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An Adaptive Brain-Computer Interface to
Enhance Motor Recovery After Stroke

Rui Zhang, Chushan Wang, Shenghong He, Chunli Zhao, Keming Zhang,
Xiaoyun Wang, and Yuanqing Li , Fellow, IEEE

Abstract— Brain computer interfaces (BCIs) have been
demonstrated to have the potential to enhance motor
recovery after stroke. However, some stroke patients with
severe paralysis have difficulty achieving the BCI perfor-
mance required for participating in BCI-based rehabilitative
interventions, limiting their clinical benefits. To address
this issue, we presented a BCI intervention approach
that can adapt to patients’ BCI performance and reported
that adaptive BCI-based functional electrical stimulation
(FES) treatment induced clinically significant, long-term
improvements in upper extremity motor function after
stroke more effectively than FES treatment without BCI
intervention. These improvements were accompanied by
a more optimized brain functional reorganization. Further
comparative analysis revealed that stroke patients with
low BCI performance (LBP) had no significant difference
from patients with high BCI performance in rehabilita-
tion efficacy improvement. Our findings suggested that
the current intervention may be an effective way for LBP
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patients to engage in BCI-based rehabilitation treatment
and may promote lasting motor recovery, thus contributing
to expanding the applicability of BCI-based rehabilitation
treatments to pave the way for more effective rehabilitation
treatments.

Index Terms— Adaptive brain computer interface, motor
recovery, stroke, upper extremity.

I. INTRODUCTION

DESPITE great efforts in stroke rehabilitation over the
past decades, stroke is still one of the leading causes of

disability and death worldwide, and its global burden is grad-
ually increasing [1]. Recently, several advanced rehabilitative
intervention approaches, such as robot-assisted treatment [2],
vagus nerve stimulation [3], constraint-induced movement
therapy [4] and functional electrical stimulation (FES) [5],
have been developed to restore motor function and have
shown potential benefits for stroke patients. In particular,
a motor imagery (MI)-based brain computer interface (BCI),
which merely requires patients to imagine movements without
performing actual physical movements, can enhance motor
recovery for stroke patients with severe paralysis by inducing
brain plasticity and functional reorganization [6], [7].

Recently, several studies have demonstrated significant clin-
ical advantages in stroke patients if MI-based BCI was coupled
with other interventions, e.g., rehabilitation robotics [8], virtual
reality (VR) [9] and FES [10]. Murguialday et al. recruited
30 chronic stroke patients to investigate the efficacy of an
MI-based BCI, and more significant motor improvement was
observed in the BCI group that received MI-triggered orthoses
feedback than in the control group that received random
orthoses feedback [8]. Pichiorri et al. studied 14 subacute
patients who performed MI training tasks with BCI-based
VR feedback versus 14 patients who performed training
tasks without BCI intervention; the authors reported a better
motor functional outcome in the former group [9]. Biasiucci
et al. investigated the efficacy of integrating an MI-based
BCI with FES in a randomized control trial (RCT) with
27 chronic patients. The results showed that the BCI-FES
group exhibited more significant functional recovery than the
sham FES group [10]. Chen et al. reported that 16 stroke
patients who received the treatment of MI-BCI-controlled FES
achieved more effective recovery than those who received
passive FES therapy [11]. Sinha et al. reported that BCI-based
FES intervention involving 23 stroke patients could facilitate
interhemispheric connectivity changes and upper limb motor
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recovery [12]. In addition, Sebastián-Romagosa et al. explored
the clinical effect of combining an MI-based BCI with mul-
tisensory feedback (FES and VR) on upper limb motor reha-
bilitation using a recoveriX system [13] [14]. The authors
reported that 51 stroke patients in [13] and 34 stroke patients
in [14] achieved significant functional improvements after the
intervention. Remsiket et al.also reported that 3 stroke patients
obtained upper limb motor recovery using an MI-based BCI
system with multimodal feedback, including visual feedback,
FES, and tongue stimulation [15].

Nevertheless, MI-based BCI interventions still face several
challenges. For instance, there is much variation in MI-BCI
performance not only across subjects but also at different
times within subjects [16]. Therefore, a fixed task difficulty in
nonadaptive BCI interventions may be mismatched with the
subject’s BCI performance, and it is difficult for patients to
maintain active patient engagement, especially for those with
low BCI performance (LBP), during rehabilitation treatments.
In addition, almost 20∼30% of subjects cannot generate
controllable brain signals in MI [17]. Although studies have
reported that intensive MI training can enhance the perfor-
mance of LBP subjects before actual BCI control [18], [19],
the performance improvement in some subjects is limited even
after several months of training [20]. In general, sufficient
BCI performance is required for BCI-based rehabilitation
treatments. Ang et al. considered that the relatively LBP was
functionally similar to BCI with random feedback, which
had been proven to have no significant contribution to stroke
recovery [21]. In the authors’ three clinical trials, stroke
patients whose BCI performance was below the chance level
were excluded from rehabilitation treatments [22], [23], [24].
Currently, few studies have been conducted to investigate the
clinical efficacy of BCI interventions in stroke patients with
LBP.

Active engagement in rehabilitation training is essential to
promote motor recovery and functional reorganization [25].
Several studies have noted that feedback, which was provided
by a recoveriX system while patients performed MI tasks,
could be used to monitor patients’ engagement [14], [26].
Moreover, multimodal feedback through VR and FES in
particular has been suggested to promote effective engagement
and immersion of patients in MI tasks [27].

Here, we proposed an adaptive BCI intervention method that
combines MI with VR and FES with the capacity to modulate
task difficulty to adapt to the BCI performance of individual
stroke patients. This intervention not only provided a feasible
way for LBP stroke patients to participate in BCI-based
rehabilitation treatment but could also reduce the impact of
unstable BCI performance on patients’ motivation to engage
in rehabilitation treatment. We conducted a double-blind RCT
in 33 subacute stroke patients to evaluate whether the proposed
intervention could yield significantly better clinical efficacy on
upper extremity motor recovery for the BCI group than for
the control group. In addition, in the BCI group, we further
investigated the clinical benefit of the proposed intervention
in patients with LBP and compared it to that in patients with
high BCI performance (HBP).

TABLE I
DEMOGRAPHIC AND CLINICAL CHARACTERISTICS AND BCI

PERFORMANCE OF THE PATIENTS AT BASELINE

II. METHODS

A. Patients
Thirty-three subacute stroke patients at Guangdong Work

Injury Rehabilitation Hospital were sequentially enrolled and
randomly allocated to the BCI group or control group by one
investigator. This trial was a double-blinded design, with all
the patients, the experimenters, and the therapist blinded to
group assignments. Specifically, the investigator assigned two
different experimenters who carried out the experiments for
the BCI and control groups, respectively. The experimenters
conducted the interventions, recorded the experimental data,
and were unaware of the group allocations. The therapist who
performed all functional assessments was blinded to the group
allocations. This study was approved by the local ethics board
(approval number: AF/SC-07/2020.03), and each patient gave
informed consent prior to their eligibility assessment. The
inclusion criteria were as follows: 1) cerebral infarction or
cerebral hemorrhage caused by stroke, 2) unilateral cortical
lesion or subcortical lesion, and 3) inability to actively extend
the affected wrist. Patients were excluded if they suffered from
contraindications to electrical stimulation, epilepsy, or cog-
nitive disorders or were implanted with a heart pacemaker.
In contrast to previous studies [21], [22], [23], [24], LBP
patients could also participate in the experiment. The patients’
demographic and baseline clinical assessment results are illus-
trated in Table I.

B. Interventions
All patients underwent 18 treatment sessions (1 session per

day and 5 sessions per week) within one month, and a session
consisted of two runs, with 40 trials per run. The interval
between the two runs was 2∼5 minutes, according to the
patient’s needs. Each treatment session lasted approximately
40 minutes.

For the BCI group, each trial began with the audio instruc-
tion “prepare”; after 2 s, the instruction “extend the wrist” was
presented for 1 s. The patient was then asked to perform the
MI task by imagining the extension of the affected wrist for
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Fig. 1. BCI-based rehabilitation treatment.

at least 15 s. During this period, the adaptive BCI system per-
formed MI detection every 200 ms and employed its output to
control the movements of the virtual wrist, providing real-time
feedback to the patient. Once the upward bending angle of the
virtual wrist reached the predefined maximum value within
15 s, the BCI system sent a control command to activate FES,
and the trial finished with the affected arm receiving FES
treatment for 3 s; otherwise, the trial was terminated without
FES therapy (regarded as a trial with task failure). The interval
between two trials was 8 s. See Fig. 1 or the Supplementary
video for more details about the treatment session. Before
each treatment session, each patient was required to perform
a calibration session of 60 trials, which consisted of 30 wrist-
extension MIs and 30 rests in random order. In each trial, the
patient was instructed to either extend the affected wrist or
rest for 5 s. The procedure of a trial was similar to that of the
treatment session, except for the task execution time of 5 s and
the intertrial interval of 2 s without visual and FES feedback.
The calibration session lasted 10 minutes, excluding the time
for preparation and device setup. The collected EEG data in
the calibration session were used to train the support vector
machine (SVM) classifier.

Patients in the control group wore identical hardware equip-
ment, received identical task instructions, and performed the
same MI task of extending the affected wrist as those in
the BCI group; however, there was no BCI intervention.
In general, the FES trigger time of each trial for the patients
in the BCI group was different due to the variation in BCI
performance. To simulate the uncertainty of the FES trigger
time while maintaining the similarity of the FES trigger time
between the BCI and control groups, the FES trigger time for
the control group was set to a random value in the range of
8.3∼11.5 s, which was estimated from the time required by
the first three patients in the BCI group.

C. Functional Electrical Stimulation (FES)
FES was induced via a stimulator (Motiontim 8, Krauth

& Timmermann Ltd., Germany). Two electrodes were placed
on the extensor carpi radialis and extensor digitorum of the
affected arm. According to a previous study [28], the stimu-
lation frequency and the pulse width were set to 20 Hz and
300 µs, respectively, while the stimulation current amplitude
(ranging from 10 to 30 mA) was set individually for each
patient so that the maximum movement angle of the affected

wrist joint could be obtained in a comfortable manner. During
the treatment, the stimulation current was gradually increased
from 0 mA to the preset value within 1 s, and then this value
was kept for 1 s before being gradually reduced to 0 mA in
the next 1 s.

D. Adaptive BCI System
Some stroke patients, especially those with severe paralysis,

have difficulty in MI-based BCI control, and thus, they may
not be able to use the MI-based BCI system for rehabilitation
treatment [21]. To enable all stroke patients with different
BCI control abilities to participate in rehabilitation treatment,
we designed an adaptive BCI system that can provide online
assistance for patients where assistance is needed, e.g., when
BCI performance is deficient.

As shown in Fig. 2, for each update of the virtual wrist
movement, the motion intention of patients sr and the task
completion information (si and smin) were first estimated.
Based on this estimate, we evaluated the control performance
of the patient by calculating two indexes (assistance degree
dassistance and failure probability P f ailure). Next, the control
weights of the user and machine (ku and km) were dynamically
distributed based on the results of the performance evaluation.
Last, the final score s f was calculated as the output of the BCI
system and multiplied by the angular velocity ω to determine
the motion angle of the virtual wrist for the current update.

1) Motion Intention Detection: The procedure for detecting
patients’ motion intention from EEG signals, as detailed in
our previous studies [29], [30], mainly included the two parts
described below.

Signal acquisition: The scalp EEG signals were acquired
using a 32-channel Quik-Cap and NuAmps amplifier (Neu-
roscan Inc). The EEG signals were referenced to the virtual
ground. As shown in Fig. 3, the channels were placed accord-
ing to the extended international 10/20 system. The signal
acquisition process did not include two channels for recording
eye movements (“HEOG” and “VEOG”, not displayed here).
In addition, the EEG signals from channels “FP1” and “FP2”
were susceptible to eye movement artifacts. Therefore, the
signals from these two channels were not employed for
MI detection. To assure the quality of the acquired signal,
the experimenter examined and confirmed that all electrode
impedances were stable and less than 5 k� at the start of
each experiment. The EEG signals were sampled at 250 Hz
and bandpass filtered in the range of 0.05 to 100 Hz by the
amplifier.

MI detection: MI detection was performed once every
200 ms. For each detection, we first extracted an EEG signal
segment of 1000 ms ending at the current time point and then
performed spatial filtering with common-average reference
and bandpass filtering with a passband frequency ranging
from 8 to 30 Hz. Next, a feature vector was formed by project-
ing the filtered EEG segment with a common spatial pattern
(CSP) transformation matrix. Finally, a trained SVM classifier
was applied to the feature vector, and then the predicted class
and the corresponding output score sr of the SVM classifier
were obtained to represent the motion intention. Here, the CSP
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Fig. 2. System architecture. sr, si and sf denote the output score of the SVM classifier, the ideal output score, and the final output value of the
BCI system for each update, respectively. smin is the minimum score required to extend the virtual wrist to the maximum angle. Pfailure reflects
the possibility of task failure. dassistance indicates the extent of assistance. km and ku represent the control weights of the machine and the user,
respectively.

Fig. 3. Names and distribution of electrodes.

transformation matrix and the SVM classifier were trained in
the calibration session.

2) Task Completion Calculation: In each treatment trial, the
angle of the virtual wrist was updated every 200 ms, and the
ideal output score si for each update can be calculated by

si =
θm

ω · N
(1)

where θm is the maximum extension angle of the virtual wrist,
ω represents the angular velocity of wrist movement for each
update, and N is the total number of wrist movements.

In general, the real output scores of the classifier are almost
always different from the ideal output score due to the patient’s
control performance variability. Therefore, for each update, the
minimum score smin required to extend the virtual wrist to
the maximum angle needed to be estimated, and smin can be
represented by

smin =
θr

ω · Nr
(2)

where θr is the remaining angle from the current angle of the
virtual wrist to the maximum extension angle and Nr is the
remaining number of wrist movements. The ratio of θm −θr to

θm represents the current completion of the task as feedback
to the patients.

3) Control Performance Evaluation: Frequently performing
treatment tasks that are difficult to complete or easy to
fail usually frustrates patients and increases their workload.
In addition, it may even reduce patients’ engagement in treat-
ment tasks and impede treatment. Therefore, it is necessary
to provide patients with assistance when the probability of
task failure is high. However, too much assistance may easily
result in dependence, such that the patients may not actively
participate in BCI control; thus, too much assistance is not
beneficial to rehabilitative treatment either. Based on these
issues, two indexes, p f ailure and dassistance, were employed
to evaluate the patient’s control performance.

The p f ailure index was used to reflect the possibility that the
treatment task was not completed within the specific timeout
period in the current trial. For each update, the possibility of
failure increased if the final output value s f of the BCI system
was less than smin . The failure index can be represented as:

p f ailure =

{
1 − exp−β(smin−s f ), smin > s f

0, smin ≤ s f
(3)

where β is a constant to guarantee the highest likelihood of
failure when the difference between smin and sr is beyond a
value smin .

The index dassistance was employed to evaluate the extent
of assistance, which can be measured by the real output score
sr of the classifier and the final output score s f of the BCI
system. The greater the difference between the real output and
final output, the greater the degree of assistance the patient
obtained. This index can be defined as:

dassistance =

{
1 − exp−α(s f −sr ), s f > sr

0, s f ≤ sr
(4)

where α is a constant to ensure that the degree of assistance
was the greatest if s f − sr = si .
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For ease of comparison between different indexes, all
indexes were normalized with negative exponential functions.

4) Control Weight Distribution: The control weights of the
patient and the machine cannot be fixed beforehand due to the
patient’s variability in control performance. In the early stages
of treatment, the patient may need more assistance, and the
machine should be assigned a relatively large weight. As the
treatment progresses, the patient becomes increasingly familiar
with MI control, and the BCI system may assign more weight
to the patient. Therefore, the control weights should be dynam-
ically adjusted based on the results of performance evaluation.
In addition, we should minimize the task failure rate to avoid
patient frustration, and machine assistance should be reduced
or terminated to encourage the patient to actively participate
in treatment. Therefore, this problem can be represented by
the following multiobjective optimization:

arg min
km ,ku

(p f ailure, dassistance)

s.t.


s f = km · σ · si + ku · sr

km + ku = 1
km, ku > 0

(5)

where km and ku represent the control weights of the machine
and the user, respectively; s f is defined as a linear com-
bination of si and sr to avoid a drastic change; and σ is
an assistant adjustment coefficient (σ = 0.8 in this study),
which can ensure that the patient cannot complete the MI
tasks (i.e., extending the affected wrist to the maximum angle)
successfully if he or she is totally dependent on the machine
assistance.

In general, the above two indexes are contradictory to
each other if the patient’s control performance is relatively
low. For instance, reducing the possibility of failure increases
machine assistance and vice versa. Therefore, it is difficult
to obtain the absolute optimum solution for equation (5).
A feasible solution is always to reduce the maximum index.
This multiobjective optimization can be simplified to the single
objective optimization as follows:

arg min
km ,ku

(max(p f ailure, dassistance))

s.t.


s f = km · σ · si + ku · sr

km + ku = 1
km, ku > 0

(6)

E. Functional Assessment

Functional assessments were performed before and after the
intervention, as well as after 6 months of follow-up. We con-
ducted the primary clinical outcome measure in terms of the
Fugl-Meyer assessment for upper extremity (FM-UE) [31] and
checked whether its changes achieved a minimal clinically
important difference (MCID) of 7 points [9], [32]. In addition,
secondary clinical outcome measures, including the manual
muscle test (MMT) score [33] and the range of motion (ROM)
of the wrist joint [32], were performed for each patient.

F. Neurophysiological Assessment
After a stroke, the nerve tissue in the damaged brain region

tends to degenerate and undergo necrosis, and other distal
undamaged regions also undergo secondary degeneration or
reorganization, which results in extensive changes in the brain
networks [34]. We conducted a neurophysiological assessment
of the topological changes in networks using the graph theoret-
ical approach [35]. First, we extracted the EEG signals of all
the resting trials from the calibration sessions in the first and
last interventions. The obtained EEG signals were then band-
pass filtered in the range of 0.5 to 45 Hz, common-average
referenced, and baseline corrected. Next, we eliminated the
artifacts from EEG signals by independent component analysis
(ICA). Finally, the preprocessed EEG signals in all the resting
trials were segmented into 3 s resting-state epochs. To further
reduce the artifacts, the epochs contaminated by eye or muscle
movements were removed via visual inspection. Moreover, the
affected side was uniformly oriented to the left hemisphere for
all patients to facilitate group analysis so that all EEG channels
were flipped to the opposite side for the patients with brain
lesions in the right hemisphere.

After preprocessing, the brain networks were constructed
using the directed transfer function (DTF) method, which
can measure the information flow direction among brain
regions [36]. To analyze the motor-related brain network,
we focused on the sensorimotor rhythms (alpha rhythm:
8∼12 Hz and beta rhythm: 13∼30 Hz). For each rhythm,
the directed network- based statistic (dNBS) approach [37]
was employed to identify the significant networks of BCI
patients, where the connectivity was significantly increased
after intervention. First, we compared each edge of DTF
matrices corresponding to the BCI patients before and after
the intervention using a paired-sample t test and obtained a
set of supra-threshold connections comprising the edge that
had a significantly increased (p < 0.005) DTF value after the
intervention. Second, all the possible connected components
were identified from the supra-threshold connections, and
the sizes of these components were then determined. Next,
we computed the null distribution of the maximal connected
component size using a nonparametric permutation approach
(5000 permutations). Finally, we obtained the one-sided fam-
ilywise error rate (FWER)-corrected p value for each com-
ponent by counting the number of values within the null
distribution that were greater than the real component size
and dividing it by 5000. Based on the identified significant
network, we measured the topological changes in networks for
each patient in both groups before and after the interventions.
Specifically, we calculated the clustering coefficient and global
efficiency, which are defined as two elemental indicators of
functional segregation and integration of brain networks [38].

G. Statistical Analysis
To analyze the significant within-group and between-group

differences, we first applied the Lilliefors test to check the
normality of the measured data. For normally distributed data,
a one-sided paired t test or two-sample t test was employed
for within- or between-group difference analysis, respectively.
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Fig. 4. BCI performance. (A) Top. Average accuracies for each
BCI patient at the first (light color) and last (dark color) calibration
session. The gray area indicates the accuracy range of chance level
(43% ∼ 58%). Bottom. The bar plots with error bars show the mean
and standard deviation (∗p<0.05, one-sided paired t test). (B) Average
accuracy across all BCI patients in the calibration session before each
intervention. The error bar represents the standard deviation across all
BCI patients within each session. (C) Online BCI performance in terms
of the task failure rate across BCI patients for each treatment session.

For the skewed distributional data, the one-sided Wilcoxon
signed rank test was applied to detect pre- and postintervention
differences, and the Wilcoxon rank sum test was performed to
analyze the between-group differences. In particular, Fisher’s
exact test was used to analyze the significant differences in
the data containing categorical information, such as gender,
etiology, lesion side and lesion site. Bonferroni correction was
applied for multiple comparisons.

III. RESULTS

A. Baseline Differences
As illustrated in Table I, there were no significant baseline

differences between the two groups in age, gender, stroke time,
etiology, lesion side, lesion site, FM-UE score, MMT score
or ROM before the intervention. In addition, the analysis of
BCI performance revealed no significant differences between
groups at baseline.

B. BCI Performance
Fig. 4A showed that there were 8 BCI patients at the 1st

calibration session and 3 at the 18th calibration session with
an offline accuracy below the chance level; the patients’ aver-
age offline accuracies increased significantly (1st session =

65.7% ± 13.2%; 18th session = 72.6% ± 13.4%, p = 0.027)
after the intervention. In addition, the results showed a stable
or slight increase in the average offline accuracy across all
BCI patients over time in the intervention period (Fig. 4B).
We also investigated online BCI performance in terms of the
task failure rate across each treatment session. The task failure
rate (expressed as a percentage) refers to the ratio of the
number of task failure trials to the 80 total task trials in a
treatment session. Note that if the patients did not control the
virtual wrist to reach the predefined maximum angle through

the BCI within the trial duration of 15 s, the trial was regarded
as a trial with task failure. A significant negative correlation
was observed between the task failure rate and the treatment
session (Fig. 4C; r= -0.66, p = 0.003). These results indicated
that the BCI patients improved their BCI performance as the
number of sessions increased.

C. Functional Outcomes
As shown in Fig. 5A, both groups achieved a significant

improvement in terms of FM-UE score (BCI: p = 1.56∗10−7,
control: p = 1.75∗10−4). However, compared with the control
group, the increase in FM-UE scores in the BCI group was
significantly greater (BCI: 9.8 ± 5.3, control: 4.3 ± 3.3,
p = 0.003) and more likely to reach a MCID (BCI: 11/17 vs.
control: 4/16; odds ratio: 5.5, 95% confidence interval =

1.2∼24.8, p = 0.03), indicating that the BCI patients improved
significantly more in terms of FM-UE scores than the control
patients. In addition, both groups retained improvement for
6 months after the intervention (post vs. follow-up, BCI: p =

0.21; control: p = 0.68).
We further analyzed the FM-UE results for the hand

and wrist, which are vital to the independence of stroke
patients. As shown in Fig. 5B-C, the results revealed signifi-
cant improvements in the hand and wrist after the intervention
in the BCI group (hand: p = 3.1∗10−5, wrist: p = 0.002);
however, only the hand (p = 0.002), not the wrist (p =

0.13), showed significant improvement in the control group.
In addition, significant pre-post differences between groups
were observed both in the improvements in FM-UE score of
the hand (p = 0.04) and wrist (p = 0.001), indicating that
the motor function of the hand and wrist in the BCI group
improved significantly more than that in the control group.
At the follow-up evaluation, both groups maintained improved
FM-UE scores for the hand (post vs. follow-up, BCI: p =

0.62; control: p = 0.96) and wrist (BCI: p = 0.56; control:
p = 0.86).

For both the MMT score and ROM, only the BCI group
showed a significant improvement (BCI, MMT score: pre =

0.64 ± 0.92, post = 1.45 ± 1.13, p = 0.047, ROM: pre =

0, post = 11.2 ± 13.4, p = 0.012; control, MMT score:
pre = 0.14 ± 0.38, post = 0.71 ± 1.11, p = 0.25, ROM:
pre = 0, post = 4.06 ± 9.52, p = 0.38). However, no signif-
icant differences were observed in the improvement between
groups (MMT score: p = 0.46; ROM: p = 0.29).

D. Neurophysiological Outcomes
For the alpha rhythm (Fig. 6A), the results showed that

the significantly increased network comprised 52% of the
ipsilesional hemisphere connections (IHCs), 30% of the con-
tralesional hemisphere connections (CHCs) and 18% of inter-
hemisphere connections (InterHCs). Based on this network,
we calculated the network topological characteristics in terms
of the clustering coefficient and global efficiency of the BCI
and control groups before and after intervention and analyzed
the correlations between their changes and FM-UE improve-
ment. The results revealed significant increases in both the
clustering coefficient and global efficiency for the BCI group
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Fig. 5. Primary clinical outcomes pre- and postintervention and after 6 months of follow-up. (A) Left. FM-UE scores for patients in the BCI (orange
circles) and control (blue squares) groups. Red hollow circles and blue hollow squares indicate the average FM-UE scores for the two groups.
Right. The pre-post intervention FM-UE difference scores for all patients. The red dotted line represents the MCID for FM-UE scores. (B-C) Left.
The average FM-UE scores and standard deviation for the hand and wrist of the two groups at all evaluation stages (pre, post and follow-up). Right.
The pre-post difference in FM-UE scores for each group. Five patients were lost to follow-up (BCI: 4 cases; control: 1 case). Bonferroni correction
was applied for multiple comparisons (∗p<0.05, ∗∗p<0.005, ∗ ∗ ∗p<0.0001).

(clustering coefficient: p = 6.3∗10−5, global efficiency: p =

6∗10−6) but not for the control group (clustering coefficient:
p = 0.28, global efficiency: p = 0.29). In addition, both the
increments of the topological characteristics were significantly
positively correlated with the improvement in FM-UE scores
(clustering coefficient: r = 0.422, p = 0.018; global efficiency:
r = 0.514, p = 0.003).

For the beta rhythm (Fig. 6B), the ipsilesional hemisphere
included the majority of significantly increased connectivity
(IHCs: 53%; CHCs: 27%; InterHCs: 20%), and one of the
regions with the highest degree was located in the ipsilesional
primary motor cortex (M1). Importantly, the motor cortical
connectivity between M1 and the ipsilesional premotor cortex
(PM) was significantly increased in the BCI group. The
clustering coefficient and global efficiency were significantly
increased after the intervention for the BCI group (clustering
coefficient: p = 3.9∗10−4; global efficiency: p = 1.2∗10−3)

but not for the control group (clustering coefficient: p =

0.08; global efficiency: p = 0.19). In addition, the increase in
global efficiency (r = 0.464, p = 0.01) was significantly and
positively correlated with the improvement in FM-UE scores
but not the increase in the clustering coefficient (r = 0.27,
p = 0.149).

E. Comparisons Between LBP and HBP Patients
To investigate whether the proposed adaptive BCI inter-

vention enables stroke patients, especially those with LBP,
to participate in rehabilitation treatment, as well as to compare
the achieved rehabilitation efficacy with those with HBP,
we divided all stroke patients in the BCI group into two
subgroups, i.e., LBP and HBP, based on whether their baseline

TABLE II
DEMOGRAPHIC AND CLINICAL CHARACTERISTICS AND BCI
PERFORMANCE OF LBP AND HBP PATIENTS AT BASELINE

BCI performance was below the chance level and conducted
the same abovementioned analysis on these two subgroups.

Prior to the BCI intervention, no significant differences were
found in demographic and baseline clinical scores between
subgroups (see Table II). After intervention, only the LBP
patients achieved a significant improvement in offline BCI
performance (Fig. 7A, LBP: P < 0.05, HBP: p=0.3). In addi-
tion, we further analyzed the online BCI performance across
LBP and HBP patients during the 18 intervention sessions.
As shown in Fig. 8A, for the LBP subgroup, both the task
failure rate and task completion time (which refers to the
time required by the BCI to control the virtual wrist to reach
the predefined maximum angle) had significantly negative
correlations with the intervention sessions (task failure rate:
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Fig. 6. Significantly increased connectivity (p < 0.005, identified with the dNBS method) after intervention for the BCI group (left), the changes in
topological characteristics of networks for the two groups pre- and postintervention (middle) and the correlation between the changes in topological
characteristics and FM-UE score improvement (right). (A) Alpha rhythm and (B) beta rhythm. The channels in the ipsilesional M1 and PM are
marked by red and purple, respectively. The EEG data from two patients in the control group were not included in the brain network analysis due
to artifact contamination. Significant differences are indicated (∗∗p < 0.005, ∗ ∗ ∗p < 0.0001, Bonferroni-corrected one-sided paired t test). Prior to
the correlation analysis, the outliers, denoted with ‘+’, were eliminated according to the Pauta criterion (3σ criterion).

r= -0.796, p < 0.001; task completion time: r = -0.527, p <

0.05), and user weight had a significant positive correlation
with the sessions (r = 0.891, p < 0.001), indicating that the
LBP patients gradually achieved better online performance and
obtained higher control weight along with the increase in ses-
sions. However, there were no similar observations in the HBP
subgroup (Fig. 8B). We also found that the control weight of
both the LBP and HBP patients remained above 0.8 across all
sessions, revealing that all BCI patients dominated the control
of the rehabilitation tasks throughout the entire intervention
period.

Regarding rehabilitation efficacy, both subgroups exhibited
significant motor recovery in terms of FM-UE scores (Fig. 7B,
LBP: p < 0.05, HBP: p < 0.005) after intervention. Moreover,
both the clustering coefficient (Fig. 7C, LBP: p < 0.05, HBP:
p < 0.05) and global efficiency (Fig. 7D, LBP: p < 0.05, HBP:
p < 0.005) for the alpha rhythm were significantly increased
for the two subgroups, whereas for the beta rhythm, only the
HBP subgroup showed significant increases in the clustering
coefficient (Fig. 7E, LBP: p = 0.12, HBP: p < 0.05) and
global efficiency (Fig. 7F, LBP: p = 0.09, HBP: p < 0.05).
However, there were no pre-post intervention differences in
BCI performance, FM-UE scores, clustering coefficient or
global efficiency for either alpha or beta rhythms between

the two subgroups. These results indicated that LBP patients
could obtain rehabilitation efficacy that was not significantly
different from that of HBP patients.

In addition, we tracked the functional improvement in BCI
patients with relatively poor BCI performance during the inter-
vention. Specifically, we identified three patients whose aver-
age offline accuracies across all the calibration sessions were
56.9%, 51%, and 58.3%, which were all close to the chance
level. After intervention, they recovered 2, 4, and 4 FM-UE
points, respectively, all of which were far less than the average
9.8 points in the BCI group and close to the average 4.3 points
in the control group. These results suggested that poor BCI
performance during the whole intervention period may affect
functional improvement.

IV. DISCUSSION

In this study, we conducted a double-blind RCT to inves-
tigate the clinical efficacy of an adaptive BCI-based FES
intervention on upper extremity motor recovery in subacute
stroke patients. The patients in the BCI group achieved more
significant improvements in clinical outcomes than the control
group, and the improvement in primary outcome can be
retained for at least 6 months after the end of intervention,
therefore reflecting that this BCI intervention can yield better
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Fig. 7. Comparison results between LBP and HBP patients pre- and
postintervention. (A) BCI performance, (B) FM-UE score, (C) clustering
coefficient and (D) global efficiency for the alpha rhythm, (E) clustering
coefficient and (F) global efficiency for the beta rhythm. Significant
differences are indicated (∗p<0.05, ∗∗p < 0.005, Bonferroni-corrected
one-sided paired t test).

Fig. 8. Online BCI performance in terms of task failure rate (top), task
completion time (middle) and user weight (bottom) across each session.
(A) LBP subgroup, (B) HBP subgroup.

functional recovery with a long-term effect for stroke patients.
Moreover, we further noticed that LBP patients, who were
often excluded from previous BCI-based motor rehabilitation
studies, had no significant difference from HBP patients in
terms of improved efficacy.

Neurophysiological outcomes obtained from resting-state
EEG may contribute to clarifying the possible mechanisms
underlying the changes in clinical outcomes. There is increas-
ing evidence that functional recovery after stroke is associated
with the newly formed functional connections of resting-
state networks. For instance, the postintervention increases
in ipsilesional connections related to the recruitment of the
affected hemisphere during the intervention have been proven

to influence functional improvement [39], [40]. In particular,
the increases in ipsilesional M1-PM connectivity with beta
rhythm activity indicate greater motor gains after stroke [41].
In addition, the node degree of the ipsilesional M1 with
beta rhythm activity was positively correlated with better
subsequent motor recovery [40]. The analysis results for the
BCI group were in line with these findings. Although new
functional connections can compensate for impaired neural
pathways to promote motor recovery, the outgrowth of new
connections may result in network randomization, indicating
that a nonoptimized reorganization may be involved in recov-
ery [42]. There is solid evidence that the small-world proper-
ties of a high clustering coefficient and high global efficiency
are generally present in the brain networks of healthy indi-
viduals [43]. After stroke, the topology of the brain network
gradually shifts from a small-world pattern to a more random
mode [44]. The simultaneously increased clustering coefficient
and global efficiency in the sensorimotor rhythms only for the
BCI group after the intervention were conducive to forming
small-world networks, thereby preventing the brain network
from degrading to a random mode. Moreover, we observed that
the clustering coefficient and global efficiency at alpha rhythm
were significantly positively correlated with the improvement
in FM-UE scores. These findings indicated that the proposed
intervention method promoted a more optimized functional
reorganization during the recovery process of the affected limb.

In recent years, a few studies have suggested that BCI
performance may influence rehabilitation efficacy in stroke
patients as a significant correlation was observed between
clinical gains and BCI performance [45], [46], [47]. Indeed,
sufficient BCI performance is required for stroke patients to
complete rehabilitation tasks in nonadaptive BCI interventions
that depend entirely on their own BCI performance. Higher
BCI performance can improve patients’ confidence and moti-
vation, which may further promote their active engagement
in treatment [48]. Active participation in rehabilitation train-
ing is essential to promote motor recovery and functional
reorganization [25]. However, several intricate factors, such
as fatigue, frustration, motivation, and concentration, have
been reported to affect BCI performance [49], [50]. Although
intensive MI training can improve the BCI performance of
healthy subjects [18], [19], it is extremely difficult for stroke
patients to perform this training. Therefore, some studies
had to identify LBP patients based on their baseline BCI
performance in advance and exclude them from the BCI inter-
ventions [22], [23], [24], [51], limiting the clinical application
of BCI interventions.

To increase patients’ motivation and engagement in the BCI
intervention, we introduced enriched visual and proprioceptive
feedback. Motivation and active engagement contribute to
enhanced BCI performance [52]. In addition, feedback pro-
vides a means of measuring task compliance and patient
engagement and helps maintain patients’ concentration [27].
To benefit more stroke patients, we proposed an adap-
tive BCI system that can provide appropriate assistance for
patients when their BCI performance is low, so as to reduce
patient frustration and enhance their enthusiasm. Therefore,
the current study may somewhat minimize the impact of
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these factors, such as frustration and motivation, on BCI
performance. We also conducted a comparative analysis of
BCI performance and clinical benefits between the LBP and
HBP subgroups in the current intervention. We observed that
the BCI performance of the LBP patients gradually improved
as the intervention progressed, which was consistent with a
previous study that showed that the majority of LBP patients
after stroke can obtain a significant improvement in BCI
performance after 13∼22 BCI training sessions [53]. We also
found that all patients in both subgroups dominated the reha-
bilitation tasks throughout the entire intervention period, with
the control weight of the LBP patients during the rehabil-
itation tasks gradually increasing. This finding implied that
the obtained rehabilitation efficacy of both BCI subgroups
mainly benefited from their own MI, and as the intervention
proceeded, the assistance the LBP patients received from the
adaptive BCI intervention decreased. Furthermore, patients
from both subgroups exhibited significant motor functional
recovery after intervention. Most notably, the obtained motor
rehabilitation efficacy of the LBP patients was not significantly
different from that of HBP patients. Therefore, the current BCI
intervention has been proven to be an effective way for LBP
patients to participate in rehabilitation treatment and thus could
increase the clinical benefits of BCI intervention.

A few studies have also investigated the clinical benefits
of combining MI-based BCI with FES and VR on upper
limb motor rehabilitation using a recoveriX system [13], [14].
This system can simultaneously provide real-time VR and
FES feedback to the patient once the MI of the affected
hand is detected. In comparison, VR and FES feedback in
our study were provided separately to the patient at different
stages. During the period when the patient performed MI,
VR feedback was provided whenever MI was detected, while
FES was provided as reward feedback only when the whole
MI task was successfully completed. In this way, real-time
VR feedback can facilitate the acquisition of the current
completion of the MI task, so that the patient can regulate
his or her strategy when needed, whereas rewarding feed-
back after completion is for increasing rehabilitation compli-
ance [54] and promoting long-lasting retention of regained
motor function [55]. In addition, the designed MI tasks in
the current study are more challenging than the tasks in those
studies [13], [14]. As shown in our results, the patient was
required to perform continuous MI for an average of 10 s to
complete an MI task. Another critical difference is that the
virtual wrist in our study was controlled by an adaptive BCI
system that provided appropriate assistance for the patient to
perform the rehabilitation tasks when BCI performance was
deficient. Such assistance can reduce patient frustration and
may even stimulate more enthusiasm in completing the task.
The studies in [13] and [14] reported that 51 and 34 stroke
patients achieved improvements in FM-UE scores by 4.68 and
3.12 points on average, respectively. In comparison, the sample
sizes in both of those studies were larger than that in our study,
without a control group though.

It was not easy to assign the same number of FES treatments
to the two groups in advance because the number of FES

treatments in the BCI group was determined by the patient’s
BCI performance. To reduce the confounding effects of FES
on the clinical outcomes, the patients in the control group
were given more FES treatments per session on average than
those in the BCI group (BCI: 63.7±11.4; control: 80). For the
BCI group, no significant correlation between the increments
of FM-UE scores and the number of FES treatments was
observed (r = 0.16, p = 0.55). In addition, although FES
for the control group was delivered randomly in time instead
of by BCI activation, the patients generally believed that
the FES was triggered by their motor imagination, as the
therapist learned from the interviews with the patients after
the experiments. To further test the possible impact of the FES
trigger time on the clinical outcomes, we first compared the
average trigger time between the two groups and found that
there was no significant difference (p = 0.21) in the trigger
time between the BCI (10 ± 1.2 s) and control (9.8 ± 0.9 s)
groups. There was also no significant correlation between the
average FES trigger time and the improvement in FM-UE
scores (r = -0.03, p = 0.83). These results suggested that
the differences in FES treatment between the BCI and control
groups were unlikely to confound our clinical outcomes.

Despite these promising results, several limitations should
be overcome in further studies. First, only 33 subacute stroke
patients were recruited to participate in our intervention. The
sample size was relatively small, and larger groups of patients
and other types of patients (e.g., chronic stroke patients) are
needed to reach more solid conclusions in the future. Second,
the BCI intervention reported here required approximately
18 treatment sessions and 1 hour per session; and the opti-
mal treatment intensity and the duration of each session in
BCI-based upper extremity motor recovery warrant further
investigation.
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