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Dense & Attention Convolutional Neural
Networks for Toe Walking Recognition

Junde Chen, Rahul Soangra™, Marybeth Grant-Beuttler”, Y. A. Nanehkaran, and Yuxin Wen

Abstract—Idiopathic toe walking (ITW) is a gait disor-
der where children’s initial contacts show limited or no
heel touch during the gait cycle. Toe walking can lead
to poor balance, increased risk of falling or tripping, leg
pain, and stunted growth in children. Early detection and
identification can facilitate targeted interventions for chil-
dren diagnosed with ITW. This study proposes a hew one-
dimensional (1D) Dense & Attention convolutional network
architecture, which is termed as the DANet, to detect
idiopathic toe walking. The dense block is integrated
into the network to maximize information transfer and
avoid missed features. Further, the attention modules are
incorporated into the network to highlight useful features
while suppressing unwanted noises. Also, the Focal Loss
function is enhanced to alleviate the imbalance sample
issue. The proposed approach outperforms other methods
and obtains a superior performance. It achieves a test
recall of 88.91% for recognizing idiopathic toe walking on
the local dataset collected from real-world experimental
scenarios. To ensure the scalability and generalizability
of the proposed approach, the algorithm is further val-
idated through the publicly available datasets, and the
proposed approach achieves an average precision, recall,
and F1-Score of 89.34%, 91.50%, and 92.04%, respectively.
Experimental results present a competitive performance
and demonstrate the validity and feasibility of the proposed
approach.

Index Terms— ldiopathic toe walking, dense & attention
network, data mining, machine learning.

[. INTRODUCTION
DIOPATHIC toe walking (ITW) is an exclusion diagnosis
granted when a child walks on the toes without a medical
reason [1]. The severity of ITW can vary from landing on
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the middle foot during the standing phase to loading only on
the metatarsal head [2], and the prevalence of toe walking is
evaluated to affect up to 5% of normal children [3]. Persistent
ITW without treatment may cause an increased risk of falling
or tripping [4], leg pain [5], injured muscles and motor
coordination [6], and organic anomalies [7]. Early identifying
toe walking in clinical diagnosis can facilitate timely inter-
vention and treatment. The conventional identification of toe
walking primarily relies on the visual observation of clinical
specialists. This depends entirely on the experience of the
specialist and has a certain degree of subjectivity. Besides, rig-
orous laboratory-based gait analysis protocol requires special
laboratory apparatus like an instrumented walkway, infrared
camera-based motion capture system, or treadmill with an
integrated force plate [4]. Such laboratory equipment is costly
and restrictive, requiring specialized personnel to manipulate
and analyze gait data. This is undoubtedly inefficient, labor-
intensive, expensive, and cannot be promoted widely. Hence,
there is a great need and important realistic significance to
seek new systems for automatically detecting toe walking in
natural settings.

With the recent advancements in embedded intelligence and
sensing technologies, novel approaches for detecting toe walk-
ing have emerged. The integration of machine learning (ML)
and embedded sensor devices such as inertial measurement
units (IMUs) has made it easier to collect various gait data
and diagnoses for patients, which significantly enhances the
prediction accuracy and operational efficiency. ML strategies
for human activity identification, including support vector
machines (SVM), multi-layer perceptron (MLP), and random
forest (RF), have been widely investigated in healthcare, owing
to their promising ability to address multiple-dimensional and
nonlinear data patterns. The most popular applications include
fall detection [8], gait pattern classification in post-stroke
patients [9], walking versus running [10], Parkinson’s disease
diagnosis [11], [12], among others [13]. For example, Ilias
et al. [14] combined the artificial neural network (ANN)
and SVM methods to classify the gait patterns of autis-
tic children from normal gait. Their experimental results
reveal that the fusion of kinematic and temporal-spatial con-
tributes the highest accuracy of 95% for the ANN classi-
fier. Chakraborty et al. [15] detected pathological gait using
several ML models. They found that the multiple adaptive
regression splines (MARS) algorithm outperformed the SVM
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and logistic regression models with the best accuracy of
88.3%. Based on the SVM classifier, Pendharkar et al. [16]
proposed a technology to identify ITW gait patterns on the
heel accelerometry data. Using a feature selection algorithm,
they realized a maximum accuracy of 87.5% for the SVM
classifier. Despite impressive performance obtained in the
literature, the conventional ML methods encounter some bot-
tlenecks, such as the dependence on hand-crafted features,
lack of robustness, overfitting risks, and low accuracy. More
recently, deep learning (DL), especially convolutional neu-
ral network (CNN), has achieved great success to address
most technical challenges relevant to object recognition and
classification. After using IMU sensors to capture the spatial
data, Bijalwan et al. [17] employed four different DL models
to implement the classification of human gait data. Their
proposed CNN model achieved the best accuracy of 90%.
Martinez-Hernandez et al. [18] introduced a CNN to recognize
walking activities and predict gait periods using the data
captured by wearable sensors. Their proposed CNN model
attained the best average accuracies of 98.32% and 100%
for recognizing gait periods and walking activities, respec-
tively. Depending upon the data captured through the sensor-
enabled insoles, Mei et al. [19] exploited a one-dimensional
convolutional neural network (1D CNN) to build an exhaustive
wearable gait analysis framework for gait classification. Their
proposed method reached the highest accuracy of 99.26%.
Combining the spatial transformer and temporal convolutional
networks, Zhang et al. [20] developed a novel network archi-
tecture named Gait-TR for skeleton-based gait recognition and
they got around 90% accuracy rate in walking with coats
cases. Though reasonably good findings have been reported in
the literature, deep neural networks require a large amount of
data to train models, which is undoubtedly a challenging task.
Besides, numerous training samples are prone to introduce
noise data, increasing DL models’ overfitting risks. Despite
the limitation, previous research has confirmed the efficacy
of CNN models for identifying toe walking. In this study,
we propose a novel convolutional network architecture to
address the above concern. As such, a 1D-based Dense &
Attention Convolutional Neural Network, which we termed
DANet, is proposed to identify toe walking. The dense block
is integrated into the network to maximize information transfer
and avoid missed features for the classification. Also, the
attention mechanism is incorporated into the network to infer
a more powerful hidden representation while suppressing
unwanted noises. In addition, the existing Focal loss function is
enhanced to make it suitable for multi-classification tasks and
alleviate unbalanced samples. Overall, the key contributions
of this study are recapitulated as follows.

o A large toe-walking dataset of 593,880 sample data
is captured from real-world experimental scenarios via
wearable sensors. This dataset is expected further to
facilitate research on the recognition of toe walking.

o The study proposes a novel 1D Dense & Attention
convolutional network architecture, DANet, that bor-
rows the idea of DenseNet and introduces a 1D dense
block to maximize information transfer while reducing
redundancy.

o The attention mechanism is incorporated into the net-
work to infer a more powerful hidden representation
and realize dynamic recalibration, highlighting useful
features while suppressing unwanted noises. Besides,
the enhanced Focal-Loss (EFL) function is utilized for
alleviating the unbalanced sample issue.

The remaining writing is organized as follows. Section II
describes the materials and discusses the methodology.
Notably, the proposed approach is primarily discussed in
this section. Section III elaborates on experimental analysis.
Extensive experiments are implemented in this section along
with comparative analysis. Section IV concludes this paper
with a summary and points out the direction of future work.

II. MATERIALS AND METHODS
A. Materials

The collected data came from the idiopathic toe walking
(ITW) experiment conducted on a total of 36 children diag-
nosed as ITW with the age of 9.4 £ 2.8 years old (The
children are 53.846.6cm tall and body weight 75.0427.21bs).
All participants signed a written consent form before par-
ticipation that Chapman Institutional Review Board (IRB)
approved (Children’s Hospital of Orange County #170870).
Four wireless sensor modules of Xsens MTw sensors, which
include 3D rate gyroscopes and 3D accelerometers for mea-
suring the angular velocities and acceleration, are utilized
in the experiment. The sensors are affixed on the subject’s
sacrum, posterior torso at T4, and the right and left lateral
calves adjacent to the lateral malleolus. These participants
were instructed to walk more than 15 meters barefoot, and each
participant walked multiple trials. 10 trials of 10m walk were
recorded for each walk type of Best Heel Strikes (BHS) and
Toe Walk (TW). Each 10m walk trial was comprised of 3 to
4 gait cycles. Data was collected using the Xsens MT Manager
Software suite. The sampling frequency was set to 75Hz,
which has been proven to be sufficient for human movement
analysis in daily activities [21]. A total of 593,880 sample data
points, corresponding to 492 complete trials, were acquired in
the experiment, where 119,988 samples were used as the test
set and 473,892 samples were used for training. The sample
data are classified into two categories, BHS and TW, which are
determined by 24 attribute features including Sacrum_Acc_X,
and Trunk_Acc_X, among others. Fig. 1 shows an example
of BHS and TW gait trials. The representative sample data
collected is presented in Table I.

B. Methodology

1) Related Work: Deep learning methods have proven to
be quite promising and show a strong ability to address
both large-scale and small-scale problems for human activity
recognition. One of the core advantages of deep learning is the
essential ability of end-to-end learning. Among various ML
models, CNN is a favorable deep learning architecture due to
its powerful adaptive learning capability, and has been widely
studied for human activity recognition [22], [23]. Jiang and
Yin [24] assembled signal sequences of accelerometers and
gyroscopes into images. Then, a deep CNN was utilized to
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(b) Best Heel Strikes (BHS)

(a) Typical or Toe Walking
Fig. 1. Data collection process from a Child diagnosed with ITW a) Typical or toe walking (TW), b) Best Heel Strikes (BHS).
TABLE |
THE REPRESENTATIVE SAMPLE DATA COLLECTED DURING GAIT TRIALS
FileID Label Sacrum_Acc_X Sacrum_Acc_Y Sacrum_Acc_Z Trunk_Gyr_Y Trunk_Gyr_Z code
TW40MM_BHS006 BHS -0.14234 9.4322 0.950012 0.518371 -0.04338 0
TW40MM_BHS006 BHS -0.15055 9.344354 0.970887 0.599973 0.002638 0
TW40MM_BHS006 BHS -0.12717 9.368429 0.928864 0.66572 0.052088 0
TW40MM_BHS006 BHS -0.05669 9.382129 0.920413 0.66572 0.052088 0
TW26BR_NW006 ™ 1.475965 9.559959 -0.59324 -0.07272 0.04183 1
TW26BR_NW006 ™ 1.463219 9.587491 -0.54691 -0.05691 0.047288 1
TW26BR_NW006 ™ 1.500867 9.620604 -0.56865 -0.06403 0.04644 1
TW26BR_NW006 ™ 1.473951 9.619473 -0.58866 -0.09164 0.041641 1

learn optimal features from images for the activity recognition
task. Ignatov [25] exploited CNNs for local feature extraction
coupling with manually crafted statistical features, which
can preserve contextual information pertaining to the overall
structure of time series. Considering the features obtained by
fixed convolution kernel sizes are insufficient, Han et al. [26]
proposed a heterogeneous two-stream CNN architecture to
encode contextual information of sensor signals from different
receptive field sizes, which is capable of generating more
discriminative features at different time scales compared with
regular CNN. Xi et al. [27] adopted a dilated CNN method
to expand the receptive field to solve the information loss
issue, and their results achieved a satisfactory performance.
Recently, Transformers [28] have gained increasing popularity
as they are usually believed to own higher modeling capacity
and representation flexibility than classical CNN methods.
Transformers implement an attention-based encoder-decoder
architecture for sequence analysis. By stacking attentional
layers that scan the sequence, Transformers are capable of
producing position and context aware representations. Inspired
by Transformers, a few attempts have been made to introduce
transformer-like architectures to vision tasks [29], [30], one
of which, called vision transformer (ViT) [31], has been
successfully applied for image recognition and shows com-
petitive performance [32], [33]. Hussain et al. [34] explored a
pretrained Vision Transformer to extract frame-level features
and then passed the features to a long short-term memory
to recognize human activities. Nevertheless, it is questionable
whether such potential has been fully unleashed in practice,
as the learned transformer networks often suffer from lim-
ited access to higher-level representations, over-smoothing,

yielding likely redundant models, and higher computational
overhead, etc [35]. Moreover, most research focuses on human
activities recognition, where the data are collected from
healthy individuals. Only a limited number of research inves-
tigate ITW gait recognition, i.e., distinguish the toe walking
gait from normal gait pattern in ITW children. The ITW
pattern detection is quite challenging. The reason is that the
frequency of toe walking in ITW children varies. Some ITW
children walk on their toes 100% of the time, while for
others, the frequency keeps the change. The recognition of
ITW has not been investigated to its full potential. To fill
this gap, we develop a 1D Dense & Attention convolutional
network architecture, which we termed DANet, to perform the
recognition and diagnosis of idiopathic toe walking.

2) DenseNet: DenseNet is a popular deep convolutional
neural network (DCNN) architecture initally proposed by
Huang et al. [36] to alleviate the gradient vanishing issue with
increased network depth. As a densely connected network,
DenseNet is comprised of dense blocks and transition blocks
to improve the propagation of features, thereby reducing infor-
mation loss during transmission. The output of all the layers is
input into the subsequent layers in the dense block, which is a
repetition of Batch Normalization (BN), 1 x 1 convolution, BN,
Rectified Linear Unit (ReLU) function, and 3 x 3 convolution
for a certain number of times. The formula of dense connection
is expressed as

fi = Cillfo, fr, -+ fimaD) ey

where i indexes the layer number, [ fy, f1, -, fi—1] denotes
the cascading feature maps from O to i-1 layers, and C;(-)
indicates a transformation operation such as BN, ReLU,



2238

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Fig. 2. A DenseNet comprised of a 3-layer dense block.

Convolution (Conv) or Pooling. Subsequently, the transition
layer is dedicated to connecting two adjacent dense blocks to
reduce the dimension using a 1 x 1 convolution pooling layer.
The relatively narrow convolution kernels, such as 1 x 1 and
3 x 3 convolutions, are utilized in the network, limiting the
number of learned feature maps, thereby reducing redundancy.
Fig. 2 depicts a typical framework of DenseNet comprised
of a 3-layer dense block. Borrowing the idea of DenseNet,
we exploit the advantages of dense blocks and introduce this
structure into our network to maximize information transfer
while reducing redundancy.

3) Attention Mechanism: The attention mechanism in deep
learning is very similar to human visual attention which
can focus on meaningful information while ignoring needless
noises [28]. It can efficiently highlight the features that are
favorable for classification tasks and has been utilized widely
in practical business scenarios. Referring to the work of [37],
the intuition of using the attention layers is to infer more
powerful hidden representations by weighting the context vec-
tors (Cvec), which efficiently aggregates inputs from different
sources. The weighted vector can be written using Eq. (2).

T
C:)ec = Zi:l wlihfnc 2
where w, indicates the weight of each annotation h{"“ calcu-
lated by soft-maxing the corresponding attention score. The
formula of the weight is expressed as

o exp(s)
> i1 expsi)

In Eq. (3), s; denotes the alignment score of /4{"¢ at each step .
It can be computed using Eq. (4).

3)

i

si=f")i=1,..., T, @)

where the function f symbolizes a feed-forward neural net-
work operation with the ranh function. The intuition of the
scoring function is to make the model learn alignment weights
together with translations while inferring the entire model
layers.

4) Proposed DANet Architecture: As mentioned previously,
inspired by the promising performance in computer vision,
we exploit the merits of DenseNet and introduce the structure

of dense block into our network. A 1D-based Dense & Atten-
tion Convolutional Neural Network, which we termed DANet,
is proposed to implement the diagnosis of idiopathic toe
walking. To maximize the information transfer while reducing
redundancy, the dense block is integrated into the network
to avoid missed features, and also, the attention mechanism
is incorporated into the network to infer a more powerful
hidden representation through a weighted context vector. More
specifically, the detailed descriptions of this procedure are
presented below.

First, the dimension of input data is expanded so that the
dataset could satisfy the requirement of the 1D convolution
operation. There are n attribute features extracted for the
original data in the empirical analysis., e.g., the indicator
variable number of the original input data is 24 here. The
dimension of the original input data is extended from 24 to
(24,1). Subsequently, a set of convolution operations with the
filter number of 32, 16, and 8 are implemented, respectively.
The sizes of the convolution kernels are all assigned as 5.
In this process, the BN, and max Pooling are also operated
following the convolution operations. Further, two attention
modules are sequentially embedded into the network to high-
light useful features while suppressing unwanted noises. More
than that, the optimized dense block, where the convolution
operation is executed using the 1d convolution kernel and the
existing filter size of 3 x 3 is replaced by 3, is connected
for maximizing information transfer. The dropout operation is
added to decrease the over-fitting risks, where the dropout rate
is set to 0.2. Besides, the LeakyReLU function is used in our
network instead of the ReLLU function, for the traditional ReLU
function makes neurons unable to learn negative input [38].
As such, a BN, a dropout, a LeakyReLU, and a 1 and
3 convolutions are repeated 12 times (growth rate =12) in
the optimized dense block. Following the enhanced 1D dense
block and a BN layer, another attention module is added to
normalize the input to avoid vanishing gradient and highlight
the favorable features for classification. At last, a max Pooling
(MAP) layer along with a flatten layer are incorporated into the
dense convolution module and followed by a fully-connected
(FC) Softmax layer with the actual number of categories. Here,
the Adam optimizer [39] is used to substitute the Stochastic
Gradient Descent (SGD) one in our network since it is more
suitable for problems with noise and sparse gradients.

Moreover, to alleviate the issue of unbalanced sample dis-
tribution, a Focal-Loss (FL) function was recommended by
reference [40] to substitute the classical Cross-Entropy (CE)
Loss function since it regards the classifying loss weights of
positive and negative samples as the same. The formula of the
FL function is defined by

L(pe) = — (1 — pp)Porlog(pr) (5)

In Eq. (5), k indexes the class number, 6 is a weighting factor,
B is a hyper-parameter of modulating factor, and py represents
the predicted distribution. However, the existing FL function
is designed to handle binary issues in object detection and is
not suitable for multi-classification problems. On account of
this, we modified the traditional FL function and introduced
an enhanced FL function to replace the CE function in our
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Fig. 3. The proposed DANEet architecture.

TABLE Il
THE MAIN PARAMETERS OF THE NETWORK

Layer (type) Input shape No. of filters Kernel size Output shape Repeated times
Input layer (None, 24,1) - (None, 24,1) 1
Convld (None, 24,1) 32 5 (None, 24,32) 2
BatchNormalization (None, 24,32) - - (None, 24,32) 1
MaxPooling1d (None, 24,32) - - (None, 12,32) 1
Attention Module (None, 12,32) - - (None, 12,32) 1
Convld (None,12,32) 16 5 (None, 12,16) 2
Attention Module (None, 6,16) - - (None, 6,16) 1
Convld (None,6,16) 16 5 (None, 6,16) 2
Convld (None,3,16) 8 5 (None,3,8) 2
MaxPooling1d (None, 3,8) - - (None, 2,8) 1
Dense Block (None,2,8) 4 3,1 (None, 2,20) 1
BatchNormalization (None, 2,20) - - (None, 2,20) 1
Attention Module (None, 2,20) - - (None, 2,20) 1
MaxPooling1d (None, 2,20) - - (None, 1,20) 1
Flatten (None, 1,20) - - (None, 20) 1
Softmax (None, 20) - - (None, 2) 1

network. The formulas of the enhanced FL function are written
as follows.

C
Lnatri(p) = — > wie(1 = p(k 12))? 8 log(p(k)) ~ (6)
k=1
wy = count (x)/count (x € k) (7)
1, k =true_label
O = [O, k # true_label ®)

where x represents the sample. Fig. 3. portrays the architecture
of the proposed DANet, and the main parameters are presented
in Table II.

[1l. EXPERIMENTAL RESULTS AND ANALYSIS
A. Experiment Setup

Extensive experiments have been implemented to vali-
date the effectiveness of the proposed approach. In addi-
tion to some graphical representations implemented by R
tools, the main algorithms were accomplished using Python
3.6, where the frequently-used libraries like scikit-learn,
OpenCV3, Tensorflow, and Keras were applied and accelerated
by GPU. The experimental hardware environment contains
RTX 3070 Graphics Card, 32GB memory, and AMD 3.30GHZ
CPU, which are utilized for algorithm operation.

B. Experiments on Local Dataset

As mentioned in Section II A, the extracted toe-walking data
are utilized in our experiments. There are 593,880 instances
in this toe walking dataset, where the training set includes
473,892 samples while the test set is comprised of 119,988
records. The toe walking dataset is divided into two categories,
BHS and TW, determined by 24 attribute features. It is
essential to emphasize that each fileID (object) contains 1,212
records and the type of all the records for each sensor is the
same. In other words, this is a 1, 212 x 24 matrix that deter-
mines the type of each object. The training set has 391 objects
and the test set consists of 99 objects. Considering a matrix
data input, we first employed a convolutional neural network
method (CNN-2D) to build the classification model on the
two-dimensional sample data. However, satisfactory results are
not achieved from this method. Therefore, we further extracted
the eigenvalue and eigenvector for each object through the
principal component analysis (PCA), and the extracted eigen-
value is used as the input of the models. Whilst, the median
value of each object is extracted in our experiments. Here,
the 1d CNN (CNN-1D) and the proposed DANet are all
conducted in the experiments. More than that, the current
popular transformer network, which is a multi-head attention
based deep learning model is selected in our comparison



2240

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

experiments. The key components of the model include the
self-attention module and point-wise feed-forward network,
where 4 parallel attention layers, or heads, are contained in
the self-attention module. For the point-wise feed-forward
network, two linear layers with ReLLU activation function and a
dropout of 0.1 are in it. The settings of these parameters ensure
the optimum performance of the model in this work. Besides,
the commonly-used effective ML methods, including random
forest (RF), support vector machines (SVM), and multi-layer
perceptron (MLP or ANN) are also used in our comparative
analysis. The hyper-parameters of model training for these
compared models are assigned as a learning rate of 1 x 1073,
a mini-batch size of 64, 100 epochs of training, and an Adam
optimizer.

Considering the measurement of model efficiency, we eval-
uate the performance using different metrics like Accuracy
(Acc.), Recall (Rec.), and F1-Score (F1). Among them,
Accuracy has been mastered by the superiority of True
Positive (T P) and True Negative (T N) over the total number
of samples. Recall has been mastered by the superiority of
T P over T P and Fales Negative (FN). F1 — Score has been
mastered by the superiority of 2 x TP over Fales Positive
(FP),2xTP,and FN. Mathematically, the formulas of these
indicators are presented as follows.

TP+TN
Accuracy = )
TP+TN+FN+FP
TP
Recall = ——— (10)
FN+TP
2T P
F1 — Score (11)

T 2P+ FP+FN

where T P denotes the number of positive samples correctly
detected. FN is in reverse, which implies the number of
negative samples mistakenly detected. F P indicates the num-
ber of wrong-detected positive samples. TN is the number
of properly-detected negative samples. Table III reports the
training and validation performance at 30 and 100 epochs,
respectively. Using validation accuracy as early stopping cri-
terion, Table IV summarize the prediction performance on the
training and test dataset. To evaluate the efficiency of the
proposed method, the running time for training 100 epochs of
each method is also provided in Table III. Fig. 4 and Fig. 5
portray the training performance and the tested confusion
matrices, respectively.

From Table III, it can be visualized that the proposed
approach has achieved the best training and validation per-
formance when compared with other methods. After training
for 100 epochs, the proposed DANet has attained a validation
accuracy of 82.28%, which is superior to other methods. In
terms of computation efficiency, we report the running time
of training 100 epochs for each method. Our findings reveal
that the proposed method is more efficient than CNN-2D and
DANet-PCA, slightly worse than CNN-PCA and CNN-1D.
The largest discrepancy in training time between our method
and the faster benchmarks is no more than 35 seconds, which
is not a significant challenge for current hardware capabilities.
From Table IV it can be observed that, the proposed approach
outperforms all other methods on the test set and reached the

0700
085 train acc

— valacc 0675 \
080

0650

0625
# 0600
g

K 0575
060
0550
055
0525
050 train loss
0500 { — val loss

] 20 40 &0 80 100 0 20 40 &0 80 100
epoch epoch
(a) CNN-2D (accuracy) (b) CNN-2D (loss)

0 20 ' 60 80 100 0 20 20 60 80 100

epoch epoch
(c) CNN-PCA (accuracy) (d) CNN-PCA (loss)

train loss
— valloss

train acc 008
— valacc

0 20 40 60 80 100 0 20 40 60 80 100

epoch epoch
(¢) DANet-PCA (accuracy) () DANet-PCA (loss)

train loss
— val loss

train acc
— valacc

0 20 0 60 & 100 0 20 2 60 80 100
epoch epoch

(g) CNN-1D (accuracy) (h) CNN-1D (loss)

train loss
— val loss

0 0 ) &0 & 100
epoch och

e
(i) This study (accuracy) (5) This study (loss)

Fig. 4. The training performance of different methods.

Q

highest accuracy of 88.89%. However, the test accuracy of all
other ML methods has a significant decrease relative to that
on the training set, which means that there may be noise inter-
ference and over-fitting problems suffered by these methods.
It is worth noting that transformer slightly behaves better than
the proposed method on the training dataset. However, when
predicting on the test dataset, there is a significant decrease in
accuracy. The reason is that the transformer suffers over-fitting
issue especially when the training data is not sufficient. In fact,
similar phenomena have been observed in [31] and [41]. This
can result in a significant decrease in accuracy when predicting
on the test dataset. In contrast, the proposed methods demon-
strate a comparable performance, leading to a more robust
and generalizable performance on the test dataset. In addition,
it can be seen from Fig. 4 (a-h) that the validation accuracy
of these compared methods can not be further improved and
fluctuates around a solid value after training for 100 epochs,
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TABLE IlI
THE TRAINING PERFORMANCE OF THE MODELS
Used Methods Training for 30 epochs Training for 100 epochs
Training Acc. % Validation  Training  Validation Training Acc. %  Validation Acc. % Training  Validation Run .
Acc. % loss loss loss loss time (min)
CNN-2D 56.41 50.63 0.6826 0.6888 84.98 61.86 0.4967 0.6618 01:00.97
CNN-PCA 74.04 55.71 0.0326 0.0505 88.87 60.76 0.0203 0.0469 00:23.16
DANet-PCA 66.67 58.23 0.0383 0.0457 95.19 73.24 0.0088 0.0415 01:27.31
CNN-1D 90.71 68.35 0.0151 0.0434 98.72 78.48 0.0031 0.0393 00:28.45
This study 92.95 70.89 0.0127 0.0500 99.36 82.28 0.0045 0.0370 00:57.29
TABLE IV
THE PREDICTION ACCURACY OF DIFFERENT METHODS
No. Methods Training set Test set
Acc. (%) Rec. (%) F1-Score (%) Acc. (%) Rec. (%) F1-Score (%)

0 CNN-2D 97.75 97.75 97.75 62.62 62.62 62.64

1 CNN-PCA 90.70 90.79 90.70 65.65 65.97 65.57

2 DANet-PCA 91.98 92.31 91.97 72.72 72.60 72.71

3 CNN-1D 91.98 91.96 91.98 85.86 85.92 85.87

4 RF 99.74 99.75 99.87 76.76 76.76 76.78

5 SVM 54.48 52.17 40.87 56.56 54.26 44.61

6 MLP 67.26 67.81 66.93 64.65 65.22 64.27

7 Transformer 94.37 94.38 94.37 81.82 81.98 81.83

8 This study 92.95 93.09 92.95 88.89 88.91 88.89

though the training accuracy increases steadily. The big dif-
ferences between the training and validation accuracy indicate
the data noises and the potential over-fitting problems of
these benchmark methods. By contrast, the proposed approach
shows a satisfactory result in the experiments of toe walking
recognition. Furthermore, from the tested confusion matrices
of Fig. 5, it can be observed that the sum of the numbers
on the diagonal of the confusion matrix is the largest for
the proposed approach, which outperforms other state-of-
the-art methods. The crucial explanation for the substantial
performance of the proposed approach is that the dense block
coupled with the attention modules are incorporated into the
network, which maximizes information transfer and highlights
the favorable features for the classification, thereby improving
the accuracy. The EFL function used in the network also
alleviates the imbalanced sample problem. Additionally, this
one-dimensional convolutional network architecture reduces
the interference of noises and decreases the risk of over-
fitting. By comparison, the other methods are commonly-used
ML methods or single network structures. Though diverse
transformations and feature extraction are implemented, these
methods do not achieve satisfactory results. Consequently, the
proposed approach achieved a competitive performance in the
comparison experiments.

C. Ablation Study

We further implemented an ablation study on our model,
in which we analyzed the efficacy of dense block and attention
modules on the experimental dataset of idiopathic toe walking.
In the first ablation study, we deleted the dense block in
the network to probe the performance of the model training.
We notice a declining accuracy for this ablated model, where
the validation accuracy dropped to 75.95% after 100 epochs of

training. The validation accuracy decreased by 6.33%. Like-
wise, we removed all three attention modules in the network
to investigate the effectiveness of the model. After training for
100 epochs, the validation accuracy dropped to 70.89% and
decreased by 11.39% for the ablated model. Table V presents
the comparison results of ablation experiments. Also, it can
be seen from this table that the time-consuming differences
are not big among these ablation models after 100 epochs of
training. As a consequence, this ablation study results reveal
that both the dense block and attention modules significantly
contribute to the performance of the proposed method, and
relatively, removing the three attention modules causes a
notable impact on the accuracy of the model. In the second
ablation experiment, we kept the network structure unchanged
and evaluated the impact of different loss functions on the
model accuracy. To do so, we substituted the existing CE
loss function for the EFL function used in the network, and
we notice a minor decrease in the accuracy of this ablated
model. After 100 epochs of training, the validation accuracy
of this ablation model drops to 81.01% (a decrease by 1.17%).
The ablation experiment indicates that the EFL function has
delivered slightly better results than that of the CE loss
function used in our network for toe walking diagnosis.

D. Experiments on Public Datasets

To ensure the scalability and generalizability of the proposed
method, the algorithm is further validated through multiple
publicly available datasets. UCI library [44] is a universal
database comprised of the global collection of data, which
dedicates to supplying a series of benchmark datasets to
investigate the performance of Machine Learning algorithms
in knowledge discovery tasks. Human Activity Recognition
dataset (UCI_HAR_data), or HAR in short, is a publicly
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Fig. 5. The confusion matrix of different methods on test dataset.
TABLE V
THE COMPARATIVE FINDINGS OF ABLATION EXPERIMENTS
Training for 30 epochs Training for 100 epochs
Ablation approach Training Validation Training Validation Training Validation Training  Validation  Run
Acc. % Acc. % loss loss Acc. % Acc. % loss loss time (min)
Delete dense block 84.29 55.70 0.0235 0.0468 94.55 75.95 0.0138 0.0373 00:48.10
Delete attention 91.03 64.56 0.0171 0.0998 94.23 70.89 0.0094 0.0657 00:46.52
CE loss function 83.65 67.09 0.0224 0.0503 97.44 81.01 0.0080 0.0439 00:47:88
This study 92.95 70.89 0.0127 0.0500 99.36 82.28 0.0045 0.0370 00:57.29
TABLE VI
DETAILED INFORMATION OF THE UCI DATASETS

Datasets Number of samples Number of features Number of classes Number of training samples ~ Number of testing samples
HAR 10299 561 6 7352 2947
Balance 625 4 3 437 188
Musk 6598 166 2 4619 1979
Diabetes 768 8 2 537 231
Skin Seg. 245057 4 2 178539 73518
Pendigits 10992 16 10 7694 3298

available repository established from recordings of 30 subjects 19-48 years old. Each volunteer performed 6 activities, such
implementing daily living activities, which is conducted on as walking, walking_downstairs, walking_upstairs, sitting, lay-
30 volunteers carrying waist-mounted smartphones with built- ing, and standing, and relevant record data are captured by
in inertial sensors. The ages of these volunteers are located in  sensors. A total of 10,299 instances are included in this dataset,
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TABLE VI
TRAINING ACCURACY OF COMPARED METHODS (Pre : Precision, Rec : Recall, F1: F1-Score; %)
SVM MLP RF CNN-1D DANet
Datasets
Pre. Rec F1 Pre. Rec F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1
HAR 84.04 84.04  97.90 84.56 85.48 99.68 85.71 85.71 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Balance 94.09 91.07 87.49 4835 72.31 69.24 99.83 99.77 99.76 84.42 92.22 91.98 94.28 94.28 94.92
Musk 100.00 100.00 100.00 42.41 84.82 77.86 99.96 99.93 99.93 95.94 92.51 91.44 89.56 95.99 96.18
Diabetes 100.00 100.00 100.00 67.22 68.72 63.74  99.57 99.44 99.44 7440  76.53 76.13 73.29 7412 74.68
Skin Seg.  99.99 99.99 99.99 99.52 99.78 99.78 99.99 99.99 99.99 99.52 99.54 99.54 99.71 99.88 99.88
Pendigits 100.00 100.00 100.00 75.38 83.01 78.97 100.00  100.00 100.00 99.07 99.49 99.49 97.98 99.19 99.19
Average 96.35 95.85 97.56 69.72 82.35 81.54 97.51 97.47 99.85 92.22 93.38 93.09 92.47 93.91 94.14
TABLE VI
TEST ACCURACY OF COMPARED METHODS
SVM MLP RF CNN-1D DANet
Datasets
Pre. Rec F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec F1
HAR 95.19 94.88 95.03 95.01 94.77 94.86 80.49 75.40 90.99 94.32 94.02 94.27 95.14 95.72 95.43
Balance 61.32 92.02 88.73 50.68 76.06 73.35 59.39 81.91 82.38 74.35 87.23 87.53 82.98 82.98 85.88
Musk 94.32 89.24 86.83 42.02 84.03 76.74 97.32 97.22 97.14 94.99 90.65 88.96 87.98 98.28 98.29
Diabetes 32.90 65.80 52.23 56.49 64.94 58.26 80.52 80.95 80.16 68.58 73.16 70.83 74.00 7446  75.11
Skin Seg.  99.62 99.41 99.41 99.56 99.80 99.80  99.88 99.94 99.94 99.48 99.77 99.77 99.67 99.86 99.86
Pendigits ~ 31.02 10.92 3.36 72.38 78.68 75.06 96.93 96.85 96.84 96.65 97.15 97.17 96.30 97.70 97.68
Average 69.06 75.37 70.93 69.35 83.04 79.68 85.75 88.71 91.24 88.06 90.33 89.75 89.34 91.50 92.04
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Fig. 6. The test recall rate of different methods.

where 7,352 samples are divided into the training set and
2,947 samples are into the test set. As mentioned above, the
dataset is classified into 6 categories, which are determined by
561 frequency domain features. Besides that, to further probe
the efficacy of the proposed approach, we also chose the other
five UCI datasets including Balance, Musk, Diabetes, Skin seg-
mentation (seg.), and Pegdigits for comparative experiments.
Among them, the balance dataset with 625 samples is divided
into 3 categories determined by 4 attribute features. There

are 6,598 samples in the musk dataset, which is classified
into 2 categories determined by 168 attributes. A total of
768 samples are included in the diabetes dataset, which
consists of § attribute features determining 2 classes, such as
positive class (diabetes) and negative class (non-diabetes). Skin
seg. dataset is comprised of 245,057 samples which contain
4 attribute features determining 2 classes, such as skin and
non-skin. Representing the digits collected from 44 writers,
the Pendigits dataset has 10,992 samples which are categorized
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TABLE IX
THE COMPARATIVE ANALYSIS WITH RECENT WORK

ID References Year  Dataset Methods Recall rate (%)
1 Anguita et al. [42] 2012 UCI_HAR_data Multiclass Hardware-Friendly Support Vector Machine (MC-HF-SVM) 89.00
2 Anguita et al. [43] 2013 UCI_HAR_data MultiClass SVM (MC-SVM) 89.30
3 Soangra et al. [8] 2022  Self-collected dataset =~ Wearable Sensors and Machine Learning Algorithms 87.05
3 This study 2022 UCI_HAR_data 1-D Dense & Attention network (DANet) 91.50

into 10 classes determined by 16 attributes. Precision Pre =
(TP/TP + FP)), which is mastered by the superiority of
true positive overall positive outcome, is used as a measure
indicator in the analysis. Table VI summarizes the detailed
information of these datasets. The training and testing accuracy
of different methods is listed in Tables VII-VIII, and Fig. 6
portrays the classifying recall rate of different methods on the
testing datasets.

It can be seen from Tables VII-VIII that the proposed
approach has gained an increased performance compared
with other well-known algorithms, even though the optimum
classifiers are utilized. On the training set, the proposed
approach separately reaches the average Precision, Recall,
and F'1 — Score of 92.47%, 93.91%, and 94.14%, which are
higher than those of most comparison methods except for the
RF and SVM. Howeyver, the test results of the SVM method
are poor, which indicates the overfitting problems of SVM.
Similar issues also exist in the RF, and especially, the RF is
an ensemble learning (EL) method, which consists of multiple
decision tree (DT) algorithms (Here is 20). By contrast, the
proposed DANet is an independent network method and it
achieves a competitive performance in the experiments of
publicly available datasets. On the test dataset, the average
accuracy of the proposed approach is superior to that of all
other compared methods, which can also be observed from
Fig. 6. The overall bars in all regions are higher than that of
other methods, which reveals the stability and validity of the
proposed approach.

Moreover, we have also accomplished a performance inves-
tigation of our method compared to the results reported in
existing literature, as presented in Table IX. The comparative
findings indicate that the proposed approach has delivered
outperformance results compared with other advanced meth-
ods. Consequently, based on the experimental analysis, it can
be concluded that the proposed approach is successful in
detecting idiopathic toe walking, and can also be generalized
to other related fields.

IV. CONCLUSION

Persistent toe walking among children affects the devel-
opment of the foot and ankle muscles, leading to instability
and pain, impaired muscle and movement coordination and
thereby increasing the risk of falling or tripping. Additionally,
toe walking can negatively impact a child’s life, leading to
teasing, bullying, and self-consciousness. Early identification
and intervention can help prevent complications in children
with idiopathic toe walking, such as shortening the Achilles
tendon. By identifying and treating toe walking early, children
can avoid these negative impacts and improve their quality of

life. Therefore, looking for an efficient, reliable, and low-cost
method to detect toe walking is of great realistic importance.
Deep learning techniques, notably diverse convolutional neural
networks, have presented an impressive performance in over-
coming most technical challenges associated with recognition
and classification tasks. In this study, we have proposed a
new one-dimensional (1D) Dense & Attention convolutional
network architecture, which we termed the DANet, to detect
idiopathic toe walking. The dense block is integrated into the
network to maximize information transfer and avoid missed
features. Also, the attention modules are incorporated into the
network to infer a more powerful hidden representation while
suppressing unwanted noises. In addition, the EFL function
is used to alleviate the unbalanced sample issue. Based on
experimental analysis, it can be concluded that the proposed
approach has a significant capability for identifying idiopathic
toe walking and can also be extended to broad fields. The
experimental findings along with the physiotherapists’ verifica-
tion in clinical practice, will enable generation of real-time toe
walking monitoring systems based on machine learning. These
real-time systems embedded in shoe insoles will quantify the
number of heel-strike and toe-strike events during walking in
children diagnosed with toe walking. This study will lay the
foundation for automated toe-walking detection and demon-
strate the effectiveness and feasibility of using ML models for
toe-walking detection among children with ITW.

In our experiments, the proposed DANet has proven to be
quite promising. However, it does have some limitations. The
model has high identification accuracy, but consumes slightly
more computational time. Model pruning algorithms can be
added to simplify the model in future work. Moreover, we plan
to deploy the model in the information system to automatically
implement the toe walking recognition. Also, in the future,
we would like to perform model inferencing on more practical
applications, such as virtual defect assessment, cancer cell
recognition, online fault detection, and so on.
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