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Shallow Network for Accurate and Fast Gait
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Abstract— Developing personalized gait phase predic-
tion models is difficult because acquiring accurate gait
phases requires expensive experiments. This problem can
be addressed via semi-supervised domain adaptation (DA),
which minimizes the discrepancy between the source and
target subject features. However, classical DA models have
a trade-off between accuracy and inference speed. Whereas
deep DA models provide accurate prediction results with
a slow inference speed, shallow DA models produce less
accurate results with a fast inference speed. To achieve
both high accuracy and fast inference, a dual-stage DA
framework is proposed in this study. The first stage uses
a deep network for precise DA. Then, a pseudo-gait-phase
label of the target subject is obtained using the first-stage
model. In the second stage, a shallow but fast network
is trained using the pseudo-label. Because computation
for DA is not conducted in the second stage, an accurate
prediction can be accomplished even with the shallow
network. Test results show that the proposed DA frame-
work reduces the prediction error by 1.04% compared with
a shallow DA model while maintaining its fast inference
speed. The proposed DA framework can be used to provide
fast personalized gait prediction models for real-time con-
trol systems such as wearable robots.

Index Terms— Domain adaptation, dual-stage architec-
ture, gait phase, inference speed.

I. INTRODUCTION

HUMAN bipedal walking has been extensively studied
owning to its importance as an essential motion in human

life [1], [2], [3], [4]. There are two different approaches to
consider gait phase: discrete and continuous. In the former, the
gait cycle can be classified into the following discrete phases:
initial contact, loading response, mid-stance, terminal stance,
pre-swing, initial swing, mid-swing, and terminal swing. This
discrete gait analysis method is typically used for abnormal
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gait detection in medical diagnoses and athletic ability evalu-
ation [5], [6]. However, this method is not suitable for assistive
robots because it requires a time-varying assistive force. In the
latter, the gait phase is represented by a continuous variable
that increases from 0% to 100% at every gait cycle [7]. The
gait phase variable is 0% when the heel contacts the ground,
which is referred to as heel strike. Then, the phase variable
increases linearly over time and becomes 100% when the next
heel strike occurs on the same foot. At this moment, the value
discontinuously decreases to 0% to represent the next gait
cycle. This continuous gait phase is required for wearable
assistive robots to synchronize the assistive force with the
desired gait phase [7], [8], [9], [10].

In addition, gait phase prediction is difficult because sub-
jects walk with their own gait patterns, which vary over
time [11]. Conventional gait phase prediction models adopt
heuristic rule-based approaches. To capture the gait cycle
transition, deterministic gait events, such as the heel strike,
are estimated using sensors mounted on the lower limbs. For
example, Ding et al. [12] measured the thigh angle with inertial
measurement unit (IMU) sensors to capture the instant of
maximum hip flexion. Then, the stride time was estimated
as the time interval between two consecutive maximum hip
flexion events. The authors mentioned that their approach is
valid only for tests on a treadmill, where stride time is almost
constant, and that different approaches are needed to consider
stride time variability. To address this problem related to rule-
based models, researchers have introduced machine learning
(ML) techniques for gait phase prediction [9], [13], [14], [15],
[16], [17] because they are relatively robust to speed variations.
Convolutional neural networks (CNNs) have been recently
used to increase the gait phase prediction accuracy [9] as they
are useful for extracting features from time-series signals from
multiple sensors [18], [19], [20], [21], [22]. As gait patterns
are considerably different among subjects, the prediction of
the ML model is more accurate when it is trained with its gait
motion dataset than when it is trained with other subjects’ data.
This personalized ML training requires sensor data and gait
phase values for all target subjects. While lower limb motion
data (i.e., joint angle data) can be easily acquired, measuring
the true gait phase value requires costly and time-consuming
experiments, as all subjects need to visit laboratories with
high-cost equipment, such as treadmills with pressure sensors
or visual motion capture systems.

Domain adaptation techniques can significantly reduce the
effort required to acquire the true gait phase from different
subjects. Hereafter, if gait phase ground truths for a subject
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are available, the subject is referred to as a source subject (SS);
if the true gait phase is unavailable, the subject is referred to
as a target subject (TS). Semi-supervised domain adaptation
(DA) can be used to train the ML model, which is optimized
to a TS without its true gait phase; specifically, the model can
be trained with the following data: the SS motion data, SS gait
phase, and TS motion data. Semi-supervised learning can be
realized by searching for subject-independent features.

DA models for time-series data can be divided into shal-
low and deep models. Shallow models utilize only a few
parameters to generate subject-independent features. Although
these models produce less accurate predictions, they provide
fast inference, which is necessary for real-time applications,
such as wearable robots. We previously developed a shallow
DA model for gait analysis using a multilayer perceptron
(MP) [23]. To increase the model accuracy, a time-domain
feature set was used as the input variable instead of raw time-
series data. The deep model utilizes a deep neural network
to learn features from signal data. However, a deep network
requires a long inference time, which hinders real-time control.

The novelty of the study is the development of a dual-stage
DA model to address the trade-off between accuracy and infer-
ence speed. Specifically, in the first stage, a CNN-based deep
network is used for precise DA. Considering the extraordinary
pattern recognition ability of the deep CNN, the quality of the
subject-independent feature obtained from the deep CNN is
better than that of the shallow MP. Therefore, the deep DA
model is expected to provide accurate gait phase predictions.
Then, in the second stage, a shallow MP is trained with the TS
gait phase that was predicted in the first stage. Note that a deep
network is not used in the second stage; thus, the inference
time for the second stage is very short. In addition, when the
TS gait phase is predicted for a test, only the second stage is
used. Thus, the TS gait phase can be accurately and rapidly
predicted without a ground truth.

The remainder of this paper is organized as follows:
Section II presents previous works on gait phase prediction and
domain adaptation. Section III describes the dataset and the
proposed model. Section IV presents the feature distributions
and prediction errors. Finally, the paper is concluded in
Section V.

II. RELATED WORKS

A. CNN-Based Gait Phase Prediction
CNN models have been widely used to predict discrete

and continuous gait phases [6], [9], [25], [26], [27], [28],
[29], [30]. Su et al. [25] trained various machine learning
models (i.e., CNN, k-nearest neighbor, decision tree, naïve
Bayesian, and linear discriminant analysis) to classify five
discrete gait phases using nine IMU sensor signals. The
CNN architecture was also used for continuous gait phase
prediction under various ground conditions: flat ground, uphill,
downhill, and ascending/descending stairs [9]. Their CNN
model provided satisfactory results even when the ground
conditions varied over time. Martinez-Hernandez et al. [26]
attached three IMU sensors to the lower limbs to predict three
different walking activities (i.e., walking on level ground and
ascending/descending ramps) and eight discrete gait phases.
A CNN model and first-order Markov chain were used
to predict the current and next gait phases, respectively.
Arshad et al. [28] classified stance and swing phases using a

single IMU sensor mounted on the waist. The performance of
16 different classifiers, including a CNN and recurrent neural
network, were compared. Wang et al. [30] measured gait data
from pressure array sensors on the foot and from IMU sensors
on the thigh and shank to discern four discrete gait phases.
Their results showed that the CNN model outperformed the
hidden Markov and k-nearest neighbor models. Additionally,
the accuracy was higher when the IMU signals were used than
when the foot pressure signal was used.

B. Semi-Supervised DA for Gait Estimation
Semi-supervised DA is useful for inter-subject gait analy-

sis [6], [26] because the gait pattern varies across subjects [7].
Guo et al. [6] used a multi-source DA to detect gait abnor-
malities from motion capture and electromyography data. This
study showed that the classification accuracy of normal and
abnormal gait was improved by using a DA called maximum
cross-domain classifier discrepancy. This DA approach alter-
nately maximizes and minimizes the cross-domain discrep-
ancy. Because this DA technique induces a class-wise domain
shift reduction, it is inapplicable to gait phase regression.
Thus, this study modified a domain adversarial neural network
(DANN), which can be modified to conduct regression tasks.
Mu et al. [31] proposed a model to classify four discrete
gait states to cope with the sensor-shift issue. They used
both the original DANN and the multi-source DANN to
consider the sensor-shift without data annotations. Although
the original DANN significantly increased the classification
accuracy, the effects of the multi-source DA on accuracy
were not considerable. This gait classification framework only
focused on accuracy and did not consider inference time,
and thus it would be challenging to execute their model
in embedded systems. Choi et al. [23] modified the DANN
to predict the continuous gait phase. They also proposed a
method for selecting the best SS (among several subjects)
by calculating time-invariant correlations between embedding
vectors. However, their network for DA is a very shallow MP,
and thus the efficiency of DA may be limited. To address this
problem, DA is conducted by a deep CNN in this study. Then,
a shallow CNN is adopted for fast inference in embedded
systems.

III. METHODS AND MATERIALS

A. Dataset
A public dataset of gait motions was used in this study [32].

Two IMU sensors attached to the tibia bone, as shown in
Fig. 1(a), were used for gait phase prediction. Example plots
of the angle, angular velocity, and gait phase are shown in
Fig. 1(b). This dataset provides gait data for three different
walking modes, namely, slow, fast, and comfortable walking
speeds. In the last mode, the subjects walked at self-selected
comfortable speeds, which varied between 1.1-1.67 m/s. The
comfortable speed mode was considered in this study because
it represents walking in real life. Subjects 02-06 in the dataset
were used in this study and will be referred to as Subjects A-E
hereon. The angle and angular velocity of both limbs were
used as the prediction model input.

B. Gait Phase Prediction Model
Although the previous DA gait phase model [23] improved

the prediction accuracy, the improvement was limited because
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Fig. 1. Dataset. (a1) and (a2) Location and shank angle sign
of the IMU sensors, respectively; (b1) and (b2) Angle and angular
velocity measured from the IMU sensors on the shanks, respectively.
(b3) Continuous gait phase.

it used a shallow MP network for the DA, as shown in
Fig. 2(a). This issue can be addressed by adopting a deep
neural network (e.g., a deep CNN), which is an efficient
architecture for pattern recognition. However, a deep network
requires a relatively long inference time, which can be an
obstacle for real-time applications.

In this study, a novel framework was developed to achieve
precise DA and fast inference. This new framework comprises
two stages, as shown in Fig. 2(b). The first-stage model
performs precise DA with a deep neural network; hereafter,
this model is referred to as deep domain adaptation (DDA).
The second-stage model is composed of a few layers for fast
inference; hereafter, this model is referred to as shallow and
fast inference (SFI). Once the training is completed, DDA is
not executed. Thus, fast inference is possible during the test.

Before describing the new framework, it should be noted
that two variables are required to consider the continuous gait
phase. Because the continuous gait phase variable increases
from 0% to 100% during a gait cycle, the phase changes
discontinuously from 100% to 0% at every heel strike. This
discontinuous variation leads to a very large error close to
the heel strike, even for slight differences. Suppose that the
prediction lags the true gait by only 2%. When the true phase
is 1%, the model will predict a 99% phase. Although this
is a very small delay, the phase error value is significant.
To prevent this, gait phase Pg can be replaced with two
variables (i.e., x and y) [7], [23] as follows:

Pg =
100
2π

∅ =
100
2π

arctan2(y, x) (1)

where x and y are defined as cos∅ and sin∅, respectively.
In contrast to Pg , x and y continuously change in every gait
phase; thus, x and y were used for error evaluation.

The prediction error for the gait phase was calculated using
the normalized root mean square error (NRMSE), which can

be obtained as

NRMSE(%)

=

√
1
n

∑n
i=1

(xL ,i −x̂L ,i)
2
+(yL ,i −ŷL ,i)

2
+(xR,i −x̂R,i)

2
+(yR,i −ŷR,i)

2

4

2
× 100, (2)

where xL ,i , yL ,i , xR,i , and yR,i are the left and right predicted
gait phase values, respectively; x̂L ,i , ŷL ,i , x̂R,i , and ŷR,i are
the left and right ground truths, respectively; n is the number
of test samples. The error was normalized to 2 because the
range of xL ,i , xR,i , yL ,i , and yR,i is 2 (i.e., between −1
and 1).

1) Stage I: Deep Neural Network for Domain Adaptation
(Pseudo-Label Generation): As shown in Fig. 3, the DDA in
Stage I is composed of a CNN feature extractor, FC mapping
network, FC regression network, and FC domain discriminator.
The feature extractor was designed using a CNN to utilize its
powerful pattern-recognition capability. The mapping network
is required for feature mapping into different spaces where
the SS and TS features are similar. The regression network
is trained only with source data because the gait phase is
available only for the SS. Because the mapping network is
trained such that its output for the TS is similar to that for the
SS, the regression network, which is trained with the SS only,
is expected to accurately predict the TS gait phase.

While the mapping network generates indiscriminative fea-
tures in both domains, the domain discriminator is trained to
classify whether the input data are SS or TS signals. A gra-
dient reversal layer (GRL) between the mapping network and
domain discriminator inverts the gradient sign for adversarial
training [24]. The original DANN used binary cross-entropy
loss for the domain classifier. However, in this study, a least
square GAN loss is introduced because it leads to stable
adversarial training [33].

Four signals (i.e., the shank angle and angular velocity
of each limb) with a 0.5-s duration and 200-Hz sampling
frequency were transformed into a 100 × 4 tensor and fed to
the feature extractor. The architectures of the feature extractor,
regression network, and domain discriminator are presented
in Table I. Batch normalization was used in all layers (except
the output layers), and leakyReLu was used as the activation
function.

The loss function Lr of the regression network is defined
by the mean square error (MSE) as follows (3), shown at the
bottom of the page, ns is the number of samples for the SS.
Note that the loss for the TS is not included in (3) because
the TS gait phase is not available. The loss Ld of the subject
discriminator is defined as:

Ld =
1

ns + nt

∑ns+nt

i=1
(pi − zi )

2 (4)

where nt is the number of samples for the TS and pi is the
probability that the input sample belongs to the SS. zd equals

Lr =
1
ns

ns∑
i=1

(
xL ,i − x̂L ,i

)2
+

(
yL ,i − ŷL ,i

)2
+

(
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Fig. 2. DA frameworks. (a) Classical DA model (SDA) and (b) the proposed framework (DDA+SFI).

Fig. 3. DDA architecture (Stage I).

unity if the input sample belongs to the SS, zd equals zero if
the input sample belongs to the TS.

The regression network is responsible for predicting the gait
phase; thus, its weights are trained to reduce Lr . The subject
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TABLE I
DDA ARCHITECTURE

discriminator must determine whether the input sample is SS
or TS data. To this end, the weights of the subject discriminator
are trained to reduce Ld . The output of the feature extractor
requires two different characteristics that are desirable for
gait prediction. Meanwhile, the output corresponding to the
SS and TS data must be similar. To achieve these goals
simultaneously, the weights of the feature extractor are trained
to minimize Lr and maximize Ld . While the subject dis-
criminator is trained to decrease Ld the feature extractor
must be trained to increase Ld . This adversarial goal of the
feature extractor and subject discriminator can be achieved
using a GRL because it changes the gradient signs during
backpropagation. The parameter λp of the GRL determines
the balance between Lr minimization and Ld maximization.
For stable training, λp gradually increases over the epoch
from 0 to 1. Details of this adversarial training are given
in [24]. It is worth noting that the weight values of the
DDA are not determined as the values of the final epoch
(i.e., 1,000 epochs). Instead, the final values of the weights
were determined as the values of a specific epoch in which
the prediction accuracy of the SS data is a minimum.

Stage II: Shallow network for inference
If the DDA is directly used for a test, the inference speed

will be slow because of its deep architecture. Therefore,
a shallow model (SFI) was created and trained separately. The
TS gait phase values predicted by the DDA were used to train
the SFI. Hereafter, the prediction result for the TS is referred
to as the pseudo-label. Note that the SFI does not contain any
networks for DA; thus, it can be constructed with a few layers.

The SFI is composed of a shallow CNN feature extractor
and an FC regression network. The SFI input is a 200 ms

time-series signal on angle and angular velocity. The SFI
architectures are listed in Table II. Batch normalization was
applied to all layers (except the output layers), and leakyReLu
was used as the activation function. The SFI was trained
using an ADAM optimizer with a learning rate of 0.005 and
2000 epochs.

2) Shallow Domain Adaptation: For performance compari-
son, an earlier DA model proposed by [23] was used. Because
this earlier model conducts DA with few layers, hereafter, this
model is referred to as shallow DA (SDA). SDA comprises
a mapping network, regression network, and domain discrim-
inator. The mapping network consists of a 15-node hidden
layer and a 20-node output layer. The regression network
simply connects the last layer of the mapping network and
the output xL ,i , yL ,i , xR,i , and xR,i without hidden layers.
The domain classifier has one hidden layer with 20 nodes, and
the output is a sigmoid value. The tanh activation function is
applied to the mapping network and regression network. For
the domain classifier, the leakyReLu function was used. Batch
normalization was applied to all layers except the output layer.
Note that no feature extractor is used for the SDA, while
the DDA contains a deep CNN feature extractor. While the
time-series angle and angular velocity were used as the DDA
input, the time-domain features of the angle and its velocity
were used as the SDA input. Specifically, 12 features were
calculated from the sliding window signals: the last value,
maximum, minimum, average, and standard deviation of the
(left/right) shank angles, as well as the last (left/right) angular
velocity value. An adaptive window technique [23] was used
to consider variations in the stride time. The sliding window
length was determined as 30% of the previous stride time.
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TABLE II
SFI ARCHITECTURE

Fig. 4. PCA plots of domain-adapted features.

IV. RESULTS

Among the five subjects in the public dataset [32] used in
this study, one was used as the SS and another was used as the
TS; thus, 20 subject combinations could be used for validation.
The performance of the proposed framework was evaluated
using the feature distribution and prediction error.

A. Domain-Adapted Feature Distribution
As the output of the mapping network is the feature obtained

by the DA, it was used for DA quality evaluation. If DA
is accomplished, the output features of the SS should be
similar to those of the TS. To effectively visualize the feature
distribution, a principal component analysis (PCA) and t-SNE
plot were used, as shown in Figs. 4 and 5, respectively.

For both the PCA and t-SNE plots, the SS and TS distri-
butions were similar for SDA and DDA, suggesting that DA
was successfully accomplished. In addition, the distribution
similarity increased when DDA was used compared to when
SDA was applied. While the SDA has some dissimilar regions,
the SS and TS distributions overlap in every region for the
DDA, as shown in Figs. 4 and 5. This difference suggests
that the deep network in DDA is more efficient for DA
than SDA.

B. Prediction Error
The prediction error for the TS gait phase was measured

by the NRMSE. The NRMSE of the four different models,
No-DA, SDA, DDA, and SFI, are listed in Table III (Bolds
represent the outperformed value for each case). Note that the
No-DA model predicts the TS gait phase without DA. The
DDA error was calculated with the pseudo-label in Stage I,
and the SFI error was obtained with the output of Stage II.
Comparing the errors of the No-DA and SDA models, the
regression accuracy improved considerably with the latter.
It is worth noting that the NRMSE of the DDA was even
smaller than the SDA error. For example, when SS = B and
TS = A, the SDA error is 4.519%, whereas the DDA error
is only 2.622%. There are many other cases in which the
error is significantly reduced when the DDA is used. These
results suggest that the proposed deep network achieved DA
more effectively than the previous shallow network (SDA).
The errors of the SFI and DDA models tend to be similar,
suggesting that the prediction accuracy degradation (owing
to architecture reduction) is negligible. Additionally, Table IV
presents the NRMSE of the intra-subject study for comparison.
The network structure used in the intra-subject study is the
same as the SFI structure provided in Table II. However, it is
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Fig. 5. t-SNE plots of domain-adapted features.

TABLE III
NRSME (%) OF TS

worth noting that the SFI model and intra-subject model are
different. To obtain the SFI prediction, domain adaptation was
conducted by DDA. Then, the DDA prediction result was used
to train the SFI model. Meanwhile, the intra-subject model
was simply trained with the true gait phase. The error of
the intra-subject study is smaller than that of the inter-subject
models. However, the difference in the error was significantly
reduced when DDA (or SFI) was used.

Note that the results in Table III were obtained by
using DANN. To verify whether DANN is an effective DA
framework, another representative DA model (i.e., adversarial
discriminative DA [34]) was tested with the same dataset.

TABLE IV
NRSME (%) OF INTRA-SUBJECT ESTIMATION

TABLE V
NRSME (%) OF ADVERSARIAL DISCRIMINATIVE DA

The original adversarial discriminative DA was modified such
that its CNN structure was similar to that of the DDA.
The error of the adversarial discriminate DA is provided in
Table V. The error of the adversarial discriminative DA is
lower than that of the No-DA model except in four cases.
However, the error is higher than the error obtained with DDA,
which is trained with DANN. This suggests that DANN has a
powerful DA capability for the continuous gait phase.

To further investigate the NRMSE values, various statistical
values (i.e., average, standard deviation, median, minimum,
maximum, and significance level) were calculated and com-
pared, as shown in Fig. 6. The following characteristics were
observed in the statistical analysis. First, the average NRMSE
of the DDA was smaller than that of the SDA, suggesting
that the DDA outperformed the SDA. Furthermore, two-sided
paired t-tests verified that the NRMSE exhibited significant
differences between the SDA and DDA. Second, the maximum
and standard deviation of the NRMSE for the DDA were
significantly smaller than those of the SDA, implying that
the DDA guarantees an accurate prediction, regardless of the
SS. Third, the standard deviation, minimum, and maximum of
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Fig. 6. Statistical values of the NRMSE.

the SFI were similar to those of the DDA, suggesting that
the prediction performance can be maintained after model
reduction. Some researchers may claim that the SFI error
should be larger than that of DDA at all times because
SFI is trained with the pseudo-label obtained from DDA.
However, this counterintuitive result was obtained because the
SFI prediction is larger than the pseudo-gait phase in some
time intervals, and the SFI prediction is smaller than the
pseudo-value in other intervals. Consider a situation where
the true phase is larger than the pseudo-value and the SFI
prediction. In this case, if the SFI prediction is larger than the
pseudo-value, as shown in Fig. 7(a), the SFI value is closer
to the true value than the pseudo-value. Thus, the SFI error is
smaller than that of DDA. If the SFI prediction is smaller than
the pseudo-value, as shown in Fig. 7(b), the SFI error is larger
than that of DDA. As a result, the subject-wise average of the
DDA error is very similar to that of the SFI error, as shown
in Fig. 6. Moreover, the p-value of DDA and SFI is larger
than 0.05, which also confirms that the error difference is not
appreciable.

Accuracy improvements via DA can also be observed in the
gait phase prediction results over time, as shown in Fig. 8.
When DA was not applied, the predicted phases differed
considerably from the true phase. Although the difference was
reduced by the SDA, the error was still noticeable. However,
the difference between the true and predicted phases was very
small for the DDA and SFI.

C. Inference Time
Because of its compact architecture, the SFI requires a

very short inference time. For a quantitative comparison, the
inference times of the SFI and DDA were measured. When
a Jetson Xavier NX was used for the inference, the average
computation time of the DDA was 8.34 ms on the CPU and
2.52 ms on the GPU. The inference time of the SFI was
1.25 ms on the CPU and 1.55 ms on the GPU. This difference
in the inference time suggests that the SFI is more suitable

Fig. 7. Examples of gait phase profiles (SS = D, TS = A).

Fig. 8. Examples of gait phase profiles (SS = D, TS = A); (a)-(d) profiles
for the No DA, SDA, DDA, and SFI models, respectively.

for real-time prediction in embedded systems. Note that the
inference of SFI with CPU is slightly faster than that with
GPU because the GPU mode requires some time to transfer
the IMU signal to the GPU.

The number of weights was obtained because the inference
speed strongly depends on the number of weights. The number
of weights in the DDA is 496,594 and the SFI number
is 2,901, suggesting that the number of weights is significantly
reduced in Stage II. Note that an earlier CNN model for
the gait phase [9] contains 61,266 weights considering that
it is composed of two convolutional layers (with ten filters)
and an FC network. The number of weights in the SFI is
approximately 20 times smaller than in the previous model.
Thus, SFI is a faster and more suitable model for embedded
systems than the previous model.

V. CONCLUSION

The main contribution of this study is the development of
a new DA framework for gait phase that is more accurate
than the shallow DA model while maintaining a fast inference
speed. Specifically, the DDA outperformed the SDA by reduc-
ing the gait phase prediction error from 3.38% to 2.47% on
average. However, one disadvantage of the DDA is its slow
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inference, which hinders its real-time application potential.
The inference speed issue was addressed by developing a dual-
stage framework. In the first stage, a gait phase pseudo-label
is obtained from the DDA. In the second stage, a shallow net-
work is trained using the obtained pseudo-label. By adopting
a shallow architecture in the second stage, the inference speed
can be significantly increased. Therefore, the new framework
can be used for accurate and fast gait inference when the TS
gait phase label is unavailable.

This study has some limitations. Although the proposed
model can be optimized for a TS without the true TS gait
phases, it still requires TS motion data for both Stages I and
II. The model must also be individually trained for all TSs.
Additionally, if the SS gait pattern is significantly different
from the pattern, the DA performance may be unsatisfactory,
resulting in a large prediction error.

Although the proposed DA framework focuses on inter-
subject variation, it can also be used to consider other types
of variations. For example, gait patterns change considerably
with walking speed. After the gait motion and gait phase for a
specific walking speed are measured, the gait phase prediction
model can be optimized to slow and fast walking motions
without their true gait phases by using the DDA. Gait motion
is also affected by the ground conditions. For example, after
measuring the motion data and true gait phase on flat ground,
the gait phase on stairs and inclined/declined ground can be
predicted using the DDA. In addition, the DDA can be used
to predict the gait phase for walking along curved paths.
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