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Abstract— In order to improve the traditional common
space pattern (CSP) algorithm pattern in EEG feature
extraction, this study proposes a feature extraction method
of EEG signals based on permutation conditional mutual
information common space pattern (PCMICSP), which used
the sum of the permutation condition mutual information
matrices of each lead to replacing the mixed spatial covari-
ance matrix in the traditional CSP algorithm, and its eigen-
vectors and eigenvalues are used to construct a new spatial
filter. Then the spatial features in the different time domains
and frequency domains are combined to construct the
two-dimensional pixel map, Finally, a convolutional neural
network (CNN) is used for binary classification. The EEG
signals of 7 community elderly before and after spatial
cognitive training in virtual reality (VR) scenes were used as
the test data set. The average classification accuracy of the
PCMICSP algorithm for pre-test and post-test EEG signals
is 98%, which was higher than that of CSP based on CMI
(conditional mutual information), CSP based on MI (mutual
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information), and traditional CSP in the combination of
four frequency bands. Compared with the traditional CSP
method, PCMICSP can be used as a more effective method
to extract the spatial features of EEG signals. Therefore,
this paper provides a new approach to solving the strict
linear hypothesis of CSP and can be used as a valuable
biomarker for the spatial cognitive evaluation of the elderly
in the community.

Index Terms— Permutation conditional mutual informa-
tion common space pattern, EEG signals, community
elderly, spatial cognitive evaluation, virtual reality.

I. INTRODUCTION

SPATIAL cognition is a relatively independent spatial ele-
ment, which uses visual memory encoding to understand

the higher cognitive function of the spatial environment.
Spatial cognitive impairment can lead to many diseases, such
as Alzheimer’s disease [1]. The incidence rate of Alzheimer’s
disease is increasing along with the aging of the population,
which can lead to memory loss, impaired attention, impaired
problem-solving ability, and varying degrees of degeneration
in spatial memory, visual-spatial structure, orientation, and
other abilities in older adults [2]. At present, there is no
feasible specific drug for such problems. Considering that
community hospitals can provide auxiliary training services
with portable devices, it is an urgent problem to explore and
promote the diagnosis and treatment methods of spatial cog-
nitive impairment of the elderly based on the spatial cognitive
training and evaluation of the elderly in the community. Also,
the development of spatial cognition training and evaluation
methods is of great significance to prevent the decline of
spatial cognition in healthy subjects. Relevant research results
show that there is a close correlation between spatial cognition
and EEG signals [3], [4]. EEG signals are often used to
evaluate the correlation between spatial cognitive function and
brain response.

In recent years, spectral analysis [5], [6], [7], [8], blind
source separation (BSS) [9], [10], brain region synchronization
analysis [11], [12], [13], [14], [15], event-related potential
(ERP) [16], [17], [18], and brain function network analysis
[15], [19], [20] have been mainly used to explore the changes
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of large brain related to spatial cognition. However, these
methods mainly analyze spatial cognitive EEG signals from
the correlation perspective of the time domain and frequency
domain, without considering the spatial characteristics. As we
all know, spatial features play an important role in the field
of two classification analyses of EEG signals, which can
describe the spatial distribution of multi-lead EEG signals
in each category [21]. CSP is the most widely used spatial
filtering technique, which can effectively extract the features
of different states of the brain [22], [23]. The classical CSP
algorithm focuses on the linear relationship between EEG
signals of different channels [24], while EEG signals are
nonlinear and non-stationary [25]. Therefore, a few researchers
have introduced the nonlinear relationship of EEG signal into
the CSP algorithm to extend the nonlinear spatial filter. Sun
and Zhang [26] proposed a kernel CSP (KCSP) method based
on kernel optimization feature extraction. However, the KCSP
method is difficult to generalize because it requires the same
sample size for the two kinds of data. Nasihatkon et al.
[27] proposed to use linear and KCSP to construct spatial
filters. However, this method requires a large amount of ker-
nel matrix eigenvalue decomposition and high computational
complexity.

Mutual information (MI) uses the concept of entropy to
quantify the nonlinear synchronization relationship between
EEG signals [28]. There is high demand for enough data
length, associated with good statistical significance [29].
Moreover, the coupling strength of mutual information cal-
culation is unsigned, which is not enough to indicate the
effect driving between brain regions [30]. Conditional mutual
information (CMI) quantifies the relationship between the two
variables and eliminates the influence of the third variable,
which can better reflect the information drive between brain
regions [30], but the noise of EEG signals will have a great
impact on the results [31]. Permutation condition mutual
information (PCMI) [32] can measure the linear or nonlinear
coupling strength of two-time series, and it has strong robust-
ness to signal noise. Relevant studies show that the analysis
performance of PCMI on EEG signals is better than CMI
[32]. Yuan [33] used PCMI to extract the features of EEG
signals before and after spatial cognitive training. Through
the effective evaluation of training results, it has been proved
that PCMI is effective in analyzing spatial cognitive EEG
signals.

This study proposed a permutation conditional mutual infor-
mation common space pattern (PCMICSP) algorithm. The
mixed space covariance matrix of two data series, calculated
by the traditional CSP method, is replaced by the mixed
spatial permutation conditional mutual information matrix.
So that the obtained spatial filter contains both linear and
nonlinear features. The algorithm is verified by comparing the
EEG signals of the elderly before and after spatial cognitive
training. First, the PCMICSP method is used to calculate the
spatial features of multiple frequency bands, and then the
spatial features in the different time- and frequency domains
are combined. Finally, we use CNN to compare the perfor-
mance of the proposed PCMICSP with MI CSP (MICSP),
CMI CSP (CMICSP), and traditional CSP algorithms,
respectively.

Fig. 1. Experimental training time point distribution.

II. MATERIALS AND METHODS

A. Subject Information
Supported by the Ethics Committee of Qinhuangdao First

People’s Hospital, 7 healthy subjects with an average age
of 67±6.81 years were recruited from nearby communities
to participate in virtual reality spatial cognition training and
testing tasks for 28 days [34]. The subjects signed the informed
consent, had normal visual acuity or corrected visual acu-
ity, had no history of major mental illness and had never
participated in such spatial memory game training. The data
collection was approved by the Ethics Committee of First
Hospital of Qinhuangdao in Hebei Province, China (The
approval number is 2018B006 in 2018).

In this study, two popular and widely used scales, Mini-
mental State Examination (MMSE) [35] and Montreal Cogni-
tive Assessment (MoCA) [36], were used to determine whether
the subjects had cognitive dysfunction. The mean MMSE
of the subjects was 28.29±1.25 and the mean MoCA was
24.7±2.56. The MMSE results showed that the cognitive
function of the subjects was normal. Three spatial cognition
scales, namely Guilford Zimmerman spatial orientation test
(GZSOT) [37], Perspective Taking /Spatial Orientation Test
(PTSOT) [38], and Corsi Block-Tapping Task (CBTT)) [39],
were used to detect the users’ spatial positioning ability.

B. Experimental Design Scheme
In this paper, the ‘virtual community’ spatial cognitive

training game and the virtual ‘city roaming’ test task, designed
in literature [40], were used to conduct the spatial cognitive
training task for 28 days in a relatively quiet laboratory. The
experiment was carried out in four cycles, each cycle of
training for seven days. The training process (as shown in
Fig. 1) is divided into three stages.

(1) Pre-training test. Before the first training cycle, all
subjects wore electrode caps and head-mounted VR glasses
to conduct a pre-training spatial cognitive ability assessment
test using a spatial cognitive scale. During the test, the EEG
signals of the subjects were mainly collected.

(2) Training and testing. The subjects used ‘virtual commu-
nity’ training during each cycle. To ensure the participation
enthusiasm of the elderly, the experimental group used the
three-target points version of the virtual community in the first
week and the six-target points version in the last three weeks.
The training session recorded the time spent by the subjects
to complete each task.

(3) Post-training test. Three spatial cognition scales
(GZSOT, PTSOT, CBTT) were used to evaluate the training
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Fig. 2. VCW test route.

Fig. 3. Experimental setup and scenario.

effect of all subjects, and the VCW test route was used to
complete the post-training task. The evaluation results of the
spatial cognition scale, test game behavior data, and EEG
signals were archived to evaluate the effectiveness of training
in the later stage. The VCW test route is shown in Fig. 2.
The test task is divided into two modes: learning mode and
testing mode. In the learning stage, users are required to try
their best to remember reference buildings and routes along
the virtual city in accordance with certainly visible route
guidance. This process is the coding learning stage. In the
test stage, the original route guide is hidden, and then the
user is asked to repeat the original route based on spatial
memory and positioning ability. To keep the difficulty of each
test consistent, each test path is treated symmetrically.

Fig. 3 indicates the experimental setup and scenario for
the spatial cognition test, which consists of an OpenBCI
EEG acquisition device, HTC Vive Focus headset VR glasses,
supporting control handles, and user perspective. OpenBCI
device is used to collect users’ EEG signals, and bluetooth
communication is realized between OpenBCI USB dongle
and EEG acquisition client. HTC Vive Focus head-mounted
VR glasses provide users with virtual scenes required by test
tasks, and the matching control handle is used for the control
required in tasks. In addition, TCP/IP protocol is used to
interact with behavioral data acquisition clients to complete
data transfer. The subject view can be shared by using the
screen assistant of 360 mobile assistant software in USB
debugging mode of headset VR glasses, so that the user’s
perspective in headset VR glasses can be shared in time, which
is convenient for experimental staff to guide their work.

C. Recording and Preprocessing of EEG Signals
1) Recording: The sampling rate is 125Hz and the electrode

impedance is less than 10k �. Two 8-channel Cyton amplifiers
are used to realize the synchronous acquisition of 16-channel
EEG signals, and the data is transmitted to the computer via

Fig. 4. Sampling electrode position distribution.

Fig. 5. Synchronous acquisition results of EEG signals and key events.

Bluetooth. Based on the literature regarding the evaluation of
spatial coding and retrieval [15], [41], [42], the electrodes in
this experiment were determined as shown in blue in Fig. 4.
In this experiment, the key response code of the subject in
the VR task is used as an event marker to synchronize the
EEG signal, align the subject’s key response with the EEG
signal on the time axis, and facilitate the offline analysis of
the subject’s EEG signal at the time of action response. Fig. 5
shows the EEG signals of the subjects when performing the
test task, where L, R, and R’ represent the left, right, and right
key event markers respectively, and the abscissa represents the
time dimension of EEG signals, and the ordinate represents
16 sampling channels. The data of each channel is the potential
amplitude of EEG signals.

2) Preprocessing: In this study, EEGLAB [43] toolbox
was used to preprocess EEG signals, mainly including the
following steps:

(1) Channel location. To ensure that independent component
analysis (ICA) can estimate the source location of independent
components of data, the relative coordinate information of
each channel needs to be imported.

(2) Band pass filtering. A band-pass filter of 1-49hz is used
to filter the attenuation of signals outside this frequency range
(50Hz electrical frequency interference, etc.).

(3) Remove artifacts. Firstly, the artifacts caused by the
small relative motion between the scalp and the electrode are
removed by visual inspection; Secondly, ICA is used to remove
the artifacts of EEG and EMG.

(4) Data segmentation. The key events in the test game were
taken as event markers, and the EEG signals were divided
according to one second before and after the event markers.

(5) Baseline correction. The data before 0ms is used as the
baseline. The average value of each point data before 0ms can
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be subtracted from the data after 0ms to eliminate part of the
spontaneous EEG noise.

(6) Extract the frequency band. we divided EEG signals
into seven frequency bands: Delta (1-4 Hz), Theta (4-8 Hz),
Alpha1 (8-10.5 Hz), Alpha2 (10.5-13 Hz), Beta1 (13-20 Hz),
Beta2 (20-30 Hz) and Gamma (30-40 Hz).

D. Relevant Feature Extraction Methods
1) CSP Method: The CSP algorithm diagonalizes the

covariance matrix of the two types of samples and uses the
method of principal component analysis to find the part with
the largest difference between the two types of samples to con-
struct the optimal spatial filter. After the two types of sample
data are processed by the spatial filter, the energy difference
between the two types of samples in spatial components is
the largest [44]. But the correlation can only reflect the linear
relationship between the characteristics of EEG signals and
cannot measure the nonlinear relationship between the two-
time series.

2) MI, CMI, PCMI Methods: MI based on information theory
reflects the information that a random variable carries with
another random variable and can measure the degree of inter-
dependence of two linear or nonlinear time series. CMI can
quantify the coupling relationship between the two channels
and eliminate the influence of the third channel, to better
reflect the coupling information drive between brain regions
[46]. In addition, the coupling direction index of brain regions
can be analyzed [30]. MI and CMI can be used to calculate
the coupling degree and interdependence of task state brain
regions [47]. PCMI is another effective method to analyze
the coupling strength in the information theory method. This
method combines the permutation mode method and CMI to
analyze the linear and nonlinear coupling strength of different
brain regions of EEG signals. Its effectiveness in EEG fea-
ture extraction has been verified by many people [48], [49].
In principle, given any two-channel time series and observation
data at a specific time, this method determines the probability
distributions of arrangement mode, joint arrangement mode,
and conditional arrangement mode in multi-dimensional space.
Permutation entropy and PCMI value of EEG signal in these
three modes can be obtained [32]. In addition, PCMI is more
robust to signal noise than the CMI method [32], [33].

E. Permutation Conditional Mutual Information Common
Space Pattern Method

1) Method Description: The original EEG signals are
segmented according to the pre-test and post-test categories.
The two types of EEG signals are expressed as E1 ={
e11, e11, · · · , e1p−1, e1p

}
and E2 =

{
e21, e21, · · · ,

e2q−1, e2q
}

respectively, and the dimensions are N × T × q.
Where N represents the number of source signal channels,
N = 16. T represents the number of sampling points on each
channel, p and q represent the number of two types of signal
segments respectively.

(1) Calculate the mixed spatial permutation condition
mutual information of two kinds of EEG signals

Take any two time-series X and Y , expressed as X =

(X1 X2, · · · , Xn)T and Y = (Y1, Y2, · · · , Yn)T respectively,

where n is the number of observation points of EEG signal.
They are embedded into m-dimensional space to obtain new
vectors, as shown in formulas (1) and (2).

X i =
(
xi , xi+τ , · · · , xi+(m−1)τ

)
, i = 1, · · · n − (m − 1)τ

(1)
Y j =

(
yi , yi+τ , · · · , x j+(m−1)τ

)
, j = 1, · · · n − (m − 1)τ

(2)

where m represents the embedding dimension and τ represents
the delay time. The elements Xi Y j are sorted in ascending
order. If there are equivalent elements in Xi or Y j , the sorting
order is determined according to the size of subscript i or j .
The vectors expressed in formulas (1) and (2) correspond to
a sorting mode. There are m ! kinds of sorting patterns for
vectors in m-dimensional space. For two EEG signals X and Y
from different channels, analyze the vector Xk, k = 1, · · · , n
and Yk, k = 1, · · · , n sorting modes πi , i = 1, · · · , m! and
π j , j = 1, · · · , m!, there are m! ∗ m! joint patterns for vectors
in m-dimensional space. For two EEG signals X and Y
from different channels, analyze the vector Xk, k = 1, · · · , n
and Yk, k = 1, · · · , n sorting modes πi , i = 1, · · · , m! and
π j , j = 1, · · · , m!, there are m! ∗ m! joint sorting modes.
Take the vectors with the same sorting pattern as a class,
and the occurrence probability of each joint sorting pattern
can be obtained according to the occurrence times of each
pattern Ci j :

P(X = πi , Y = π j ) = Ci j/n − (m − 1)τ (3)

P
(
xi , y j

)
is defined as the joint probability distribution of

X and Y ordering patterns of EEG signals. Similarly, the
conditional probability distribution P

(
xi | y j

)
of the sorting

mode X under the assumption that the EEG signal Y exists
can be calculated:

P(xi |y j ) = P(X = πi |Y = π j ) = Ci j/n − (m − 1)τ (4)

According to formulas (3) and (4), combined with the
Shannon entropy method, the conditional ranking entropy X
under the premise of the existence of Y can be calculated,
as shown in the following formula:

P E(X |Y ) = −

m!∑
i=1

m!∑
j=1

P(xi , y j )log(P(xi |y j )) (5)

Now, Yδ is set to represent the observation value of Y the
δ time in the future. According to the above formula (5), the
ranking condition entropy P E (Yδ | Y ) Yδ under the premise
of assuming the existence of Y can be obtained; Then, the
joint ranking modes of vectors X i and Y j at the δ th time in
the future are analyzed. At this time, m!∗m!∗m! joint ranking
modes can be obtained at most, and the joint ranking entropy
of the above vectors can be obtained.

P E(X, Yδ, Y ) = −

m!∑
i=1

m!∑
j=1

m!∑
k=1

P(xi , y j , yk)log(P(xi , y j , yk))

(6)

Assuming the existence of Y , the conditional joint ranking
entropy of X and YS is:

P E (X, Yδ | Y ) = P E (X, Yδ, Y ) /P E(Y ) (7)
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Finally, the PC M I δ
X→Y used to calculate the permutation

condition mutual information of EEG signals X and Y is
obtained, as shown in formula (8):

PC M I δ
X→Y = PC M I (X; Yδ | Y )

= P E(X | Y ) + P E (Yδ | Y ) − P E (X, Yδ | Y )

(8)

Similarly, PC M I δ
Y→X can be obtained. At subsequent time

points, the coupling strength of the X and Y is calculated
accordingly. The transmission between such signals is defined
as:

PC M IX→Y =
1
N

N∑
δ=1

PC M I δ
X→Y (9)

Similarly, PC M IY→X can be obtained, which represents
the coupling strength from X to Y and Y to X , respectively.
In (9), N refers to the maximum step size. This paper N
takes the optimal empirical value of 15. The final calculated
permutation condition mutual information matrix is shown in
formula (10):

Ci j =


PC M I1→1 · · · C M I1→N

...
...

...
...

PC M IN→1 · · · PC M IN→N


= 1, 2; j = 1, 2, · · · p, or q (10)

where i is the classification category, and the values are
1 and 2, indicating two classifications; j is the sample size of
each category; N is the number of channels; PC M I means
calculating the coupling strength of the two channels. Then
calculate the matrix expectation of the two types of raw data
after segmentation:

C1 =
C11 + C12 + . . . + C1p

p
, C2 =

C21 + C22 + . . . + C2p

q
(11)

Formula (11) shows that the permutation condition mutual
information matrix after obtaining their average normalization.
C1 is the expectation of the permutation condition mutual
information matrix of the first type of samples and C2 is the
expectation of the permutation condition mutual information
matrix of the second type of samples. Cc represents the mixed
space matrix of two types of data.

Cc = C1 + C2 (12)

(2) The whitened eigenvalue matrix P is obtained by
principal component analysis. Eigenvalue decomposition
of Cc:

Cc = UcλU T
c (13)

In formula (13): Uc is the eigenvector matrix of the matrix
Cc, λ is the diagonal matrix composed of corresponding eigen-
values, arrange the eigenvalues in descending order, and obtain
the eigenvalue matrix after whitening:

P =
1

√
λ

· U T
c (14)

At the same time, the diagonalization of C1 and C2 is
obtained:

S1 = PC1 PT , S2 = PC2 PT (15)

S1 and S2 respectively represent two types of sample orthog-
onal whitening transformation matrices and have common
eigenvectors. Therefore, S1 and S2 can be

decomposed into two diagonal matrices λ1, λ2 and an
eigenvector matrix B respectively:

S1 = Bλ1 BT , S2 = Bλ2 BT (16)

The two diagonal matrices λ1, λ2 meet the requirements of
formula (17) and I is the identity matrix.

λ1 + λ2 = IN×N (17)

(1) Calculate the projection matrix
For the eigenvector matrix B, when one type S1 can take

the maximum eigenvalue, the other type S2 can take the
minimum eigenvalue. Therefore, the matrix B can be used for
binary classification calculation. The projection matrix can be
obtained by the following formula:

WN×N =

(
BT P

)T
(18)

(2) Eigenvalues are calculated by projection
The original EEG signal EN×T is projected through the pro-

jection matrix W of formula (18) to obtain the characteristic
matrix Z , whose dimension is N × T :

Z = WN×N × EN×T (19)

Normalize the calculated characteristic matrix, as shown in
formula (20), where fi is the normalized characteristic of the
i th sample. According to the previous research conclusions,
the spatial feature information is mainly concentrated in the
head and tail of the feature matrix [50]. Therefore, we selected
the first n rows and the last n rows of data as the feature
matrix calculated by the PCMICSP algorithm, where 2n ≤

N .Zi represents the characteristic matrix of the i th sample,
and Zin represents the j-th eigenvalue of the i th sample.

fi = log

(
var (Zi )∑2n

j=1 var
(
Zi j
)) (20)

F1 represents the normalized spatial features of the first
type of samples obtained by the PCMICSP algorithm, and
p represents the number of the first type of samples.

F1 =


f1
f2
...

f p


p×2π

(21)

Similarly, the normalized spatial feature F2 of the second
type of samples obtained by the PCMICSP algorithm can be
obtained.
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Fig. 6. Flow chart of feature combination. (a. original data; b. seg-
mented into 1s before/after the raw data according to event markers;
c. different frequency band combinations; d. visualization of the charac-
teristic matrix of the previous step).

2) Feature Combination Method: CSP can effectively extract
spatial features from EEG signals that are easy to distinguish
and classify. However, Alotaiby et al. [51] proved that the
performance of the CSP spatial filter has an important rela-
tionship with the working frequency band of EEG, so this
paper will analyze the spatial characteristics of PCMICSP
in multiple frequency bands. In this paper, the feature com-
bination method [52] designed by Zhang et al. is used to
combine the spatial features extracted by PCMICSP with the
time and frequency features of the source signal. The time
domain, spatial domain and frequency domain features of each
category can be extracted from multi-channel EEG signals.
The spatial domain feature is the normalized spatial domain
feature obtained in subsection I); The time-domain feature is
the time feature before and after the source EEG signal is
divided into 1 second; The frequency-domain feature is the
combined feature of multiple frequency bands of the source
signal. Fig. 6 is a feature combination flow chart of the method
applied to the data in this paper.

In this experiment, the preprocessed data are the EEG
signals one second before and one second after the subjects
press the key in the test game. Its length is, 16 × 250, 16 is
the number of EEG leads, and 250 is the sampling point
of the 2s event sequence. Firstly, the data is divided into
EEG_0 and EEG_1 according to event markers, respectively
representing the data one second before and one second after
the button pressing. Then, the PCMICSP algorithm proposed
in this paper is used to obtain the normalized eigenmatrix of
the two segments of data, whose dimension is,

1 × 16 and respectively represent the weights of
16 channels’ characteristics in the spatial space. Finally, the
2-dimensional eigenmatrix is constructed according to the
frequency band combination. In this paper, the combination
of five frequency bands [45] is selected. Making the final
two-dimensional feature matrix form a square matrix is made
in the last step of the PCMICSP algorithm, that is, the first five
rows and the last five rows of data are selected as the feature
matrix for PCMICSP feature extraction. EEG of the previous

Fig. 7. CNN model structure.

second and the next second according to the above EEG_0
and EEG_1 will get 5 ∗ 10 characteristic matrix respectively,
5 represents 5 frequency bands, and 10 represents the selected
spatial characteristic matrix. The two feature matrices are
placed up and down and combined into a two-dimensional
feature matrix as the input value of the subsequent convolution
neural network classifier. The matrix contains the time domain,
spatial domain, and frequency domain characteristics of EEG
signals of each key event before and after spatial cognitive
training.

F. Classification and Statistical Methods
1) Classification Model: CNN model is used to classify EEG

signals before and after spatial cognitive training. CNN is
widely used in computer vision and natural language pro-
cessing [53]. This paper uses Keras deep learning library to
build the CNN model, in which the optimization function is
Adam, the learning rate is 10−4, the batch size is set to 64,
and 200 epochs per iteration. The two-dimensional feature
matrix is used as the input of shallow CNN to construct the
classification model of EEG signals before and after spatial
cognitive training. Fig. 7 shows the structure of the CNN
model.

The two-dimensional feature matrix obtained by the above
feature combination method is used as the input layer of
the CNN model, and the dimension is 10 ∗ 10 ∗ 1. The
second layer is the convolution layer. For the two-dimensional
characteristic matrix of the input layer, 28 convolution cores
with a size of 3 ∗ 3 and a moving step of 1 are used for
convolution operation, and the activation function is the cor-
rected linear unit (RELU). The third and fifth layers select the
maximum pooling layer with the size of 2 ∗ 2 and the moving
step size of 2. The pooling layer realizes the data simplified
sampling processing of the output matrix data of the previous
layer. The fourth layer is the convolution layer, which uses
56 convolution cores with the size of 3 ∗ 3 and the moving step
size of 1 for convolution operation, and the RELU function
for nonlinear transformation. The sixth and seventh layers
are fully connected layers, which contain 56 and 14 neurons
respectively. The nonlinear transformation is carried out by
using the RELU activation function. The last layer is the output
layer, which contains two neurons. The second classification is
realized by using the Softmax activation function. To increase
the robustness and generalization of the model, a Dropout layer
with a probability coefficient of 0.5 was added to the fully
connected layers of the sixth and seventh layers.

2) Statistical Method: In this study, 5-fold cross-validation
was used to evaluate the comprehensive performance of the
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Fig. 8. Average accuracy curve of Delta-Theta-Alpha1-Beta1-Beta2
frequency band combination.

model. Four evaluation indicators were compared: precision,
F1 value, recall rate, and AUC value. Since the accuracy curve
and the loss curve can be used to evaluate the fitting ability
of the CNN model, this study gives the average accuracy
curve and the average loss curve obtained through 5-fold cross-
validations. The precision curve refers to the accuracy change
curve of the CNN model in the training iteration process, and
the loss curve refers to the loss change curve of the model in
the verification data set.

III. RESULTS

In this study, combined with the feature combination
method, the traditional CSP, mutual information CSP,
conditional mutual information CSP, and the proposed
sequential condition mutual information PCMICSP (CSP,
MICSP, CMICSP, and PCMICSP) were used to convert
the EEG signals before and after spatial cognitive training
into two-dimensional images. Among them, the MICSP
algorithm is a CSP feature extraction algorithm that fuses
mutual information. The main difference between MICSP
and PCMICSP is whether the mutual information matrix is
used to calculate the mixed space matrix of the two kinds of
data. The same applies to the CMICSP algorithm. Then the
image data transformed by the four methods are input into
the shallow CNN model for classification. The superiority of
the PCMICSP feature extraction algorithm in spatial cognitive
training effect evaluation was verified by CNN classification
results. There are many combinations of PCMICSP features in
the different time domains and frequency domains. This paper
only selects the classification results of some frequency bands
[33], including Delta-Theta-Alpha1-Beta1-Beta2, Theta-
Alpha1-Beta1-Beta2-Gamma, Delta-Alpha2-Beta1-Beta2-
Gamma, Delta-Theta-Alpha2-Beta1-Gamma combination.

A. Delta-Theta-Alpha1-Beta1-Beta2 Band Combination
Fig. 8 and Fig. 9 show the variation curves of aver-

age accuracy and loss in the CNN model of CSP, MICSP,
CMICSP, and PCMICSP feature sets obtained under the
Delta-Theta-Alpha1-Beta1-Beta2 frequency band combination
method. The figure shows that when the training itera-
tions of CNN model are 110-120, 120-130, 150-160, and
160-170, the average accuracy of PCMICSP, CMICSP, CSP,
and MICSP feature set is stable at 98%-98.5%, 96%-97%,
94.5%-95.5%, and 96%-97%, respectively. The corresponding

Fig. 9. Average loss curve of Delta-Theta-Alpha1-Beta1-Beta2 band
combination.

TABLE I
AVERAGE EVALUATION INDEX OF CNN 5-FOLD CROSS-VALIDATION

TABLE II
AVERAGE CLASSIFICATION ACCURACIES OF

THE INDIVIDUAL PARTICIPANTS (%)

average loss rate steady at 4%-5%, 7%-8%, 12%-13%, and
8%-9%, respectively.

Table I shows the average evaluation values of the above
four feature sets in the CNN model under the combination of
the Delta-Theta-Alpha1-Beta1-Beta2 frequency band. As can
be seen from Table I, each evaluation index of the PCMICSP
feature set classified by CNN classification is superior to that
of CMICSP, MICSP, and CSP.

Table II shows the classification accuracy of the CNN model
under the combination of the Delta-Theta-Alpha1-Beta1-Beta2
frequency band. As can be seen from Table II, each accuracy
index of the PCMICSP feature set classified by CNN classifi-
cation is superior to that of CMICSP, MICSP, and CSP.

B. Theta-Alpha1-Beta1-Beta2-Gamma Band
Combination

Fig. 10 and Fig. 11 show the average accuracy and loss
curves of CSP, MICSP, CMICSP, and PCMICSP feature sets
obtained by the CNN model in the combination of Theta-
Alpha1-Beta1-Beta2-Gamma bands, respectively. The figure
shows that when the training iterations of CNN reach 160-170,
the average accuracy rate and average loss rate of MICSP and
CMICSP are stable at 96%-96.5% and 10%-11%, respectively.
In addition, when the training iterations of the CNN model
are 170 ∼ 180 and 190 ∼ 200, the average accuracy of the
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Fig. 10. Average accuracy curve of Theta-Alpha1-Beta1-Beta2-Gamma
band combination.

Fig. 11. Average loss curve of Theta-Alpha1-Beta1-Beta2-Gamma
band combination.

TABLE III
AVERAGE EVALUATION INDEX OF CNN 5-FOLD CROSS-VALIDATION

TABLE IV
AVERAGE CLASSIFICATION ACCURACIES OF

THE INDIVIDUAL PARTICIPANTS (%)

PCMICSP and CSP feature set is stable at 98%-98.5% and
94.5%-95.5%, respectively. And the corresponding average
loss rate was steady at 8%-9% and 12%-13%, respectively.

Table III shows the average evaluation value of the above
four feature sets in the CNN model under the Theta-Alpha1-
Beta1-Beta2-Gamma band combination. It can be seen from
Table III that each evaluation index of the PCMICSP feature
set classified by CNN classification is superior to that of
CMICSP, MICSP, and CSP.

Fig. 12. Average accuracy curve of Delta-Alpha2-Beta1-Beta2-Gamma
band combination.

Fig. 13. Average loss curve of Delta-Alpha2-Beta1-Beta2-Gamma band
combination.

Table IV shows the classification accuracy of the CNN
model under the combination of the Theta-Alpha1-Beta1-
Beta2-Gamma frequency band. As can be seen from Table IV,
each accuracy index of the PCMICSP feature set classified by
CNN classification is superior to that of CMICSP, MICSP, and
CSP.

C. Delta-Alpha2-Beta1-Beta2-Gamma Band
Combination

Fig. 12 and Fig. 13 respectively display the variation
curves of average accuracy and loss in the CNN model of
CSP, MICSP, CMICSP, and PCMICSP feature sets under
the Delta-Alpha2-Beta1-Beta2-Gamma band combination. The
figure shows that when the training iterations of CNN reach
181-190, the average accuracy rate of CSP and PCMICSP are
stable at 94%∼95% and 97%∼97.5%, respectively. And the
corresponding average loss rate is steady at 11%∼12% and
7%∼8%, respectively. Also, when the training iterations of
the CNN model are 180 ∼ 190 and 190 ∼ 200, the average
accuracy of MICSP and CMICSP feature set is stable at
96.5%-97%, and the corresponding average loss rate steady
at 10%-11% and 9%-10%, respectively.

Table V shows the average evaluation values of the above
four feature sets in the CNN model under the combination of
the Delta-Alpha2-Beta1-Beta2-Gamma frequency band. It can
be seen from Table V that each evaluation index of feature
sets classified by CNN is better than that of MICSP, CMICSP,
and CSP.

Table VI shows the classification accuracy of the CNN
model under the combination of the Delta-Alpha2-Beta1-
Beta2-Gamma frequency band. As can be seen from Table VI,
each accuracy index of the PCMICSP feature set classified by
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TABLE V
AVERAGE EVALUATION INDEX OF CNN 5-FOLD CROSS-VALIDATION

TABLE VI
AVERAGE CLASSIFICATION ACCURACIES OF

THE INDIVIDUAL PARTICIPANTS (%)

Fig. 14. Average accuracy curve of Delta-Theta-Alpha2-Beta1-Gamma
band combination.

Fig. 15. Average accuracy curve of Delta-Theta-Alpha2-Beta1-Gamma
band combination.

CNN classification is superior to that of CMICSP, MICSP, and
CSP.

D. Delta-Theta-Alpha2-Beta1-Gamma Band
Combination

Fig. 14 and Fig. 15 respectively show the average accuracy
and loss curves of CSP, MICSP, CMICSP, and PCMICSP
feature sets obtained by using the above feature combination
method in the Delta-Theta-Alpha2-Beta1-Gamma band com-
bination in the CNN model. The figure shows that when the
training iterations of the CNN model reach 150 ∼ 160, the

TABLE VII
AVERAGE EVALUATION INDEX OF CNN 5-FOLD CROSS-VALIDATION

TABLE VIII
AVERAGE CLASSIFICATION ACCURACIES OF

THE INDIVIDUAL PARTICIPANTS (%)

TABLE IX
EXPERIMENTAL GROUP BEFORE AND AFTER

TRAINING SCALE STATISTICS

average accuracy of the MICSP and CMICSP feature set is
stable at 95%-96%, and the corresponding average loss rate
steady at 11%-12% and 10%-11%, respectively. In addition,
the CSP feature set is stable when the CNN model is iterated
to 181 ∼ 190 times, the average accuracy is stable at 94% ∼

94.5%, and the average loss is stable at 17% ∼ 18%. The
PCMICSP feature set is stable when the CNN model is iterated
to 160 ∼ 170 times, the average accuracy is stable at 96% ∼

96.5%, and the average loss is stable at 10% ∼ 11%.
Table VII shows the average evaluation value of the above

four feature sets in the CNN model under the Delta-Theta-
Alpha2-Beta1-Gamma band combination. It can be seen from
Table VII that each evaluation index of feature sets classified
by CNN is better than that of MICSP, CMICSP, and CSP.

Table VIII shows the classification accuracy of the
CNN model under the combination of the Delta-Theta-
Alpha2-Beta1-Gamma frequency band. As can be seen from
Table VIII, each accuracy index of the PCMICSP feature set
classified by CNN classification is superior to that of CMICSP,
MICSP, and CSP.

Table IX shows that the Pvalues of the three spatial cogni-
tion scales of the 7 individuals before and after training were
all less than 0.05 before and after training, and the statistical
results showed significant differences. The average CBTT
score increased from 37.14 points before training to 50 points
after training, showing a wide range of improvement. The
average score of GZSOT increased from 4.86 points before
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training to 9.89 points after training, with a wide variation
range. The mean error Angle obtained by PTSOT decreased
from 35.75 points before training to 19.32 points after training,
with a wide range of variation.

IV. DISCUSSION

A. Feasibility and Effectiveness of PCMICSP
In this section, the CSP feature extraction method and

convolutional neural network classification method were com-
bined to classify and evaluate the EEG signals of the spatial
cognitive training group before and after the training. The
results of convolutional neural network classification show
that the classification accuracy and other performance indexes
of MICSP, CMICSP, and PCMICSP are better than that of
traditional CSP. The common space pattern feature extrac-
tion algorithm combining the MI theory [54] method can
effectively improve classification accuracy. MI theory method
can measure the degree of linear and nonlinear correlation
of EEG signals, which is very important for non-stationary
and nonlinear EEG signals. By comparing the classification
accuracy and other performance indexes of MICSP, CMICSP,
and PCMICSP, it is found that the results of PCMICSP
proposed in this paper are the best ones under the combination
of multiple frequency bands, while the results of MICSP and
CMICSP are not significantly different. This is consistent
with the conclusion that the permutation condition mutual
information algorithm is superior to the conditional mutual
information method described in Li and Ouyang literature
[32]. PCMI can more effectively detect the interaction delay
between the event sequences of two brain regions. In addition,
PCMI has strong robustness to EEG, so the EEG noise will
not seriously damage the inherent timing pattern, especially
when there is strong coupling strength between channels [48],
[49], [55].

B. The Classification Performance of PCMICSP
The classification results of the PCMICSP feature set under

different frequency band combinations were analyzed sep-
arately. It was found that the CNN model of the Delta-
Theta-Alpha1-Beta1-Beta2 frequency band combination had
the best classification effect in terms of average loss, average
accuracy, and various evaluation indexes. The Theta-Alpha1-
Beta1-Beta2-Gamma band combination is next, but not far
apart. The variation of the Theta frequency band is consistent
with the research results of Guilford and Zimmerman [37]:
the Theta frequency band oscillation of humans is correlated
with the coding and retrieval of spatial information. Koenig
et al. found an increase in EEG synchronous measurements
in the Delta band in their study of spatial cognitive network
function [56]. The Theta and Alpha1 frequency bands are
consistent with the results obtained in literature [40]: the
brain network attributes of Theta and Alpha1 frequency bands
change most significantly before and after training. Yuan [33]
showed a good EEG classification effect in Beta1 and Beta2
bands before and after spatial cognitive training, which was
consistent with the frequency band combination obtained in
this study. It can be concluded that the PCMICSP EEG
feature extraction method based on the combination of the

Delta-Theta-Alpha1-Beta1-Beta2 frequency band is the most
effective method to evaluate the effect of spatial cognitive
training.

However, the sample size of this paper is relatively small,
and the deep learning model with more hidden layers cannot
be used. Therefore, the rationality of the PCMICSP algorithm
can be further verified by adding more EEG signals in the
future.

V. CONCLUSION

In this paper, the common spatial patterns feature extrac-
tion algorithm based on the mutual information of sorting
conditions is proposed. The covariance matrix in the original
CSP algorithm is replaced by the mutual information matrix
of sorting conditions so that CSP can construct spatial filters
according to the linear and nonlinear correlation degree of
EEG signals simultaneously. The EEG signals before and after
spatial cognitive training were used as the data set, and the
feature combination method and convolutional neural network
classification method were used to verify the performance of
the proposed feature extraction algorithm. Experiments show
that PCMICSP has the highest classification accuracy under
the combination of multiple frequency bands. The algorithm
combines the advantages of PCMI and solves the strict linear
hypothesis of traditional CSP. The experimental results show
that the PCMICSP algorithm can be used for the classification
and evaluation of spatial cognitive task state EEG.
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