
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023 2359

MSTGC: Multi-Channel Spatio-Temporal Graph
Convolution Network for Multi-Modal

Brain Networks Fusion
Ruting Xu, Qi Zhu , Shengrong Li, Zhenghua Hou, Wei Shao,

and Daoqiang Zhang , Senior Member, IEEE

Abstract— Multi-modal brain networks characterize the
complex connectivities among different brain regions from
structure and function aspects, which have been widely
used in the analysis of brain diseases. Although many
multi-modal brain network fusion methods have been pro-
posed, most of them are unable to effectively extract
the spatio-temporal topological characteristics of brain
network while fusing different modalities. In this paper,
we develop an adaptive multi-channel graph convolution
network (GCN) fusion framework with graph contrast learn-
ing, which not only can effectively mine both the comple-
mentary and discriminative features of multi-modal brain
networks, but also capture the dynamic characteristics
and the topological structure of brain networks. Specifi-
cally, we first divide ROI-based series signals into multi-
ple overlapping time windows, and construct the dynamic
brain network representation based on these windows.
Second, we adopt adaptive multi-channel GCN to extract
the spatial features of the multi-modal brain networks with
contrastive constraints, including multi-modal fusion Info-
Max and inter-channel InfoMin. These two constraints are
designed to extract the complementary information among
modalities and specific information within a single modal-
ity. Moreover, two stacked long short-term memory units
are utilized to capture the temporal information transferring
across time windows. Finally, the extracted spatio-temporal
features are fused, and multilayer perceptron (MLP) is used
to realize multi-modal brain network prediction. The exper-
iment on the epilepsy dataset shows that the proposed
method outperforms several state-of-the-art methods in the
diagnosis of brain diseases.
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I. INTRODUCTION

IN RECENT years, brain network analysis methods based
on neuroimaging technology have attracted more and more

attention [1], and have been widely used in the brain disease
diagnosis [2], [3]. The brain network analysis technology can
detect the intrinsic correlation and interaction pattern in brain.
A brain network model can be represented by a series of
nodes and edges. The node represents brain region defined
by physiological templates, and edges measure interactions
between brain regions of interest (ROI) [4]. In general, the
brain network can be divided into structural connectivity
networks, such as diffusion tensor imaging (DTI) [5], and
functional connectivity networks (fMRI), such as resting-
state functional magnetic resonance imaging (rs-fMRI) [6].
Previous studies have shown that the different modalities
of the brain network convey complementary information
to each other [7], [8]. However, due to the heterogene-
ity and the complex topology of different modalities, it is
still a challenge to investigate effective fusion of functional
connectivity network and structural connectivity networks
to improve the performance of feature representation and
diagnosis.

There are many multi-modal brain network fusion methods
have been proposed for brain disease diagnosis. As shown
in Figure 1, existing methods for multimodal brain network
analysis can be mainly divided into two categories. The first
type is based on the non-graph structured data fusion strategy,
such as multi-view embedding, multi-kernel learning (MKL)
and principal component analysis (PCA). For example, Dai
et al. fused fMRI and sMRI image features by MKL for
the diagnosis of hyperactivity disorder [9]. Yang et al. used
information from one modality to aid the construction of
brain network from another modality [10], [11]. Unfortunately,
the above fusion methods need to stretch the brain network
into vector form, which destroys the topology of the brain
network. The second category is based on the conventional
graph structured data fusion strategy, which considers the topo-
logical characteristics of brain network in fusion. The most

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7740-292X
https://orcid.org/0000-0002-5658-7643


2360 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Fig. 1. The comparison of the multi-modal fusion methods, (a) the
non-graph structured data fusion strategy, (b) the conventional graph
structured data fusion strategy, and (c) the proposed MSTGC method.

common model for this strategy utilizes a graph convolution
network (GCN) to fuse multimodal structural and functional
information. As a powerful representation of graph data, GCN
can integrate the node features and the internal graph nodes
of brain networks by nonlinear mapping. For example, Liu
et al. [12] proposed a framework of Siamese community
preserving graph convolutional network to learn the structural
and functional joint embedding of brain networks.

It is worth noting that although these conventional fusion
methods can integrate the structural and functional features of
brain network, the topological and discriminative information
of brain network over time in each modality is often ignored,
which is important in classifying the brain networks. On one
hand, the connection pattern of the functional brain pattern
changes over time during the scanning period, so captur-
ing temporal dynamic information of the brain network is
conducive to improving its feature extraction [13]. Most of
the existing multi-modal brain network analysis models are
developed to fuse the static brain networks [10], [14], but they
cannot take advantage of dynamic topological properties of
brain networks for brain disease diagnosis. On the other hand,
the specific features in the fMRI modality and DTI modality
of the brain networks should also be effectively extracted and
fused. With the increase of network layers, it is natural for a
deep model to lose the information of the original input due
to the information bottleneck problem. But most of the deep
models focus on finding the complementary features among
modalities, without ensuring how rich the features reflect the
original data [15]. Therefore, it is necessary to investigate
the spatio-temporal brain network fusion analysis method,
which can simultaneously effectively extract the complemen-
tary and specific information in multi-modal brain network and
exploit the spatial-temporal characteristics of among different
modalities.

In order to solve the above challenging problems in
multi-modal brain network fusion, in this paper, we propose
a multi-channel spatio-temporal graph convolution network
to distill both the spatial and temporal topological infor-
mation from multi-modal brain networks, and apply it to
the diagnosis of epilepsy. First, we divide the ROI-based
series signals into multiple overlapping time windows, and
we construct the dynamic functional brain network based on
these windows. Second, an adaptive multi-channel GCN is

employed to obtain the spatial features of the multi-modal
brain networks, in which the graph models of functional
network and structural network are respectively used as the
input of multi-channel GCN. The proposed multi-channel
GCN consists of three convolution modules: two specific con-
volution modules that are utilized to extract unique features of
fMRI modality and DTI modality, respectively, and a common
convolution module that is used to fuse multiple modalities
and extract complementary information. Then we use the
attention mechanism to adaptively fuse the features encoded
by different channels. Moreover, in order to encourage con-
sistency in multi-modal graph representations and distill dis-
criminative information from each modality, we develop two
contrastive objectives: multi-modal fusion InfoMax and inter-
channel InfoMin. Among them, the former objective extracts
complementary information from different modalities so that
the extracted features can reflect the complementary infor-
mation of the brain networks of different modalities, while
the latter distinguishes different graph views for the sake of
capturing the specific information in each modality. Next,
stacked Long Short-Term Memory (LSTM) units are exploited
to capture the temporal information between time windows.
Finally, we utilize MLP to classify the spatio-temporal topo-
logical features extracted from the multi-modalities. Figure 2
shows the main difference between the proposed method with
the conventional multi-modal brain network fusion methods.

In brief, the proposed multi-modal brain network fusion has
the following advantages:

1) To the best of our knowledge, it is the first work
that investigates spatio-temporal topological characteristics in
multi-modal brain network fusion.

2) A multi-channel graph convolution network with stacked
LSTM module is proposed to effectively capture the dynamic
graph features embedded in dynamic brain network.

3) We develop mutli-modal graph contrastive learning
method to improve the discriminability of the complemen-
tary and specific topological information among different
modalities.

4) The results on epilepsy dataset show that the proposed
method is significantly superior to the state-of-the-art multi-
modal fusion diagnosis methods.

The rest of the paper is organized as follows: In Section II,
we introduce the related work. Then, Section III describes the
datasets used in our work and the proposed method. We report
the experimental results in Section IV. Finally, we summarize
this work and draw a conclusion in Section V.

II. RELATED WORKS

A. Deep Learning Method With the Graph Data
Recently, Graph Neural Network has emerged as a powerful

tool for understanding graph-structured data in many domains,
such as protein structure [16], and brain network [17]. In
essence, theses graph neural network methods in brain dis-
ease diagnosis can be mainly divided into two aspects: node
classification and graph classification. In node classification,
each node represents a subject and is associated with a
feature vector extracted from imaging data. The edge weights
encode the pairwise similarities between subjects and their
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features obtained from auxiliary phenotypic data [18]. Graph
classification regards the brain regions of interest as nodes and
the constructed brain functional network with the form of the
adjacency matrix of the graph [19]. The one-layer of GCN can
be described as:

G(A, X) = ReLu(AX W ) (1)

where A is adjacency matrix, X is feature matrix and W is
weight matrix. Therefore, the output of GCN layers considers
both brain structural connectome and functional features at
the same time. Many multi-modal brain networks using GCNs
are often based on guiding strategy. Although the interaction
among modalities can be exploited in guiding strategy based
fusion methods, they usually tend to ignore the unique char-
acteristics in each modality.

B. Contrastive Learning for Network Embedding
Recent work on self-supervised visual representation learn-

ing has shown that comparing congruent and incongruent
views allows the encoder to learn the effective features from
the data, which is conducive to representing network infor-
mation [20]. Different from the data in Euclidean space,
the features in brain network data have both topological
properties and adjacency relations. So it is natural to use graph
contrastive learning to improve the feature representation for
graph structured brain network. These methods maximize
the mutual information between the input and the learned
representation for fusion. For example, CREME [21] adopts
node-to-node contrastive learning to distill information from
embeddings generated from different graph views and capture
the complementary information between them. Hassani and
Khasahmadi [22] proposed a contrastive multi-view represen-
tation learning method on both node and graph levels. The
embedding features can reflect the global structure information
of the original network. Similarly, in the brain network fusion
analysis, we hope that the features obtained can reflect the
global and local features of the brain network. Therefore,
we introduce graph contrast learning in our model to maximize
the mutual information between the features of embedding and
the brain network.

III. PROPOSED METHOD

In this work, we propose the multi-channel spatio-temporal
graph convolution network for effectively fusing the functional
and structural brain networks, and develop graph contrastive
learning to enhance feature representation among modali-
ties. Next, this section describes the proposed method in
detail.

A. Dynamic Functional Brain Network and Structural
Brain Network Construction

We assume that the rs-fMRI time-series data for a subject
is (x1, · · · , xN )T

∈ RN×M , where each vector xn ∈ RM (n =
1, · · · , N ) contains the blood oxygen level dependent (BOLD)
measurement of the nth ROI at M successive time points. N
represents the number of ROI. To characterize the temporal
variability of the functional architecture associated with a set

of given regions, we segment all rs-fMRI time series into
T overlapping windows with the constant length of L . For

each subject, we can define a dataset E =
{(
{gi

d , gi
f }, y

)}T

i=1
consisting of T windows, where gi

d and gi
f represent the

DTI and fMRI modality of the subject, and y is the label
of the corresponding subject. Each modality can be described
in a weighted graph gi

∗ = (X, Ai
∗), where X ∈ RN×d is the

node feature matrix consisting of time series within each time
segment, Ai

∗ ∈ RN×N is the brain network, and ∗ represents
specific modality between fMRI and DTI.

B. Adaptive Multi-Channel GCN
The proposed multi-channel GCN is used to extract spatial

information from multi-modal brain networks. The overall
framework of MSTGC consists of three convolution mod-
ules: two specific convolution modules are utilized to extract
unique features from fMRI modality and DTI modality respec-
tively, and a common convolution module realizes multi-modal
fusion. Then attention mechanism is exploited to adaptively
fuse the features encoded by each channel.

1) Specific Convolution Module: The specific convolution
module is composed of three stacked GCNs [23], and top-k
pooling [24] is used to retain important nodes in the graph.
First, in order to obtain the spatial characteristics of the fMRI
mode under each window, we regard gi

f = (X, Ai
f ) as the

input of the module. Thus, the l − th layer output Z i(l)
f can

be represented as:

Z i(l)
f = ReLu((Di

f )
−

1
2 Ai

f (Di
f )
−

1
2 Z i(l−1)

f W i(l)
f ) (2)

where W i (l)
f is the weight matrix of the l−th layer in GCN,the

initial Z i(0)
f = X . Besides, Ai

f = Ai
f + I i

f , where Ai
f and I i

f
denote the adjacent matrix and an identity matrix respectively,
and Di

f is the N × N degree matrix. We denote the last
layer output embedding as Z i

f . In this way, we can learn
the node embedding, which captures the specific information
in fMRI modality. Similarly, for the DTI modality, we use
gi

d = (X, Ai
d) as the channel input, and then the specific

information encoded in DTI modality can be embedded as Z i
d .

The calculation formula can be expressed as:

Z i(l)
d = ReLu((Di

d)−
1
2 Ai

d(Di
d)−

1
2 Z i

d
(l−1)W i

d
(l)) (3)

2) Common Convolution Module: Since fMRI reflects the
functional characteristics of the brain, DTI reflects the struc-
tural characteristics, there is information coupling between
the two modalities. Multi-modal fusion can discover com-
plementary information among them, which is beneficial to
improve the performance of feature representation and model
detection. Here we design a common convolution module with
a parameter sharing strategy to fuse multi-modal information.
Specifically, we utilize common convolution module to extract
the graph embedding Z i

C F from fMRI graph gi
f = (X, Ai

f )

as follows:

Z i(l)
C F = ReLu((Di

f )
−

1
2 Ai

f (Di
f )
−

1
2 Z i(l−1)

C F W i(l)
c ) (4)

where W i (l)
c is the l−th layer weight matrix of common-GCN,

Z i(l−1)
C F is the node embedding in the (l − 1) − th layer, and
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Fig. 2. The framework of the proposed method. The whole framework contains three parts: (1) the construction of dynamic brain network, (2) the
extraction of spatial features by MSTGC, (3) the extraction of temporal features. As shown in the right panel, MSTGC consists of three GCN modules,
in which the Specific Features module is used to extract the most distinguishing features of each modality separately, and common features module
is utilized to extract multi-modal complementary information. In addition, we use attention mechanism and two graph contrastive objectives, InfoMax
and InfoMin, to adaptively fuse multi-modal complementary and discriminative information from the learned graph data.

Z i(0)
C F = X . In order to extract the shared information from

DTI modality, we share the same weight matrix W i(l)
c . for

each layer of common convolution module, so the embedding
of DTI graph can be formulated as:

Z i(l)
C D = ReLu((Di

d)−
1
2 Ai

d(Di
d)−

1
2 Z i(l−1)

C D W i(l)
c ) (5)

The shared weight matrix can filter out the complementary
information from two modalities. Finally, we get two output
embeddings Z i

C F and Z i
C D and the common embedding Z i

C
of the two modalities is:

Z i
C = (Z i

C F + Z i
C D)/2 (6)

3) Attention Mechanism: Through above multi-channel
GCN, we obtain two specific embedding Z F , Z D and one
common embedding ZC under each window. In order to
extract the most correlated information Z i to indicate subject,
we utilize an attention mechanism att(Z F , Z D, ZC ) to adap-
tively fuse these embeddings with the learned weights [25].
The formula can be described as:

(a f , ad , ac) = att (Z F , Z D, ZC ) (7)

where a f , ac, ad indicate the attention values of Z F , Z D ,
ZC , respectively. Specifically, take Z F as example, we firstly
transform the embedding through a nonlinear transformation,
and use one shared attention vector q ∈ Rh×1 to get the
attention value wi

F as follows:

wi
F = qT tanh (W (Z i

F )T
+ b ) (8)

where W is the weight matrix, and b is the bias vector.
Similarly, we can get the attention values of wi

D and wi
C . Then

we normalize the attention values with the SoftMax function

to get the final weight:

ai
f = so f tmax (wi

F ) =
exp (wi

F )

exp (wi
F )+ exp(wi

D)+ exp(wi
C )

(9)

The value of ai
f denotes the importantance of ZF . Similarly,

we can also attain ai
d , ai

c through softmax function. Thus,
we have the learned weights a f = [ai

f ], ad = [ai
d ], and

ac = [ai
c], and denote aF = diag (a f ), aD = diag (ad) and

aC = diag (ac). Then we combine these three embeddings to
obtain the final embedding Z of each window:

Z = aF Z F + aD Z F + aC ZC (10)

Finally, we obtain a low-dimensional and dense representation
for each subject.

C. Contrastive Learning of Multi-Modalities
GCN extracts deep features for disease diagnosis by com-

bining the topology of the brain network and the information
on the nodes of brain regions. However, the graph represen-
tation in graph classification is then transferred to a vector
representation, which has the global property by gathering
the information from all brain regions. However, both global
and local properties of brain networks are equally important
for disease diagnosis. Therefore, in order to maximize the
mutual information between the global and local representa-
tions between fMRI and DTI graphs, we introduce a multi-
view fusion InfoMax constraint on the common convolution
module, so that the output representation can incorporate the
global properties and local attributes of brain network. In addi-
tion, in order to make the embedding features under each
channel discriminative, we impose the Inter-channel InfoMin
constraint among channels.
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Fig. 3. The schematic of the graph contrastive learning strategies
with InfoMax and InfoMin (a) illustrates the contrastive strategies in
multi-modal fusion, and (b) indicates the diversity constraints between
different channels.

1) Multi-View Fusion InfoMax: We design a graph con-
trastive constraint to further enhance the consistency of two
embeddings ZC F and ZC D , so as to promote the module to
effectively integrate the information of the two modalities.
The contrastive object is designed to maximize the mutual
information between node representation of one modality and
graph representations of another modality, which is shown
in Figure 3(a). Specifically, the brain network graph is first
transformed into vector form and then we calculate the mutual
information between it and the obtained features by GCN.
The consistency constraint LC between ZC F and ZC D can be
formulated as:

LC =
1

2S
(

1
N

N∑
i=1

I (ZC F ; gi
C D)+ I (ZC D; gi

C F )) (11)

For the convenience of the optimization, we estimate mutual
information I (X; Y ) in Eq. (11) by using Jason-Shannon
Divergence (JSD):

I
(

ZC F ; gi
C D

)
= −sp

(
−d

(
ZC F , gi

C D

))
−

1
N − 1

∑
n j∈N {ni }

sp
(

d
(

ZC F , g j
C D

))
(12)

where sp (x) = log (1+ ex ) and d is a discriminator function,
which takes the inner product with a sigmoid activation.
The resulting multi-modal fusion representation can distill
discriminative knowledge from each modality.

2) Inter-Channel InfoMin: Though the embedding Z F and
the embedding ZC F are learned from the same graph structure
g f = (X, A f ), they capture different information from brain
networks. In order to make the representation of embeddings
under different channels more distinguishable, we consider
adding diversity constraints between channels. Our approach is
to minimize the mutual information between different channel
node representations g f and gc f . Specifically, we regard all
nodes in two graphs as negative pairs and minimize mutual
information between node feature vectors on each negative
pair, which is shown in Figure 3(b). Thus, the loss function

of (gi
c f , g f ) can be calculated as:

l
(

gi
c f , g f

)
= log

eθ(gi
c f ,g f )/τ

eθ(gi
c f ,g f )/τ

+
∑k

j=1 eθ(gi
c f ,g

j
f )/τ

(13)

where k is the number of the remaining nodes and τ is
temperature parameter. We define θ (u, v) = s (p (u) , p (v))

as a critic function, s(·, ·) is implemented using a simple cosine
similarity, and p(·) is a non-linear projection to enhance the
expression power of the critic function. In this work, we adopt
MLP as above non-linear projection. Since these graphs are
symmetric, so we can summarize the L SF as:

L SF =
l

2N

N∑
i=1

[l (gi
c f , g f )+ l (gc f , gi

f )] (14)

Similarly, the loss L SD between ZC D and Z D can be calcu-
lated as:

L SD =
l

2N
6N

i=1l (gi
cd , gd)+ l (gcd , gi

d) (15)

So we set the disparity constrain Ld as:

Ld = L SF + L SD (16)

In addition, we use cross-entropy to measure the loss of subject
classification and represent it as L t . In general, combining the
subject classification loss and constrains, we can formula the
overall objective function as:

L = L t + α Ld + βLc (17)

where α and β are parameters of the disparity and consis-
tency constraint terms. Finally, we can optimize the proposed
model via backpropagation and learn subjects’ embeddings for
classification.

D. Temporal Convolutional Layer
The brain is essentially a dynamic system, in which the

brain network constantly reconstructing overtime during the
scanning period [26], [27]. Brain regions interact dynamically
with each other over time. Considering that long short-term
memory (LSTM) can properly solve the problem of gradient
disappearance and gradient explosion of traditional RNN [28],
we use two stacked LSTM units to capture the temporal
information transmitted across time windows. Each of these
LSTM is followed by batch normalization and tanh activation.
Finally, the fully-connected layer is employed to learn a
mapping between the dynamic embedding features and the
disease progression prediction. The overall framework of the
method is shown in Algorithm 1.

E. Implementation
The proposed method was implemented using Python based

on Pytorch, and the model was trained on a single GPU
(NVIDIA GeForce RTX 2080 Ti). We optimize the proposed
method via the Adam algorithm, with the learning rate of
0.001, the number of epochs of 300, and the batch-size of
25. In multi-channel GCN module, we used 3 stacked GCN
modules for each channel, and the drop-out was set to 0.5.
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Algorithm 1 The Algorithm of the Proposed of Our MSTGC
Method
Require: fMRI data and DTI data; Parameters α and β;
Ensure: ACC, PRE, RECALL, F1, AUC;

1: Initialization: the number of time windows; weight matri-
ces W f , Wd and Wc;

2: Divide sliding time windows and construct graph g f =

(X, A f ) and gd = (X, Ad) under each window;
3: While epoch

<

max_epochs do
4: Extract features using multi-channel GCN and then

obtain specific feature Z f , Zd and common features Zc;
5: Fuse multi-channel features by Eq.(10);
6: Obtain time information by two-stacked LSTM;
7: Maximize the mutual information between two

modalities by Eq.(11);
8: Minimize the mutual information between different

channel Ld by Eq.(16);
9: L ← L t , Lc, Ld by Eq.(17);

10: Back-propagate L to update model weights;
11: epoch+=1;
12: end while

In the temporal convolutional layer, the number of neurons
for each LSTM unit of two layers were 180, 90, respectively.
Each temporal convolutional layer was followed by batch
normalization, tanh activation. Based on the output of the
stacked LSTM, a fully-connected layer with 2 neurons was
utilized to predict the category of the subject, where the
sigmoid was used as the activation functions of the last fully-
connected layer.

IV. EXPERIMENT

In this section, we compare the proposed method with the
previous brain network analysis algorithms in recent refer-
ences. In addition, we also carried out ablation experiments,
which proved the effectiveness of our proposed method.

A. Data and Pre-Processing
In this work, we used the epilepsy dataset collected from

Jinglin Hospital, Nanjing University School of Medicine
for experiment. It contains 103 frontal lobe epilepsy (FLE)
patients (all right-handed, 50 female, age range: 17-51 years,
mean age 24.1), 89 temporal lobe epilepsy (TLE) patients
(all right-handed, 45 female, age range: 17-51 years, mean
age 25.9) and 114 normal controls (NC) (all right-handed,
56 female, age range: 20-38 years, mean age 26.2). By using
Siemens Trio 3T scanner, the raw rs-fMRI data and DTI
data of all participants are collected. The scan parameters
of rs-fMRI are as follows: TR = 2000ms, TE = 30ms,
flip angle = 90◦, vorel size = 3.75 × 3.75 × 3.75mm3. The
scan parameters of DTI are as follows: TR = 6100ms, TE =
93ms, flip angle = 90◦, vowel size = 0.94×0.94×3mm3. All
rs-fMRI images are preprocessed using SPM8 in the DPARSF

toolbox. The resulting volumes have 240 timepoints and are
parcellated into 90 regions of interest (ROIs) using the AAL
atlas. These time series reflect information about brain activity.
The DTI data are processed by using the PANDA suite. First,
we use the FSL toolbox to perform distortion correction on
the DTI, remove eddy currents and extract brain masks from
the B0 image. Then, based on each subject’s co-registered
T1 images, the TrackVis is used to obtain fiber images by
deterministic tracking method, and anatomical regions were
defined using AAL conventions. Finally, through the number
of fibers, we can get the structural information of the brain
network and the strength of physical connections.

B. Method for Comparison
To validate the effectiveness of our proposed method,

we compare it with several state-of-the-art brain network
representation and classification methods. Among them, the
first 4 methods are based on single-modal learning, includ-
ing G-Unet [24], dynamic functional connectivity network
(dFCN-LSTM) [29], dynamic functional connectivity (DFC)
[4], BrainNetCNN [30], and the following 5 methods are
multi-modal fusing approaches, including self-attention graph
pooling (SAGPool) [31], siamese community preserving graph
convolutional network (SCP-GCN) [12], multi-graph multi-
view graph embedding(M2E) [32], multilinear principal com-
ponent analysis(MPCA) [33], and GCNeuro [34].

(1) G-Unet: In this work, the brain functional connectivity
network constructed by fMRI of each subject is considered
as the adjacency matrix of the graph, and the time series is
considered as the feature matrix of each node.

(2) dFCN-LSTM: This model fuses past and future infor-
mation from fMRI to effectively learn time-series changes in
signals from brain regions by using LSTM.

(3) DFC: In DFC, Pearson correlation coefficient of the
whole time series is used for static FC calculation. Dynamic
FC algorithm considers the moving window of time series.
After that, the main repetitive FC matrix is found by clustering
algorithm.

(4) BrainNetCNN: Three specialized convolutional layer
types for DTI datasets are proposed, aiming to exploit the
inherent structure of weighted brain networks.

(5) SAGPool: In SAGPool, a graph pooling method based
on self-attention is used to extract the information of graph
structure, which can take into account both node features and
graph topology.

(6) SCP-GCN: In SCP-GCN, a framework of Siamese com-
munity preserving graph convolutional network are utilized to
learn the structural and functional joint embedding of brain
networks.

(7) M2E: In this method, a multi-view brain network pro-
cessing framework is used to extract the high-order representa-
tion features in multi-modal data. We treat fMRI network and
DTI network as different views and use tensor techniques to
exploit the correlations between the multi-view brain networks.

(8) MPCA: The MPCA method mainly uses the multilinear
principal component analysis method to analyze the brain
network. We first concatenate the fMRI and DTI data into
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TABLE I
PERFORMANCE COMPARISON OF THE PROPOSED AND COMPETING METHODS (%)

a three-dimensional tensor, and then utilize MPCA to obtain
the features of the tensor.

(9) GCNeuro: In the GCNeuro method, we trained two
Graph Attention Networks (GATs) for the fMRI modality
and the DTI modality separately by sharing weight. Then we
aggregated the features of each node in two modalities and
regard it as feature matrix of the composite graph.

C. Experimental Setup
In the experiment, we evaluate the proposed method and

other comparison methods on epilepsy dataset based on a
10-fold cross-validation strategy. Specifically, we divided the
data set into 10 parts. Due to the slight imbalance of the
subject categories, we utilize stratified 10-fold cross validation,
that is, each compromise maintains the same proportion as the
original subject category. After that, eight folds are taken as
the training dataset each time, one fold is used as the validation
dataset to determine the optimal value of the objective function
parameters, and the remaining fold is used as the test data.
In order to compare the performance of each method fairly,
grid search is adopted to find the optimal model parameters.
For the deep learning based methods, the training will not
stop until the loss converges to the threshold. Four binary
classification tasks are utilized to evaluate our model’s diag-
nostics capacity for epilepsy (NC vs. TLE & FLE), diagnostic
capacity for each subtype (NC vs. TLE, and NC vs. FLE),
and diagnostic capacity between the two subtypes (TLE vs.
FLE). The performance of each task are measured by five

metrics, i.e., accuracy (ACC), precision (Pre), recall (Rec),
F-Measure (F1), and area under the ROC curve (AUC). For
all the methods, we perform 10-fold cross-validation 10 times,
and report the average results.

D. Classification Performance on Epilepsy Dataset
We divided the comparison methods into two groups for

analysis: single-modal group and multi-modal group. The
result can be seen in Table I. It shows that our proposed
method is effective under all 4 tasks on the epilepsy dataset
and outperforms other algorithms. To be specific, compared
with the static methods such as G-Unet and BrainNetCNN, our
proposed method achieves better performance by integrating
the spatio-temporal information of brain network. Compared
with DFC and dFCN-LSTM, our method has greatly improve-
ment on each task, which proves multi-modal classification is
indeed an effective method for diagnosis of brain diseases.
The other multi-modal fusion methods are also compared in
the experiment, including machine learning methods, including
M2E, MPCA and some deep learning methods, including
GCNeuro, SCP-GCN, SAGPool. We find that deep learning
models generally achieve better classification results than other
comparison methods. This is because GCN can preserve direct
and indirect relationships between nodes, so that it can cap-
ture more potential high-order features. In addition, although
SAGPool, SCP-GCN and GCNeuro utilize GCN model and
introduce fMRI and DTI to jointly learn brain network, they
only retain the common feature between modalities and do not
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retain the unique features of fMRI and DTI. In general, our
method can achieve best classification results among all the
methods on all the four diagnosis tasks.

E. Ablation Studies
In order to verify the effectiveness of the three components

of multi-channel GCN, graph contrastive learning, and LSTM
in our proposed MSTGC method, we conduct the ablation
experiments and present experiment results in Table II. In the
table, MSTGC-1,. . . , MSTGC-7 represent the variants meth-
ods of our proposed MSTGC method. We use “

√
” to indicate

that the corresponding component is used. Otherwise, it is not
used. For example, MSTGC-1 indicates that it neither uses
graph contrastive learning to enhance the topology feature
representation of brain network nor utilizes LSTM to obtain
the temporal information of dynamic brain network. Compared
with the accuracies of MSTGC-4, MSTGC-5, and MSTGC-6,
we can find that abandoning any components of multi-channel
GCN, graph contrastive learning, and LSTM will reduce the
experiment accuracies. Compared with group of MSTGC-
1, MSTGC-2, and MSTGC-3 and the group of MSTGC-4,
MSTGC-5, and MSTGC-6, it can be concluded that if any
two components are discarded, the accuracies will be lower
than one of them is discarded, which further demonstrates that
these components can improve disease diagnostic accuracy.

Multi-channel GCN obtains specific information and com-
plementary features from fMRI modality and DTI modality
by multiples channels, and combines the attention mechanism
to adaptively fuse these features. Graph contrastive learning
maximizes the mutual information between graph representa-
tion and the extracted features, thereby enhancing the feature
representation of brain networks from both global and local
perspectives. LSTM module obtains the temporal information
of dynamic brain network. These three modules make our
model have promising disease diagnosis performance.

V. DISCUSSION

In this section, we discuss the sensitivity of parameters
in the proposed model, and then analyze the discriminative
connectivities and brain regions discovered by our method.
In addition, we also visualize the embedding features.

A. Analysis of Parameter Sensitivity
According to Eq. (17), there are two parameters in the total

loss function. We use the grid search method to show the
influence of parameters on our experimental results and find
the optimal parameters. Specifically, we set parameter α in the
range of [1, 0.1] and parameter β in the range of [1, 0.1]. The
results are shown in Figure 4. In general, it can be seen from
the figure that no matter what the values of parameters α and
β are, our model can obtain good results on the four tasks of
epilepsy, which proves that our proposed method is robust to
these parameters.

In addition, we also discuss the influence of the number
of windows dividing on the experimental results. Specifically,
we constructed the DCNs with different window numbers
located in [5] and [15] and conducte experiments under

Fig. 4. The accuracies (%) of our method with different parameter
combinations under the four diagnosis tasks.

four classification tasks respectively. The result is shown in
Figure 5. As can be seen from Figure 5, for NC vs. TLE
& FLE task, the classification accuracy reaches highest point,
when the number of time windows equal to 6. For NC vs.
TLE, the accuracy of classification reaches a peak, when the
number of time window is 5. For the NC vs. FLE task and TLE
vs FLE task, the model performes best, when the number of
sliding windows was 7. In addition, we find that the change of
accuracies with different sliding time windows number has the
similar trend under four tasks. With the increasing of number
of windows, the accuracy of classification first increases and
then decreases. This trend is reasonable, because the number
of windows is too small, information interaction among ROIs
under different time windows will be lost. When the number
of windows is small, it may contain too much redundant
information in each time window, which will decrease the
classification accuracy as well. In addition, we also discuss the
effect of the dropout on the model results. The experimental
results are shown in Figure 5, where the blue line represents
dropout value equal to 0.5, the orange line is 0.4, and the
green line is 0.3. From the figure, we can see that the model
achieves the best classification performance when the dropout
value is 0.5 on all the four tasks. We believe this phenomenon
is reasonable, because the lower dropout is, the fewer nodes
are retained, which is easy to cause information loss, resulting
in the decline of classification accuracy.

B. Discriminative Functional Connectivity and Regions
Because not all ROIs are strongly associated with epilepsy,

and we attempt to utilize our proposed method to figure out
the most discriminative ROIs for understanding brain abnor-
malities. Specifically, we respectively visualized the 10 most
relevant ROIs and the connections between them under the
three task states including NC vs. TLE, NC vs. FLE, and TLE
vs. FLE. For each classification task, since the selected features
are different in each 10-fold cross-validation, we choose
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TABLE II
THE ACCURACIES OF ABLATED MODELS ON DIFFERENT DIAGNOSIS TASKS (%)

Fig. 5. Effects of different values of window number and dropout on
model classification results.

features that always occur in all folds of cross-validation as
the most important features. On the task of the NC vs. TLE,
the most relevant ROIs are concentrated on Parahippocampal
gyrus, Olfactory cortex and middle temporal gyrus. On the
task of NC vs. FLE, the key regions include Superior frontal
gyrus, middle temporal gyrus and Supplementary motor area.
On the task of TLE vs. FLE, the most essential region includes
middle temporal gyrus and Parahippocampal gyrus. These
brain areas have also been suggested to be related to epilepsy
in previous studies [34], [35], [36], [37]. In addition, according
to Figure 6, we find that although the most relevant brain
regions searched under fMRI-based, DTI-based and fMRI-
DTI-based are not all the same, they are all related to epilepsy
and complement each other, which further proves that mining
specific and complementary features from different modes can
better describe brain networks.

C. The Effectiveness of Multi-Modal Fusion
In the experiment, we utilize multi-channel GCN to extract

specific and common features in fMRI modalities and DTI
modalities and adaptively fuse them by attention mechanism.
MSTGC learns specific features in each modality and the

Fig. 6. The spatial location of the top 10 most differentiated brain
regions and connectivities among them under three task states, includ-
ing NC vs. TLE, NC vs. FLE, and TLE vs. FLE.

multi-modal complementary features among different modali-
ties. The significance of each feature is evaluated by atten-
tion mechanism. We analyzed these attention values under
4 tasks on the epilepsy dataset, and the results are shown
in Figure 7. From Figure 7, we can see that for these four
tasks, the attention value of common embeddings is larger
than that in DTI specific features, and the attention value of
specific features contained in fMRI modality is between them.
It means that complementary information between multi-
modalities is more important than specific information under a
single modality. This phenomenon is also consistent with the
results of our ablation experiments in Table II. In addition,
it can be seen from Figure 7 that, under the four tasks,
the specific features extracted from fMRI modality, the spe-
cific features extracted from DTI modality, and the common
features among them always have relatively high attention
values, which demonstrates the necessity of fusing modal
specific and complementary features. In addition, in Table II,
the diagnosis accuracy of MSTGC-5, which only uses the
complementary features of fMRI and DTI, is obviously lower
than our method. Therefore, the adaptive fusion of specific
features and complementary features from multi-modal brain
networks can effectively improve the diagnosis performance.
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Fig. 7. The analysis of attention distribution under different diagnosis
tasks.

Fig. 8. The t-SNE visualization of original data and the graph embed-
dings learned by Original, GCN, GCNeuro, MSTGC, respectively, on the
epilepsy dataset.

D. Analysis of Embedding Features

What’s more, in order to compare more intuitively and
further demonstrate the effectiveness of our proposed method,
we conduct the task of visualization on epilepsy dataset.
We use the output embedding on the last layer of MSTGC
before SoftMax and plot the embedding by t-SEN. The result
is illustrated in Figure 8, in which the red dots represent
healthy subjects and the green dots represent patients. Accord-
ing to Figure 8, it can be seen that the result of GCN and
GCNeuro are not satisfactory, because the nodes with different
labels are mixed together. Our method performs best, where
the embedding features we learned have the clearest distinct
boundaries among different classes. The reason why our
method can clearly distinguish healthy subjects and patients
is that we introduce graph contrast learning, which makes the
embedding features more discriminative, reflecting the global
and local features of original brain network.

VI. CONCLUSION

In this work, we propose a multi-channel spatio-temporal
GCN that mines the dynamic typological features from
rs-fMRI and DTI brain networks. Specifically, we employ
an adaptively multi-channel GCN to learn the specific and
complementary features of rs-fMRI and DTI. In order to
reveal the global and local structures from the original brain
networks, two graph contrast learning constraints, i.e. multi-
modal fusion InfoMax and inter-channel InfoMin, are devel-
oped and imposed on the model. After obtaining the spatial
characteristics of multi-modal brain networks, LSTM units
are leveraged to capture the temporal dynamic pattern of
functional connectivities along multiple time windows. Finally,
MLP is used to classify the spatio-temporal features. The pro-
posed MSTGC can effectively fuse the specific and comple-
mentary typological features of multi-modal and the dynamic
characteristics of brain networks simultaneously. Experimental
results on the epilepsy dataset show that our proposed MSTGC
has achieved better diagnosis performance than the state-of-
the-art methods in identifying epilepsy patients from healthy
controls.
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