SPSS Statistics,
IBM Corporation). The significance level of the statistical test
results was set at 0.05.

III. RESULTS AND ANALYSIS

A. ERSP Patterns Analysis
Fig. 2 shows the average time-frequency diagrams for

group 1 and group 2 subjects in the C3, FC3, and CP3 channels
under three experimental conditions (MI+AO, MI, and AO).
From the time-frequency diagram of the C3 channel, it could
be found that in the alpha and beta bands, a persistent ERD
phenomenon was observed during the task period, and under
the MI+AO or MI conditions, the subjects in group 1 showed
the phenomenon of energy decline during the task period
significantly stronger than group 2. In group 1, the high alpha-
ERD intensity under MI+AO condition was stronger than that
under MI or AO conditions, and the high beta-ERD intensity
under MI+AO or MI conditions was significantly stronger
than that under AO condition. In group 2, the activation
intensity under AO condition was overall stronger than that
under MI+AO or MI conditions.

There was a similar phenomenon in the time-frequency
diagram of FC3 channel. For example, under MI+AO or MI
conditions, subjects in group 1 showed significantly stronger
energy decline than in group 2. Activation in group 1 was
stronger than group 2 in the alpha band of the AO condition,
but the opposite was shown in the beta band. Subjects in group
1 exhibited stronger alpha-ERD phenomena under MI+AO
or AO conditions, and stronger beta-ERD phenomena under
MI condition. Group 2 showed essentially no persistent ERD
phenomenon under MI condition.

There was also a similar phenomenon in CP3 channel.
Under MI+AO or MI conditions, group 1 showed significantly
stronger energy decline than in group 2. In group 1, the ERD
phenomenon was the weakest under the MI condition, and
the ERD phenomenon was the strongest under the MI+AO



WANG et al.: MI AND AO INDUCED EEG ACTIVATIONS TO GUIDE SUBJECT-SPECIFIC TRAINING PARADIGM 2461

Fig. 2. Average time-frequency diagrams of C3, FC3 and CP3 channels under three experimental conditions. All subplots have the same scale as
the first subplot in the second row.

condition. In group 2, the ERD phenomenon under MI con-
dition was the weakest, and the ERD phenomenon under AO
condition was the strongest.

In summary, we could find that the ERD phenomenon was
stronger in group 1 than in group 2 under MI or MI+AO
conditions for either C3, CP3 or FC3 channels. In group 1,
the activation under MI+AO condition for all channels was
the best. In group 2, the activation under the AO condition
was the best.

B. Average ERD Value
In order to investigate the differences in the EEG response

characteristics of the same group under different experimental
conditions, we calculated the subjects’ average ERD values
in four frequency bands separately, and the average ERD
values under different experimental conditions were subjected
to paired t-test. Fig. 3 represents the average ERD values of the
two groups of subjects under different experimental conditions

in the four frequency bands, and the involved channels include
C3, FC3 and CP3.

The average ERD values in group 1 are shown in Fig. 3(a).
It could be found that in the low alpha frequency band, the
average ERD value under MI+AO condition was stronger than
that under AO condition, and the average ERD value under MI
condition was weaker than that under AO condition for C3 or
CP3 channels. In addition, the value under the AO condition
of FC3 channel is positive, which is due to the individual
difference, so the low alpha band sometimes has an increase
in energy. In the low beta frequency band, the average ERD
values under different experimental conditions were ranked
as: MI+AO>AO>MI, and in channel CP3, the average ERD
value under MI+AO condition was statistically significantly
different from that under AO (p = 0.0222 < 0.05) or MI
(p = 0.0129 < 0.05) conditions.

The average ERD values in group 1 are shown in Fig. 3(a).
It could be found that in the low alpha frequency band, the
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Fig. 3. (a) Average ERD values of group 1 subjects in the four frequency bands under different experimental conditions. (b) Average ERD values
of group 2 subjects in the four frequency bands under different experimental conditions. All subplots have the same scale as the first subplot in
the second row. Statistical differences are marked by asterisks, one star indicates p < 0.05, two stars indicate p < 0.01, and three stars indicate
p < 0.001.

average ERD value under MI+AO condition was stronger than
that under AO condition, and the average ERD value under MI
condition was weaker than that under AO condition for C3 or
CP3 channels. In addition, the value under the AO condition
of FC3 channel is positive, which is due to the individual
difference, so the low alpha band sometimes has an increase
in energy. In the low beta frequency band, the average ERD
values under different experimental conditions were ranked
as: MI+AO>AO>MI, and in channel CP3, the average ERD
value under MI+AO condition was statistically significantly
different from that under AO (p = 0.0222 < 0.05) or MI
(p = 0.0129 < 0.05) conditions.

In the high alpha band, the averageERD value under
MI+AO or MI conditions was stronger than that under AO
condition, and in channels C3 or CP3, the average ERD
value under MI+AO condition was statistically significantly
different from that under AO condition (C3: p = 0.0020 <

0.01, CP3: p = 0.0399 < 0.05). In the high beta band,
the average ERD under MI+AO condition was stronger than
that under AO or MI conditions, and in channel C3, the
average ERD value under MI+AO condition was statistically
significantly different from that under AO (p = 0.0129 < 0.05)
or MI (p = 0.0457 < 0.05) conditions.

The results presented in the histogram were consistent with
those presented in the ERSP time-frequency diagram, i.e.,
AO better elicited sensorimotor cortex activation in the low
alpha and low beta frequency bands, while MI better elicited
activation in the high alpha and high beta frequency bands,
and the MI+AO condition had the best sensorimotor cortex
activation in the subjects.

The average ERD values in group 2 are shown in Fig. 3(b).
In the low alpha band, the average ERD value in channel FC3
under AO condition was stronger than that under MI condition
and statistically significantly different. In the channel CP3,
the average ERD value under MI condition was significantly
weaker than that under MI+AO (p = 0.0353 < 0.05) or AO

(p = 0.0073 < 0.01) conditions. In the low beta band, the
average ERD values under different experimental conditions
were ordered as AO>MI+AO>MI, and in the FC3 channel,
the average ERD value under AO condition was statisti-
cally significantly different from that under MI condition
(p = 0.0371 < 0.01).

As in the low beta band, the average ERD values
under different experimental conditions were ordered as
AO>MI+AO>MI in the high alpha band. And for all chan-
nels, there was a statistically significant difference in average
ERD values between the AO condition and the MI condition
(C3: p = 7.2061e-4 < 0.001, FC3: p = 0.0101 < 0.05, CP3:
p = 0.0095 < 0.01). In the channel C3, the average ERD
value under the MI condition was also statistically significantly
different from that under MI+AO condition (p = 0.0190 <

0.05). In the high beta band, for all channels, the weakest
average ERD value was found in the MI condition. And in
the channel CP3, there was a statistically significant difference
in average ERD values between the AO condition and the MI
condition (p = 0.0412 < 0.05). Overall, the ERD phenomenon
under the AO condition was the most obvious and significantly
stronger than that under the MI condition.

To investigate the differences of EEG response charac-
teristics in different groups under the same experimental
conditions, we calculated the average ERD values of the two
groups in the four frequency bands respectively, and per-
formed independent sample t-test on the average ERD values
of the two groups under the same experimental conditions.
Fig. 4 shows the average ERD values of the two groups
in the four frequency bands under the three experimental
conditions.

Under the MI+AO condition, the average ERD values were
higher in group 1 than in group 2 in all frequency bands
and channels except CP3 channel in low alpha band. And in
C3 (p = 0.0118 < 0.05), CP3 (p = 0.0312 < 0.05) channels
in the high alpha band, and CP3 channel in the low beta band
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Fig. 4. Mean ERD values of the two groups of subjects in the four frequency bands under the three experimental conditions. All subplots have the
same scale as the first subplot in the first row. Statistical differences are marked by asterisks, one star indicates p < 0.05 and two stars indicate
p < 0.01.

(p = 0.0115 < 0.05), there was a statistically significant dif-
ference in average ERD values between group 1 and group 2.

Under the MI condition, except for the C3 channel in the
low alpha band, all other bands and channels had higher
average ERD values in group 1 than in group 2. In all
channels in the high alpha band (C3:p = 0.0017 < 0.01,
CP3:p = 0.0112 < 0.05, FC3:p = 0.0117 < 0.05), there
was a statistically significant difference in average ERD values
between group 1 and group 2.

Under the AO condition, the average ERD values were
stronger in group 2 than in group 1 in all bands and channels
except for the C3 channel in low alpha and the CP3 channel
in high beta band, and there was a statistically significant
difference between the two groups in C3 channel in high
alpha band (p = 0.0117 < 0.05). This is consistent with the
results presented by the time-frequency diagram, that is, under
all experimental conditions involving MI, the overall ERD
intensity in group 1 is stronger than that in group 2. This
is also a good evidence of the disparity in the level of MI
between the two groups.

C. Brain Topography
Fig. 5 represents the average brain topography in the two

groups in the four frequency bands under different experi-
mental conditions. In group 1, it could be found that the
activation under the MI condition was concentrated in the

sensorimotor cortex and showed a contralateral dominance,
while the activation of sensorimotor cortex under the MI+AO
condition was higher than that under the MI condition and
also showed contralateral dominance in the high alpha and
high beta frequency bands. In group 2, subjects had almost no
activation of sensorimotor cortex under the MI condition, and
had activation of sensorimotor cortex under AO and MI+AO
conditions but did not show contralateral predominance. The
intensity and range of activation in the cortex of group 1
subjects were stronger than those of group 2 in all four
frequency bands under the same experimental conditions.

D. Brain Network and Its Parameters
In order to show the causal interaction between channels

more clearly, the amount of effective connections was limited
by setting a threshold of 60% of the maximum PDC value
of each subject. In addition, the statistical significance (uni-
lateral t-test, p < 0.01) of non-zero PDC values was assessed
by means of a bootstrap approach using phase randomiza-
tion according to the Theiler’s method. Fig. 6 shows the
brain network diagrams of the two groups under different
experimental conditions. In group 1, all three experimental
conditions involved sensorimotor and visual-related channels,
and the MI+AO condition contained the most “target” nodes
and concentrated in the sensorimotor cortex. In group 2, the
“target” nodes in the MI+AO condition were CP6, P3, P5,
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Fig. 5. Mean brain topography of two groups of subjects in the four frequency bands under the three experimental conditions.

P6, and PO3 channels, which were mainly distributed in the
sensory and visual-related cortices. The “target” nodes in the
AO condition involved more channels in the sensorimotor
cortex. The number of network information flows in the
MI condition was significantly lower than that in the other
conditions.

Fig.7 shows the causal flow diagrams of 20 channels for the
two groups under different experimental conditions. Combin-
ing the brain network diagrams and the causal flow diagrams,
we can find that the causal flow of the “source” node ranges
from 0 to 9, and the distribution is more uniform in the cortex,
while the causal flow value of the “target” node was larger
and only existed in a few channels. In group 1, most of the
“source” nodes had higher causal flow values than the other
two conditions under the MI+AO condition. In group 2, the
causal flow value of most “source” nodes in the AO condition
was higher than that in the MI+AO condition. Therefore, the
information transmission capacity of the sensorimotor cortical
network was stronger under the MI+AO condition for subjects
in group 1, whereas the information transmission capacity was
stronger under the AO condition for subjects in group 2.

E. Classification Accuracy
The classification results are shown in Fig. 8,with an aver-

age classification accuracy of 76.63% for group 1 subjects and
67.22% for group 2 subjects. The results of the statistical t-test
showed that there was a significant difference in classification
accuracy between group 1 and group 2 (p = 0.0434 < 0.05).

Sjoerd D V et al. used patient MI accuracy as a basis for
judging the recovery of MI ability after stroke in a study [38].
Morris T et al. suggested that the accuracy of MI could be used
to reflect how well subjects had MI [39]. Vuckovic A et al.
attempted to predict subjects’ MI-BCI performance by the MI
questionnaire and showed a correlation between the accuracy
of the BCI classification and the results of the MI question-
naire [40]. Thus this result again validates that there is a
difference between the two groups in terms of MI levels.

IV. DISCUSSION

The results of the time-frequency analysis showed that under
the MI, MI+AO condition, i.e. the experimental condition with
MI participation, the energy drop in the sensorimotor cortex in
group 1 was stronger than that in group 2 under the same con-
ditions. The analysis of brain networks and their parameters
also showed relevant results, i.e., the brain network functional
connectivity of group 1 under MI or MI+AO conditions were
stronger than those of group 2. In addition, MI classification
accuracy was also significantly higher in group 1 subjects
than in group 2. The above findings demonstrate that the MI
level of group 1 subjects was stronger than that of group 2.
Therefore, we believe that the reason for the difference in
cortical activation between different subjects under MI and AO
conditions may be the subject’s MI level. It is noteworthy that
the performance of group 1 was weaker than that of group 2
under the AO condition, which may be due to the fact that
people with weak MI EEG features are more likely to induce
imitation of movements in the cerebral cortex during AO.
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Fig. 6. Brain network maps of two groups of subjects under different experimental conditions.

Fig. 7. (a) Flow diagram of causality corresponding to each channel in group 1 subjects under different experimental conditions. (b) Flow diagram
of causality corresponding to each channel in group 2 subjects under different experimental conditions.

In the analysis of the average ERD energy map, AO elicited
better activation of sensorimotor cortex in the low alpha and
low beta frequency bands and MI elicited better activation in

the high alpha and high beta frequency bands in the C3 channel
of group 1. This may be because the widespread low alpha
and low beta desynchronization is associated with increased
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Fig. 8. (a) Correct classification rate of MI state and resting state in group 1 subjects. (b) Correct classification rate of MI state and resting state in
group 2 subjects.

levels of attention and arousal of the motor system during
motor execution and action observation. In contrast, high alpha
and beta band desynchronization reflects the activation of
neural circuits associated with individual processing of motor
commands and somatosensory and visual feedback during
motor execution and observation, with motor specificity.

In group 1, the activation effect of the MI+AO condition
was the best in the sensorimotor cortex, which might be
because AO has a certain role in guiding and improving
attention compared with pure MI. In group 2, the activation
effect of AO condition was the best in sensorimotor cortex,
while MI+AO was slightly weaker than AO. This may be
because the MI during the AO process will occupy a part of
the subject’s attention, but the subject is not skilled or even
knows how to perform the MI, thus affecting the activation
effect of the cortex.

We found the general trend that “the two groups of people
showed opposite differences in cortical activation under MI
and AO conditions”. Based on this trend, it is reasonable to
assume that “different motor evoked paradigms are applicable
to different populations”. Therefore, subjects were divided into
two groups based on the comparison of activation intensity in
sensorimotor cortex under MI and AO conditions. And then
the EEG responses of cortex under the same evoked paradigm
between groups and different motor evoked paradigms within
groups were explored. The inter-group results verified the
rationality and feasibility of grouping. The intra-group results
proved that different groups were suitable for different motor
evoked paradigms, which proved the effectiveness of grouping.
These results provide preliminary evidence of the rationality
of grouping and provide ideas for future related studies.

V. CONCLUSION

We grouped the subjects according to the relative ERD
energy values in the high alpha band of channel C3 under MI
and AO conditions, and analyzed the two groups of subjects by
time-frequency maps, average ERD energy, brain topography,
and classification accuracy. The EEG activations of subjects
under MI+AO, MI, AO three experimental conditions revealed
the difference law of the opposite cortical activation of the

two groups under MI and AO conditions, and proposed that
motor evoked paradigms that can effectively activate the
cortex in two groups of people, which is expected to provide
stroke patients with a motor evoked paradigm with individual
applicability, and provide key technical support for optimizing
the rehabilitation process and treatment effect.
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