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MTRT: Motion Trajectory Reconstruction
Transformer for EEG-Based BCI Decoding

Pengpai Wang , Zhongnian Li, Peiliang Gong , Yueying Zhou , Fang Chen ,
and Daoqiang Zhang , Senior Member, IEEE

Abstract— Brain computer interface (BCI) is a system
that directly uses brain neural activities to communicate
with the outside world. Recently, the decoding of the human
upper limb based on electroencephalogram (EEG) signals
has become an important research branch of BCI. Even
though existing research models are capable of decod-
ing upper limb trajectories, the performance needs to be
improved to make them more practical for real-world appli-
cations. This study is attempt to reconstruct the continu-
ous and nonlinear multi-directional upper limb trajectory
based on Chinese sign language. Here, to reconstruct the
upper limb motion trajectory effectively, we propose a novel
Motion Trajectory Reconstruction Transformer (MTRT) neu-
ral network that utilizes the geometric information of human
joint points and EEG neural activity signals to decode the
upper limb trajectory. Specifically, we use human upper
limb bone geometry properties as reconstruction con-
straints to obtain more accurate trajectory information of
the human upper limbs. Furthermore, we propose a MTRT
neural network based on this constraint, which uses the
shoulder, elbow, and wrist joint point information and EEG
signals of brain neural activity during upper limb movement
to train its parameters. To validate the model, we collected
the synchronization information of EEG signals and upper
limb motion joint points of 20 subjects. The experimental
results show that the reconstruction model can accurately
reconstruct the motion trajectory of the shoulder, elbow,
and wrist of the upper limb, achieving superior performance
than the compared methods. This research is very mean-
ingful to decode the limb motion parameters for BCI, and
it is inspiring for the motion decoding of other limbs and
other joints.
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I. INTRODUCTION

BRAIN computer interface (BCI) system can directly
communicate with external equipment without relying on

muscles and nerves tissue. BCI can be applied in many fields,
such as helping patients with spinal cord injury, amyotrophic
lateral sclerosis, atresia syndrome and other patients with
brain-control equipment [1], [2], [3], [4], improving their
ability to take care of themselves and communicate with peo-
ple [5], [6], [7], and helping stroke patients with rehabilitation
training [8], [9], [10]. It also has great potential in the game
field [11], [12], [13]. There are information communication
media involved in BCI, such as, magnetic resonance images,
near-infrared, electroencephalogram (EEG) [14], [15], [16].
Among them, noninvasive EEG has the advantages of high
time resolution, low price, high practicability, and convenient
acquisition, and is widely used in the field of brain computer
interface [17], [18], [19].

Recently, researches show that EEG signals contain various
motion parameters of limb movement [20], [21], [22]. Decod-
ing motion parameters directly from EEG signals can provide
intuitive and natural control [23]. Therefore, we can decode
various motion parameters from EEG signals, such as velocity,
acceleration, displacement, position, angular velocity, etc. [24],
[25], [26]. The reconstruction of upper limb kinematic param-
eters by EEG signals can not only promote the rehabilitation
of patients with stroke or spinal cord injury, but also control
the exoskeleton to enhance the strength and endurance of the
ordinary human body.

EEG-based upper limb motion trajectory decoding is an
important part of limb motion parameter decoding, which
has been explored by researchers. Some researchers simply
classify the two-dimensional plane movements extending from
the center to the outside, and can only identify the limited and
specific movement directions of the upper limbs. For example,
Úbeda et al. [27] used multiple linear regression based on
EEG to classify eight center-out movements of the arm. Zeng
et al. [28] used EEG to reconstruct the four-direction move-
ment of the hand centered and extended in two-dimensional
(2D). Recent studies have decoded direction-specific motion
trajectories of human joints. For example, Jeong et al. [29]
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proposed a deep learning framework for the classification of
upper limb movements for six-direction arm reaching tasks
in three-dimensional (3D) space. Shakibaee et al. [30] used
a nonlinear autoregressive network based on EEG to decode
the angular change trajectory of the knee joint in extension
and flexion of the right knee in the sitting position. Pancholi
et al. [31] proposed a deep learning model based on EEG to
predict the motion trajectory of one-handed hand grasping and
trial lifting. To sum up, these works only use EEG signals for
simple direction-specific classification or reconstruction.

However, these literature are far from meeting the require-
ments of decoding when the upper limbs perform continuous
and multidirectional nonlinear motions in 3D space. Therefore,
we propose a Motion Trajectory Reconstruction Transformer
(MTRT) model based on the geometric constraints of human
joints, i.e., we keep the spatial distances between the shoulder
and elbow, elbow and wrist joint points at a fixed length during
the movement of the upper limbs as reconstruction constraints
to obtain more accurate trajectory information of the human
upper limbs. Consequently, we try to decode the continuous
nonlinear upper limb joint point motion by studying and
solving the unique geometric characteristics of upper limb
joints. In summary, the main contributions of this paper are in
three aspects:

(1) To our knowledge, we are the first to decode the Chinese
sign language motion trajectory with continuous multidirec-
tional nonlinear upper limb movements in 3D space using EEG
signals.

(2) We introduce a MTRT model by using constraints on
the geometric features of the joints to reconstruct the motion
trajectories of the joint points of the upper limbs.

(3) The MTRT model has achieved good accuracy and
precision in decoding the spatial trajectory of human upper
limb skeleton points.

II. RELATED WORKS

Extracting motion trajectory features from 3D nonlinear
motion EEG signals is often complicated, and the linear
trajectory reconstruction model can hardly meet this task.
In this paper, inspired by the success of the Transformer model
in the fields of natural language processing and sequence
signals, we will investigate introducing the Transformer model
to the task of motion trajectory reconstruction.

Compared to motion direction classification, motion tra-
jectory reconstruction is more challenging and raises high
demands on reconstruction model. To solve this task, Little
et al. [32] explored a neural network based on a regulariza-
tion algorithm to predict the trajectory of the elbow flexion
angle to create an upper limb motion prediction model. Kim
et al. [33] studied the prediction of 3D hand trajectories by
multiple linear regression (MLR). The average correlation
coefficient between the predicted trajectory and the actual
trajectory is 0.684. Robinson et al. [20] reconstructed the
position of 2D hand motion trajectories. Their task involved
right-hand movements from the center outward in a random
sequence in four different directions. Using a Kalman filter
to estimate motion trajectories, they obtained a correlation
of 0.60 between recorded and estimated data. Sosnik and

Zheng [25] used a MLR model to predict the trajectories of the
hands, elbows, and shoulders of seven subjects in a time-series
3D space. The mean Pearson correlation coefficients between
the predicted and actual trajectories for the hand, elbow,
and shoulder ranged to the highest of 0.49, 0.48, and 0.40,
respectively. Mondini et al. [34] reconstructed hand trajectories
from low-frequency EEG signals. Motion parameters (2D
positions) were regressed from the EEG using a regression
method combining partial least squares (PLS) and Kalman
filtering. An overall significant online correlation between
hand motion trajectories and decoded trajectories was obtained
with an average of 0.32. However, we found that during the
trajectory decoding process, normal human motion is nonlinear
and directionally random, which brings challenges to motion
trajectory decoding. Therefore, the focus of this work is to
use the EEG signal information during 3D nonlinear motion
to capture the position of joint points in space using deep
neural networks to decode the motion trajectories of human
upper limbs.

The Transformer model [35] was proposed in 2017, and
it was an encoder-decoder architecture that generates global
dependencies between input and output based on a multi-head
attention mechanism. Compared with general deep learn-
ing [36], [37], the advantages of the Transformer model lie
in the feature learning representation and attention mech-
anism [38]. Furthermore, the masking mechanism in the
Transformer model prevents the Transformer from shadow
learning [39]. When this mechanism is used in conjunction
with the attention mechanism, it can produce better feature
representations in the spatial dimension and learn the tiny
features of the dataset when generalizing it. The architectures
of models such as classic Long Short-Term Memory (LSTM)
require more time to train when dealing with sequential data
and lack parallel processing capabilities [40]. The design of the
architecture of models such as Convolutional Neural Network
(CNN) is not suitable for computing the temporal features
of time series data [41]. So we introduce Transformer model
to fully utilize the computing power, allow parallelization
with attention and feature representation learning, and reduce
training time.

III. DATA COLLECTION AND PRE-PROCESSING

Twenty subjects (25×14-year-old) were recruited according
to the experimental setup, including 9 females and 11 males
[42]. All subjects were required to be in good health and full
of energy without brain surgery or brain-related diseases. The
subjects were informed of all experimental procedures and
relevant precautions, signed a written informed consent form
after expressing their consent, and were given corresponding
cash rewards according to the duration of the experiment. The
acquisition equipment required in this paper includes an EEG
acquisition instrument, Kinect V2, and a computer. To reduce
the influence of motion on the EEG acquisition process,
a portable wireless EEG acquisition device (NeuSen.W64,
Neuracle) was used. The device has 64 channels, includ-
ing 59 EEG channels, 4 electrooculography, and 1 electro-
cardiograph channels. Fifty-nine EEG channels were arranged
according to the international 10-20 standard.
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A. Experimental Setup
One week before the experiment, the subjects were asked to

learn relevant Chinese sign language movements. During the
experiment, except for the movements of sign language, the
lower limbs and trunk were kept still and movements such as
eye movements and swallowing were reduced.

The experimental process includes two runs, and the time
interval of each run is 15 minutes. Each run includes 22 execu-
tions of 30 sign language sentences. The signed sentences are
selected from the common sign language database. When the
subjects excuted the selected sign language, the upper limbs
were greatly expanded, which was convenient for the Kinect
to collect movement data. The course of each trial consisted
of 2 seconds of preparation time, 3 seconds of execution
time, and 3 seconds of rest time. The subjects performed
sign language according to the prompt tone and the computer
screen cross prompt. At the same time as EEG acquisition,
Kinect collects the motion trajectories of the subjects’ upper
limb joint points, and the sampling rate is 30Hz. We reduce
the EEG acquisition device with a sampling rate of 1000Hz to
900Hz, and the impedance of the electrodes is less than 5K�.
The subjects were relaxed throughout the experiment and were
not allowed to open their mouth, swallow or chew. Except for
the sign language movement of upper limbs, the movement of
other body parts is not allowed. The above measures are used
to avoid electromyography (EMG) artifact in EEG.

To facilitate subsequent analysis and reconstruction tasks,
we selected 59 channels with EEG signals from 64 channels.
The EEG signals were frequency filtered and band-pass filtered
at 0.1-100 Hz. Then, we remove the 50 Hz power frequency
and electrooculography (EOG) interference signals in the
EEG. Next we performed a whole-brain re-reference to the
EEG data. The sentence process of the subjects executing
the sign language lasted 3s, and most of them were simple
sentences with three or four sign language words. To facilitate
the training of the joint point motion trajectory reconstruction
model, each EEG sequence is cut into trials with a length of
4s (-0.5s∼3.5s).

B. Joint Point Data Pre-Process
We use the Kinect instrument to collect the spatial position

of the human upper limb joint points. We found that the
collected data is offset. In the process of arm movement, the
length of upper arm and lower arm will change due to the
limitation of environmental conditions such as clothes or light.
However, in practice the length of the arm don’t change in
movement. Therefore, we need to correct the obtained joint
spatial position data to further decode the joint point position
more accurately using EEG data later.

To correct the joint points position data, we use the Euler
angle and inverse kinematics equation to correct the collected
data [43], [44], [45]. Specifically, we first extract the spatial
position data of joint points in the preparation stage of the
experiment, to calculate the length of the upper arm and lower
arm of the subject. Then the origin of the 3D coordinate system
is positioned at the shoulder joint point, and the position data
of the elbow and wrist joints are updated. In the process of arm

Fig. 1. The 3D coordinates of elbow and wrist joints are updated
through the inverse motion equation. The position of the whole joint
points collected by Kinect is displayed in the 2D plane. The blue asterisk
refers to all human joint points collected. The red, blue and green dots
are shoulder, elbow, and wrist nodes, respectively. Taking the right arm
as an example, the length of the upper arm collected by the device
is the distance of OE and the length of the lower arm is the distance
of EW. Calculate the angle of OE with X, Y, and Z axes in the new
coordinate system (3D coordinate system with O as the origin) through
Euler angle. The 3D coordinates of E′ are solved by using the inverse
motion equation through the angle and the actual arm length. The
distance of OE′ is the real upper arm length L1. Similarly, the distance
of O′W′ is the real lower arm length L2.

movement, different angles in the process of movement are
calculated through the coordinates of the arm. Then the spatial
position of the new joint point is determined according to the
angle and the fixed arm length. Through the same method,
the spatial position coordinates of elbow and wrist joint are
calculated in turn, as shown in Fig. 1.

C. Trajectory Reconstruction Data
In our experimant, each subject executed 30 sign

language sentences, each sign language sentence included
44 samples, and all subjects had a total of 20×30×44
= 26400 samples. To remove residual noise in EEG
electrodes, the standard deviation (SD) of EEG amplitude
was calculated for each electrode in all samples, and if
the amplitude of a channel exceeded 6 SD, the electrode
was marked as a noisy channel. Finally, 9 channels are
marked as noise channels. The corresponding electrode
names are Fp1, AF7, AF8, F1, F8, T7, T8, TP8, and O2.
Next, we performed a residual noise test on all samples and
deleted the trial if the EEG amplitude of any one of the
residual electrodes in the trial exceeded 6 SD [25], [46].
A total of 4440 samples were removed, and the remaining
21960 samples participated in the training and testing
experiments of the MTRT model. The pre-processed EEG data
format is samples×timesteps×channels=21960×3600×50,
and the pre-processed joint points data format is
samples×timesteps×joints=21960×120×18.

IV. MOTION TRAJECTORY RECONSTRUCTION
TRANSFORMER

In this section, we introduce our proposed Motion Trajec-
tory Reconstruction Transformer (MTRT) model to reconstruct
joint points trajectory of upper limb. The general framework
of our model is shown in Fig. 2. First, we performed the
acquisition of EEG data and Kinect joint point data. Then, two
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Fig. 2. The architecture of joint point trajectory reconstruction based on Chinese sign language. During the training phase, when the subjects
performed sign language follow the experimental paradigm, EEG acquisition equipment and Kinect were used to collect joint point trajectory data
of EEG and upper limb movement at the same time. Then we pre-process the EEG data, including channel selection, down sampling, re-reference,
and frequency band filtering. We select the data of 6 joint points of shoulder, elbow, and wrist in the left and right arms from the trajectory data of
25 joint points. Further, the Euler angle and inverse motion equation are used to correct the data. Finally, the pre-processed EEG and corrected
joint point data are input into the MTRT for model training. During the testing phase, the pre-processed EEG data is reconstructed to the motion
trajectory of joint points through the trained MTRT.

kinds of data were pre-processed, and the MTRT model was
trained with the pre-processed data. Finally, the trajectory of
the joint points is reconstructed by EEG based on the trained
model.

In this section, we introduce the EEG encoder and trajectory
decoder used to reconstruct sign language motion trajectories.
The model framework used in this paper consists of an
EEG encoder and a joint point spatial location decoder. The
EEG encoder learns the depth representation of the EEG in
a self-attention manner, and the joint point spatial location
decoder uses the participating EEG representations to generate
continuous joint point 3D spatial coordinates.

The MTRT model architecture is shown in Fig. 3. Next
we describe the core modules of the MTRT in the following
sections. The architecture of the MTRT model encodes the
EEG features and decodes the sequence of joint point spatial
positions. The model is divided into two parts, including the
EEG encoder and the trajectory decoder.

A. EEG Encoder
The model uses 6 encoder layers and a multi-head

self-attention module to obtain attention weights for the
pre-processed input EEG features. Since the Transformer
encoder and decoder are permutation-invariant, we add a fixed
sinusoidal spatial positional encoding and object query at the
input as the learned positional embedding. The first sub-layer

is a complex attention layer, and the second sub-layer is a
complex-valued feed-forward network. Both sub-layers have
residual connections and normalization layers [47], [48]. Each
layer consists of two sub-layers: a multi-head self-attention
and a fully connected feed-forward network. Each sub-layer
starts with layer normalization to mitigate internal covari-
ate shifts. There is a residual connection around each sub-
layer, which preserves the information of the input features
and enhances the stability of the model. The output of
the Transformer layer is passed to a feed-forward network
(FFN) module, which consists of a three-layer perceptron
with rectified linear unit (ReLU) activation, and then the final
detection predictions. Layer normalization is performed on the
remaining connections in the encoder, which is called Norm &
Add in the encoder.

To obtain information from different representation
subspaces of different modalities at different locations,
we combine multiple attention functions to achieve multi-
head attention. Multi-head attention is the core module of
Transformer, which allows the model to jointly focus on
information in different representation sub-spaces at different
locations [49]. Multi-Head Attention calculates h (= 8) Scaled
Dot-Product Attention, and each Scaled Dot-Product Attention
can calculate the corresponding head. Scaled Dot-Product
Attention is a mechanism for learning action dependencies
in sign language EEG and capturing the internal structure
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Fig. 3. MTRT model structure for the reconstruction of joint points space location. The model is divided into two parts: EEG encoder and trajectory
decoder. The MTRT model has a total of six encoder layers and six decoder layers. Specifically, in the EEG encoder, the preprocessed EEG data
and the positional encoding are input to the encoder. It is converted into a representation through six encoder layers, each encoder layer includes a
multi-head self-attention layer, a feed-forward neural network layer and a summation and normalization layer (Add & Norm layer). In the trajectory
decoder, the output of the EEG encoder is input to the decoder in the form of key and value. During the model training process, the joint point
position information and position encoding data are processed through multi-head attention and the Add & Norm layer. The result is a form of a
query and the encoder output is fed into the next multi-head attention and Add & Norm layer. Then the next data is predicted through the feedforward
neural network and the Add & Norm layer to form an encoder layer.

of EEG. The attention function maps a query and a set of
key-value pairs to an output, where the output is computed
as a weighted sum of values. The weight assigned to each
value is calculated by the query and the corresponding key.
The attention function maps a query and a set of key-value
pairs to an output, where the output is computed as a weighted
sum of the values [50]. The weight assigned to each value is
calculated from the query and the corresponding key. We adopt
scaled dot product attention because the scaling factor dv

avoids extremely small gradients after softmax. The query for
all keys takes the dot product and divides by

√
dk [35]. Then

apply the softmax function to get the weights for these values.
The formula for calculating attention can be written as:

Attention (Q, K , V ) = softmax
(

QK T
√

dk

)
V (1)

where query Q ∈ Rt×dq , key K ∈ Rt×dk , value V ∈ Rt×dv and
output O ∈ Rt×dmodel . They are all matrices, t is the sequence
length, dk is the dimension of the query key, dv is the value
dimension, and dmodel is the output dimension of the encoder
which value is set to 256.

The query, key, and value are projected h times onto the
dq , dk , and dv dimensions using the learned linearity, where
h represents the number of heads. The attention function is
then executed in parallel on the projected query, key, and
value, computing the dv dimensional output. The outputs of all
heads are connected and linearly projected to deliver the dmodel
dimensional results to the next feed-forward sub-layer. Each
head is then concatenated and fed to another linear projection
to obtain the final output of multi-head attention. The formula
for multi-head attention is as follows:

MultiHead(Q, K , V ) = Concat
(
Oh1 , . . . , Ohh

)
W o (2)

where Ohi = Attention
(

QW Q
i , K W K

i , V W V
i

)
, and learn-

able projection matrices W Q
i ∈ Rdmodel ×dk , W K

i ∈ Rdmodel ×dk ,
and W V

i ∈ Rdmodel ×dv .
The input features are processed in the Transformer network

and their order / position is not preserved, so positional
encoding is employed to preserve the temporal order of the
features [51]. Therefore, the EEG signal data is encoded with
sequence information of sine and cosine functions according
to the equation. The input vector and the position encoding
vectorby the element-wise addition input into the encoder
layer.

The output vector of the embedding layer needs to be
computed through six encoder layers. There are two sub-layers
in each coding layer. These are self-attention and a fully
connected feed-forward layer. In self-attention, the attention
function is used for a set of queries, keys, and values,
respectively. The calculation of the output matrix is done using
equations. Also, normalization is added at the end of each
sub-layer. Generate an r -dimensional vector at the end of the
encoder and pass it to the decoder.

B. Trajectory Decoder
The structure of the decoder consists of six identical decoder

layers and an output layer. The output of the encoder and
the decoder content serve as the input for the training of
the decoder. Each decoder layer has three sub-layers, namely
attention layers, complex FFN and another attention layer. The
first attention layer is masked by additional diagonal lines
to prevent attention to subsequent positions, to ensure that
previous joint point data does not depend on later joint space
position data points used for prediction. The second attention
will be performed on the encoding representation Xenc and
the decoder input Xdec.
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Input a y-dimensional zero vector into the input layer of
the decoder. The y is a hyperparameter and its value is set
to 1024. The decoder adopts the same multi-head attention
as the encoder. Finally, by mapping the output of the last
decoder layer to a two-dimensional vector, a vector containing
the sequence of spatial coordinates of the three joints shoulder,
elbow, and wrist of the human body is obtained. A positional
offset is used between the input of the decoder and the target
output. We use LSTM as the timing processing module to
perform timing processing and looping on the encoder input.

Set the value of the parameter dmodel to 256. The dmodel
parameter determines the output dimension of the sub-layer
output and the embedding layer [35]. Considering the large
difference of independent individuals in EEG, each subject is
trained separately in this paper, and the input format of the
encoder is samples×timesteps×channels. The output format
of the decoder is samples×timesteps×joints, where joints
represents the sequence representation in the 3D space of the
six joints of the left and right shoulders, elbows and wrists
(18=2×3). The embedding layers in the encoder and decoder
share the same set of weights. The value of parameter h in the
calculation of self-attention and multi-head attention is 8. The
parameter h refers to the number of parallel attention layers
or attention heads. The number of hidden units value in the
fully connected sub-layer in the decoder layer is set to 1024.
Set the parameters dk (queries, key vector dimension) and dv

(value vector dimension) to 8. To implement the positional
encoding block, the method is the same as in [35], using
sine and cosine to implement the positional encoding. The
key and value vectors of the final encoding layer are input to
the third multi-head attention sub-layer of the decoder layer.
The multi-head attention layer in the decoder takes the query
vector value from the layer below it.

C. Geometric Information Constraints
To train the MTRT model, we apply loss functions on top

of the trajectory decoder outputs, and minimize the errors
between reconstruction and groundtruth joint points position.
The geometric constraints of skeleton points are only used
as loss functions to train the model, not as data. When the
training of the model is completed, the model can be directly
used to reconstruct the motion trajectory of EEG data.

It is generally known that the lengths of the upper and
lower arms are fixed when subjects perform sign language
actions, the lengths of the left upper arm and the right upper
arm of each healthy subject are equal, and the length of the
left lower arm and the right lower arm are equal. Therefore,
to reconstruct accurate joint point position data, we set the
upper and lower arm lengths to be fixed and the left and right
arms to be equal in length as geometric constraints for the
MTRT model. The calculation of the geometric features of
the upper limbs of the human body is also very simple and
convenient. The spatial distances between the shoulder joint
point and the elbow joint point, the elbow joint point and the
wrist joint point are set as constants L1 and L2 in the whole
movement process. The lengths of the left and right arms
are equal to obtain, i.e. L1le f t = L1right , L2le f t = L2right .
The geometric characteristics of human joints are used as the

constraints of the reconstructed model to obtain more accurate
trajectory information of human upper limbs. Therefore, the
joint geometry constraint limb distance chanless loss (L DC L)
and left-right distance equal loss (L RDE) set as:

LDCL =
1
m

m∑
i=1

(
len′

i − leni
)2 (3)

LRDE =
1
m

m∑
i=1

((
L1le f ti − L1righti

)2

+
(
L2le f ti − L2righti

)2
)

(4)

where len′

i and leni are the predicted and actual length values
of arm of sample i . L1le f ti and L1righti are the left and right
upper limb length of sample i , and L2le f ti and L2righti are the
left and right lower limb length of sample i in reconstruction
joint points position.

We use the mean squared error (MSE) and the distance
loss between the shoulder, elbow, and wrist joint point (the
length of the forearm or rear arm is always equal during the
movement) to train the MTRT model. The MSE Loss is:

MSE =
1
n

n∑
i=1

(
y′

i − yi
)2 (5)

where yi and y′

i are the actual and predicted values of sample
i , respectively. Overall, the loss of the MTRT model, named
as trajectory reconstruction loss (TRL), consists of three parts:
LDCL, LRDE and Mean Squared Error (MSE), SRL can be
written as:

TRL =
1

2σ 2
1

LDCL +
1

2σ 2
2

LRDE +
1

2σ 2
3

MSE + log σ1σ2σ3

(6)

where σ1, σ2, and σ3 are the trainable weights of the regression
model. It is randomly initialized and iteratively optimized
during training.

After the decoder is divided into blocks, the dense layer
is used for mapping transformation, and the output of the
dense layer is the spatial position sequence of the six joint
points. The model was trained for 50 epochs using the Adam
optimizer [52] and the batch size was set to 8. The model
predicts the 3D position of a joint point in space every
30 timesteps.

V. RESULTS AND DISCUSSIONS

To achieve the goal of sign language motion trajectory,
we proposed the MTRT model to reconstruct the joint space
trajectory of EEG signals to obtain effective feature acquisition
and high reconstruction accuracy. We will describe the perfor-
mance evaluation of joint motion trajectories reconstruction
based on Chinese Sign Language EEG data. Furthermore,
we compare the performance of our method and comparative
methods. All scripts are written using the deep learning frame-
work of PyTorch 1.10 and CUDA 11.3. The model runs on a
Dell precision workstation devices configured with NVIDIA
GeForce RTX 2080Ti GPU, 16 GB RAM and Intel i7-9700
CPU@3-GHz, without any special hardware optimization.
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Fig. 4. Groundtruth trajectories and reconstructed trajectories of the left and right shoulders, elbows, and wrists of the 28th handed sentence from
the third subject. Its trajectory contains a total of 120 trajectory points and has a duration of four seconds. The red circles are the trajectory points
of the groundtruth, and the blue circles represent the trajectory points of the reconstructed joint points.

Fig. 5. Training and validation loss changes for 50 epochs of MTRT
model training.

After 50 times of training, the MTRT model tends to converge,
and the loss decreases steadily with the increase of training
times, and finally stabilizes (Fig. 5). Next, we will summarize
the experiment data based on Chinese Sign Language and
discuss the results of the proposed method.

A. Comparison of Reconstruction Performance of
Different Models

In trajectory decoding, a commonly used similarity measure
between upper limb motion trajectories and decoded trajecto-
ries is the Pearson correlation coefficient ρ [29], [31], [34].
The Pearson correlation coefficient between true trajectories
and decoded trajectories is defined as the quotient of their
covariance and standard deviation, and its formula can be

written as:

ρ(G,R) =
cov(G, R)

σGσR
=

∑n
i=1

(
Gi − Ḡ

) (
Ri − R̄

)√∑n
i=1

(
Gi − Ḡ

)2
√∑n

i=1
(
Ri − R̄

)2

(7)

where ρ(G,R) represents the Pearson correlation coefficient
between the reconstructed joint point value G and the real
value R, Ḡ and R̄ represents the sample average of G and R,
respectively.

In addition, we used the Normalized Root Mean Square
Error (NRMSE) model performance measurement method as
follows [53]. We measured the decoding performance of the
3D axis using NRMSE, and the results were the average values
of the X-axis, Y-axis, and Z-axis. The total average NRMSE
of the 3D axis for the six joint points in sign language using
the proposed method is 0.159.

To measure the performance of our trained MTRT model,
a Pearson correlation coefficient was calculated for the
comparative model and our model. Comparing models in
our nonlinear multi-directional motion trajectory detection
task include MLR [25], LSTM [54] and CNN-LSTM [55],
sequence-to-sequence (Seq2seq) [56], and Transformer mod-
els. The Transformer model is our MTRT model that only uses
MSE loss function.

We randomize the data before starting training, excute a
performance comparison experiment on the test data set of
20 subjects, and calculate the average value of ρ between the
reconstructed trajectory and the real trajectory. Comparative
experiments were carried out using the same hardware and
software environment. The three dimensions X , Y , and Z of
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TABLE I
PEARSON CORRELATION COEFFICIENTS BETWEEN THE RECONSTRUCTION OF THE MOVEMENT TRAJECTORIES OF THE SHOULDER,

ELBOW, AND WRIST DURING THE EXECUTION OF SIGN LANGUAGE AND THE TRUTH SIGN LANGUAGE

MOVEMENT TRAJECTORIES FOR THE REGRESSION MODELS

TABLE II
NRMSE OF RECONSTRUCTION PERFORMANCE COMPARISON WITH SIX METHODS

the six joints of the shoulder, elbow, and wrist in the left and
right directions are compared with ten-fold cross-validation.
As shown in Table I, the Pearson correlation coefficient
between the spatial position of each joint point reconstructed
by the MTRT model and the real value is consistently higher
than those of the comparison models, achieving a mean value
of 0.94.

B. Comparison of Initial and Reconstructed Spatial
Coordinates

To visualize the reconstruction performance of our proposed
model for the left and right joint motion trajectories of the
shoulder, elbow, and wrist, we selected the data of the third
subject for visualization. Input the EEG data in the test set into
the trained MTRT model to get the 3D position coordinates
of the six joints. Six joint points trajectories of groundtruth
and reconstruction as shown in Fig. 4. The groundtruth and
reconstructed joint point trajectories distributions are similar,
indicating the superiority of the performance of our MTRT
reconstruction model. It shows a comparison diagram of the
reconstructed 3D coordinates of the right shoulder, right elbow,
and right wrist and the real coordinates. It can be seen from
the visualized experimental results that the 3D coordinates of
the real joints are basically similar to the spatial distribution
of the reconstructed 3D coordinates of the joints. There are
some points whose distribution is far from the true value, such
as the right wrist and left elbow both predict isolated points
that are quite different from the true value. Fig. 6 shows the
reconstruction results and real value distribution of the 6 joint
points in the three dimensions of X , Y , and Z . The distribution
core densities in the figure are very similar, indicating that the
reconstruction model is effective.

C. Activated Brain Regions for 3D Motion
During the whole process of sign language execution,

we intercepted the 4 s segment, and the time range is from
-0.5 s to 3.5 s. In this subsection, we selected the sentence of
the 28th sign language, and averaged all the sentence samples

Fig. 6. Reconstruction results and true value distributions in three
dimensions for all relevant nodes.

to obtain the EEG map showing the area of electrode activation
as shown in Fig. 7. A total of nine pictures are obtained, and
the interval between each picture is 400 ms. It can be seen
from the figure that the main brain area activated by joint
movements of the upper limbs during sign language is the
parietal lobe area, and the main electrodes are FC2, FC3, C3,
C4, CP3, CP4, P3, and P4. This provides reference value for
later decoding trajectories with fewer channels.

D. Limitation and Future Directions
In this paper, the MTRT model is used to reconstruct the

3D space position of the joints of the upper limbs of the
human body and achieve good reconstruction results. The
Pearson correlation coefficient with the true value is also high,
indicating a strong correlation between them. Due to the use
of Kinect equipment to collect motion trajectories of limb
joint points and adding interference factors such as light and
clothing, the collected joints motion trajectories data and the
real joint motion trajectory data have a certain deviation. In the
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Fig. 7. Mean EEG electrode activity mapping at 400ms intervals during
the execution of the third handed sentence by the tenth subject.

future, we will fix the spatial sensors at the joints of the limbs
to obtain more accurate spatial motion trajectory data and
make the reconstructed data more accurate. It is also possible
to reconstruct the motion trajectories of finer joints, such as
knuckles. Furthermore, the MTRT model has relatively high
requirements on the amount of data, and more data samples
can train a more accurate reconstruction model. In the next
step, we plan to collect more joint motion data into the model
for training, and obtain a model with better robustness and
accuracy by training a large number of data samples.

VI. CONCLUSION

BCI can directly use brain neural activity to exchange infor-
mation with external devices. It can help people with physical
disabilities to interact with the outside world. The field of BCI
research includes brain-controlled devices, speech, and text
output, among which the direct acquisition of human body
movement information based on EEG signals is an important
direction. Existing studies have only explored the decoding of
simple linear limb movements through EEG signals, and the
decoding accuracy is not high. In this paper, the MTRT model
is trained by the 3D spatial information of the joint points
and the EEG signal, to decode the motion trajectory of the
joint points of the upper limbs. We constrain the reconstructed
model according to the geometric characteristics of the relative
distance of human joint points to obtain more accurate joint
point motion trajectories. To verify the performance of our
MTRT model, we collected EEG signals and joint motion
information of 20 subjects. The experimental results show that
our proposed model can decode the complex multi-directional
nonlinear upper limb motion trajectory based on Chinese
Sign Language. Our research is meaningful to decode human
motion information based on EEG signals, and provides a
reference for decoding other joint points of the body. Our
method can be used in the future for precise manipulation

of external devices, such as robotic arms. In addition, it can
also be used for remote control of special equipment.
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